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Abstract. Tiwo main goals for automated object ma-
nipulation processes are cost reduction and flexibil-
ity. Time-consuming, costly object-specific fixtures
can be replaced by vision systems, whereby the ma-
nipulators are extended with cameras so that multi-
ple objects in the environment can be precisely iden-
tified. To be able to manipulate an object, it must be
recognized first in the world, and then the pose must
be calculated. Neural network approaches recognize
and estimate the pose of an object in a single step
and yield superior results, but rely on vast amounts
of training data. This work describes an approach
for estimating the pose of identified objects without
pre-trained pose data. Template matching is used
to recognize objects in depth images, and the pose
is estimated through principal component analysis
(PCA). The input to the algorithm is reduced to the
template. Pre-existing knowledge about the object
further improves accuracy. A maximum deviation
of 0.2 cm from the ground truth has been achieved,
which suffices for the industrial grasping task. The
system was evaluated with real measurements taken
with an RGB-D camera. This work resembles a first
step to estimate an object’s pose with linear statisti-
cal methods.

1. INTRODUCTION

Industrial robots are efficient at picking up objects
in a predefined, structured environment [10]. When
mobile manipulators are deployed in a factory set-
ting and costly fixtures have to be avoided, robots
need the ability to identify and locate objects for ma-
nipulation. To overcome this problem, a vision sys-
tem can be used. One way to give robot vision is to
use two-dimensional images with depth information,
also known as 2.5D images or RGB-D images. RGB-
D images can be used to find and localize objects
by analyzing the environment. Building on top of
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the recognized and classified object, pose estimation
tries to estimate the six degrees of freedom (DOF)
pose of an object in an image. For mobile manipu-
lation of objects this information is needed to accu-
rately grasp objects with a manipulator in the correct
position and orientation.

The current state of the art approaches towards
object recognition and pose estimation are based on
deep neural networks [15]. They usually outperform
human crafted features [19], but unfortunately they
rely on huge amounts of training data for classifica-
tion and pose estimation and are difficult to adapt [9].
This is why, in this work, a more traditional approach
was chosen. The target object is recognized using
template matching in a 3D space. Pose estimation is
implemented using the principal component analysis
(PCA) to place an orthogonal basis in the center of
the grabbing area. Using PCA to estimate the pose of
the object, the needed input to the algorithm can be
reduced to only the template. This work resembles
a first step to estimate an object’s pose with linear
statistical methods.

In the following chapters the related work is sum-
marized, the used methods are explained and the re-
sults are being discussed.

2. RELATED WORK

Object recognition describes the task of localiz-
ing known objects in images. Due to changes in the
viewpoint or lighting, the task of mapping the huge
amount of input pixels to a small output space is still
complex [16]. To mitigate the influence of lighting
conditions, approaches which rely on 3D informa-
tion were researched [8]. The data used in these ap-
proaches is usually made up of a three channel 8-bit
RBG image or an additional fourth channel which
represents the 3D distance of the object to the image
sensor, where each image is described using
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While research improved object recognition and
classification with deep neural nets [15] , parallel ef-
forts focused on template matching for object recog-
nition [2][5]. Template matching uses extracted ex-
ample images to find objects in new images. This
method often involves sliding-window based algo-
rithms [7], which find the template in a rectangular
subpart of the image. Template matching works well
for frontal images, but fails if the viewpoint differs
from the actual template [4]. The simplicity of this
technique still inspired new research, which is why
its performance has improved significantly over the
last 10 years [6][11].

2.1. Pose Estimation

Building on top of the recognized object, it is pos-
sible to estimate the pose of the object relative to the
camera. This process is called pose estimation and it
consists of three general categories. In the first cat-
egory, the object’s pose is stored alongside its fea-
ture vectors. Consequently, each different observed
orientation represents a separate detection, which re-
sults in automatically knowing the objects pose if the
object is matched with a previously trained one.

The second category uses statistical techniques to
align two given RGB-D images with each other. For
this, Iterative Closest Point [3], or ICP, is the most
commonly used algorithm and many variants exist
for different applications [12][14].

The third category tries to combine the pose esti-
mation step with the recognition process itself. This
makes sense, since, as stated earlier, a different view-
point can change the appearance of an object entirely.
This category has been covered by recent research
due to the emerging field of machine learning [18].

Unfortunately, all of the before shown methods
need either vast amounts of training data or an ac-
curate model of the object that has to be detected. In
this work, a different approach is taken. The prin-
cipal component analysis (PCA) [1] is used for esti-
mating the pose of a known object. PCA’s intended
purpose is to extract principal components and re-
duce dimensionality between the input and the output
space. Using PCA to estimate the pose of the object,
the needed input to the algorithm can be reduced to
only the template. The proposed process of pose es-
timation with PCA is shown in the next chapter.
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Figure 1. Visualization of the grasping point. The figure
shows the object that has to be grasped. The orange coor-
dinate system shows the center of the grasping area.

3. METHODS

The objective of the proposed approach is the es-
timation of the pose of a known object. Before the
pose of an object can be calculated, it first has to be
located in an image. For this task, template match-
ing was chosen due to its ease of implementation and
use. After the object has been recognized in the depth
image, principal component analysis is used to deter-
mine the orientation of the found subpart of the im-
age in 3D space.

Figure 1 shows the target object of this work. The
pose of the shape in the “grabbing area” has to be
calculated so that it can be successfully grasped. For
this, the normal vector of the surface facing the cam-
era has to be found. Through orientation of the vec-
tors the rotational components of the 6D pose can
be determined. This task can be solved by comput-
ing the PCA for the points in the grabbing area. In
this case, the principal component analysis yields 3
eigenvectors with their respective eigenvalues for the
given 3D points. As can be seen by studying Figure
1, 2 of the 3 dimensions of the shape in the grab-
bing area differ from the other. The span of values in
the X and Y direction are comparatively large in re-
spect to the depth dimension Z. This also applies to
the respective variances. Using prior knowledge, the
normal vector of the plane parallel to the camera ori-
gin (i.e. corresponding to the surface of the marked
grabbing area) can be estimated using the eigenvec-
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Figure 2. Visualization of the correct alignment of vector
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tor with the smallest eigenvalue (eg. variance).

As the form of the shape is symmetrical, the mean
of the points in the grabbing area estimates the origin
of the coordinate system shown in Figure 1. There-
fore, the mean of the PCA can be used as the transla-
tional component of the transformation matrix.

t= (i, 1oy, pz)" (2)
The rotation matrix has to be assembled from
three orthonormal vectors. The first vector has al-
ready been found, which is the smallest eigenvector
of the PCA, which forms the Z vector pictured in Fig-
ure 1. The second vector can be obtained by leverag-
ing knowledge about the environment of the indus-
trial grasping use case. As the target object is located
at a target location that is parallel to the ground, the
rotation around the Z axis can be neglected. That is
why the second vector can be aligned with the Y axis
of the camera coordinate system. But since the first
vector found with the PCA could be rotated around
the Y axis of the object coordinate system, the sec-
ond vector has to be projected orthogonally to the
first. This is done with Equation (3) and the process
is visualized in Figure 2.

uz)| = (uj - i) - i (3)

U2 = U2 — Ug||

The third vector can then be calculated using the
cross product of w3 and wu3. The resulting rotation
matrix is constructed using Equation (4).

Uz U3y U3z
R=|ugs ugy uz. (4)
Ule Uly Ulz

After calculating the rotation and translation com-
ponents of the object, a transformation matrix can be
formulated using Equation (5).
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The transformation matrix can then be used to ex-
press the grasping point in the world coordinate sys-
tem, which is used for motion planning of the robot
arm. Having calculated the transformation between
the camera coordinate system and the objects coordi-
nate system one can calculate the objects world posi-
tion as follows

_ Tworld

. camera
camera

TObj obj

(6)

In the following chapter, the performance of the
proposed approach is discussed.

4. Results

The test setup consisted of the 3D printed model
of the target object shown in Figure 1 and an Intel
RealSense D435!. The RGB-D camera has been set
up at a defined location on a table and the 3D printed
model has been placed in front of it as can be seen in
Figure 3.

To measure the error of the PCA-based approach,
a metric had to be defined. For this, the Euclidean
distance between the ground truth vector and the es-
timated plane normal vector of the PCA is used. Usu-

"https://www.intelrealsense.com/depth-camera-d435/



Figure 4. Visualization of calculation of the Euclidean dis-
tance between the ground truth vector and the vector esti-
mated by the PCA

ally, with machine learning approaches, the error in
the 2D projection of the 3D bounding box is mea-
sured [13]. Since the estimation error can be mea-
sured directly in this case, the Euclidean distance is
used as a metric instead. To ease the calculation of
the ground truth vector, environment knowledge has
been used to eliminate one dimension out of the 3D
vector. Since the target 3D model is guaranteed to al-
ways be parallel to the ground, as is the camera, the
rotation around the Z-axis defined in Figure 1 can be
ignored. Furthermore, as this approach is being used
in an industrial grasping use case where the indus-
trial robot has to grab the target object perpendicular
to the estimated plane, the Y-component of the esti-
mated PCA vector can be ignored and therefore set
to 0. In order to get two vectors of the same length
for further correct calculation, both, the ground truth
vector and the vector estimated by the PCA have
to be normalized. This results in an Euclidean dis-
tance being calculated between two vectors in the X-
Z plane. This process is shown in Figure 4.

Equation (7) shows the calculation of the ground
truth vector, where the gt vector is the ground truth.
The X and Z components of the ground truth vector
can be obtained by calculating the direction of the
ground truth vector rotated by 5 depicted in Figure
3.

- sin(8)
gt = 0 7
(cosw) ")

Equation (8) shows the calculation of the error in
form of the Euclidean distance.

r=/(z1 — 22)% + (21 — 22)? (8)

x1 and z; denote the respective components of the
ground truth vector. x5 and zo denote the respective
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Table 1. List of positions that were used for the experi-
ments.

Angle [°] Distance [cm]

+/-0

+/- 10 30, 35, 40, 45, 50, 75
+/- 20

+/- 40 30, 35, 40, 45, 50

+/- 10 around camera
+/- 20 around camera
+/- 30 around camera

30, 35, 40, 45, 50, 75
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Figure 5. Visualization of the results with the object being
placed on the optical axis

components of the calculated normal vector by the
PCA, that has been projected onto the X-Z plane.

The measurements were taken in distances and
orientations that relate to the industrial grasping use
case. The target object has been moved to several
fixed positions in front of the camera. Table 1 lists
the positions that were used for the measurements.

Figure 5 shows the results for measurements taken
with the object being placed on the optical axis.

Both of the anomalies at 40 and 45cm can be ex-
plained due to poorly selected templates. This can be
mitigated by using advanced approaches for template
matching [5][17]. Those rely on scaling of the tem-
plate to get a more accurate match and also address
the rotational limitations.

Figure 7 shows an example disparity image of the
object viewed by the Intel RealSense camera. It can
be argumented that the anomalies are induced be-
cause of the dark areas in the disparity image, which
can be mostly traced back to occlusions of the stereo
vision system. This has an even larger effect when
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Figure 6. Visualization of the results with the object being placed at differing angles and distances on the optical axis

Figure 7. Disparity image of the object viewed by the Intel
RealSense camera. Occlusions induced by the stereo vi-
sion system make it difficult to accurately locate the grasp-
ing area depicted in Figure 1.

the object is being rotated. Figure 7 also shows that it
is difficult to depict the grabbing area of the object for
creating a fitting template from the disparity image.
Having a poorly chosen template leads to points be-
ing incorporated into the PCA estimation that are not
actually part of the grabbing area and therefore lead
to unexpected results. Nevertheless, it can be con-
cluded that the anomalies are not induced by means
of the method used for estimating the pose.

Figure 6 shows the results for measurements taken
with the object being placed at different angles on the
optical axis. Refer to Figure 3 for a visual presenta-
tion of this process. The angle depicted in Figure 6
corresponds to angle o shown in Figure 3. The dis-
tance mark relates to the distances shown on the X-
axis labels of the graphs in Figure 6. The anomalies
again can be explained by the problems mentioned
before. The right graph in Figure 6 clearly shows the
limits of the proposed approach, as the structure of
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Table 2. Regions in which the algorithm yields results suf-
ficient enough for the industrial grasping use case at hand.

Angle [°]

+/-0

+/- 10

+/- 20

+/- 10 around camera
+/- 20 around camera
+/- 30 around camera

Distance [cm]

30-75

30-75

the box plots over the graph changes in respect to the
other two graphs.

Figure 8 shows the results for measurements taken
with the object being placed at different angles
around the camera. The angle depicted in Figure
8 corresponds to angle 8 shown in Figure 3. The
anomalies again can be explained by the problems
mentioned before.

The results show that the usable region for this al-
gorithm can be summarized with Table 2. Argument-
ing, that the anomalies can be eliminated by using the
enhancements already listed. Angles depicted with
the “around camera” suffix correspond to the object
being rotated around the camera with angle «, as de-
picted in Figure 3.

5. Conclusion

This work presented an approach to estimate the
pose of a known object by using the principal com-
ponent analysis. This resembles a first step to esti-
mate an object’s pose with linear statistical methods.
The results showed that the approach is sufficient for
the industrial use case at hand, since a maximum de-
viation of 0.2 cm compared to the ground truth is
achieved, when anomalies are ignored. The results
also show the limitations of this approach. Anoma-
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Figure 8. Visualization of the results with the object being placed at different angles and distances around the camera

lies shown in the data can be explained through
poorly chosen templates. The problems faced could
be solved in future work by using the recommenda-
tions given in this work.
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