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Abstract

Earth’s time variable gravity field provides invaluable insights into the changing nature
of our planet. As it is a proxy to mass variations on Earth’s surface, it reflects geophysical
processes like continental hydrology, changes in the cryosphere or mass flux in the
ocean. Dedicated satellite missions such as the NASA/DLR operated Gravity Recovery
and Climate Experiment (GRACE), and its successor GRACE Follow-On (GRACE-FO)
continuously monitor these temporal variations of the gravitational attraction with global
coverage. Both missions provide monthly snapshots of Earth’s gravity field with a latency
of about two months. While these data sets have fundamentally improved the knowledge
of the temporal evolution of the geophysical interactions which compose the global
climate system, there are a variety of processes happening on sub-monthly time scales.
For example, short-lived events such as floods, which occur on the time frame of hours
to weeks, require low latency monitoring of high-frequency mass variations in order to
be properly resolved.

This thesis provides the theoretical foundation, implementation, and a review of an
operational test run of a near real-time (NRT) processing scheme for spaceborne grav-
ity observations. Building on the already well established Kalman filter approach for
GRACE/GRACE-FO data, a robust, fully autonomous tech demonstrator for daily grav-
ity field solutions with a latency of one day based on GRACE quicklook (Q/L) data
was implemented. Even though the operational test run of the NRT processing scheme
coincided with the last months of the GRACE mission, where deteriorating health of the
on-board instrumentation resulted in a challenging environment, high-quality gravity
field solutions were obtained. This was confirmed by a reanalysis of the observation data,
where post-processing techniques could be applied. Due to the unique nature of gravity
observations which, in contrast to other remote sensing techniques, provide information
about the whole water column including ground water, this complementary NRT data
set has the potential to contribute to and improve flood forecasting in the future.
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1. Introduction

Knowledge of Earth’s time variable gravity field is key for understanding the state and
change of our planet’s dynamic system. Changes in the mass distribution on Earth’s
surface and in its interior, for example, caused by the melting of ice sheets or the
continental water cycle, also change Earth’s potential field. Many of these underlying
geophysical - but also anthropogenic processes - play a key role in our global climate
system and directly impact our everyday life. Observations of gravity field variations can
provide insights into how these processes evolve and therefore provide benefits to society
as a whole.

Satellite gravimetry is especially useful in this context as it provides a global picture of
gravity field changes. In the last decades, dedicated satellite missions to observe Earth’s
gravity field, such as the Challenging Minisatellite Payload (CHAMP), Gravity field
and steady-state Ocean Circulation Explorer (GOCE), Gravity Recovery and Climate
Experiment (GRACE), and GRACE Follow-On (GRACE-FO) have been realized. Within
this group GRACE and GRACE-FO hold a special status. Their unique measurement
principle, which relies on highly accurate distance measurements between a leading and
a trailing satellite, is especially sensitive to temporal variations in Earth’s gravity field.
After accumulating approximately one month of measurements, a global data coverage
is reached. This is the prerequisite for a stable gravity field estimate with homogeneous
accuracy. Since the launch of GRACE in 2002 and the launch of its successor GRACE-
FO in 2018, a nearly continuous record of monthly gravity field snapshots has been
obtained. This provides an invaluable data set for Earth and climate research and allows
for consistent long-term investigations of changes on our planet.

Certain geophysical processes however occur on time scales much shorter than a single
month. For example, floods are highly dynamic events, which may only take hours to
days to develop and drain. To observe such events, the monthly sampling of standard
GRACE/GRACE-FO solutions is much too coarse. An obvious way to overcome this
deficiency is to reduce the accumulation period from one month to, for example, one
day. However, with such a drastically reduced data coverage, a globally homogeneous
gravity field estimate can no longer be obtained from the satellite observations alone.
Thus, tailored processing approaches are required in order to mitigate the drawback of
the increased sampling rate.

To fully exploit the benefit of satellite gravimetry for short-lived events such as floods,
(near) real-time (NRT) observations are required. This allows for the monitoring and
potentially the prediction of these extreme events rather than confirmation and evaluation
after-the-fact. The transition towards NRT is therefore not only useful for the scientific
community but also provides societal benefits.
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1. Introduction

1.1. Earth’s time variable gravity field

Changes in Earth’s potential are caused by a variety of processes happening on all spatial
and temporal time scales. The following paragraphs give a rough overview over the
most prominent signals which cause changes in surface mass. While these processes are
listed here as individual geophysical subsystems, in reality most of them interconnected,
for example, through the global water cycle. Satellite gravimetry does not discriminate
between different sources of mass change, thus it is a prime candidate for the integrated
monitoring of the dynamic system Earth.

Tidal effects The primary cause of mass redistribution in the Earth system are tidal
effects of sun, moon and to a lesser extent of the other bodies in the solar system.
The gravitational attraction of these celestial bodies causes a deformation of the
solid earth of a few decimeters and redistribution of water masses in the ocean.
In coastal areas, localized sea level variations of a few meters are not uncommon.
Next to the solid Earth and the ocean, the atmosphere also responds to tidal effects.
Atmospheric tides are however not only caused by the gravitational pull of the
celestial bodies but also through large scale latent heat release. Changes in the
gravitational field are also induced by the motion of Earth’s rotational axis with
respect to its solid body. This effect called polar motion, causes mass flux due to
centrifugal forces acting on both the solid Earth and the water masses of the ocean.
While it is not strictly a direct consequence of tidal effects, it is often referred to as
”pole tide” (Carton & Wahr, 1986; Petit & Luzum, 2010; Wahr, Nerem, & Bettadpur,
2015).

Continental hydrology The interplay of precipitation, evapotranspiration, infiltration,
subsurface flow, and runoff of water is another major driver of mass redistribution
in the Earth system. Seasonal variations in groundwater level, secular changes
during drought periods but also short lived events such as major floods have
already been studied through the resulting potential changes (e.g., Gouweleeuw
et al., 2018). Furthermore, anthropogenic variations in water storage as a result of
excessive irrigation or reservoirs can also be detected through satellite gravimetry.

Non-tidal ocean mass flux Next to tidal effects, the ocean also exhibits non-tidal mass
variations caused by eddy generation in the confluence zones, through the influx
of freshwater from continental runoff, or through mass transport caused by major
currents such as the gulf stream. Apart from these regional mass fluxes, the global
mass change of the ocean is also of utmost importance, as it provides a way to infer
sea level rise.

Cryospheric mass variations Variations in the cryosphere, either through snow accumu-
lation, melting of ice sheets or glacier systems result in primarily seasonal and
secular variations. Prominent signals are mass loss in the ice sheets of Greenland
and Antarctica, and glacier systems in, e.g., Iceland, Svalbard and Alaska (e.g.,
Wouters, Gardner, & Moholdt, 2019).

Atmospheric mass flux Changes in the gravitational potential are also caused by density
changes in the atmosphere through winds, temperature variations or varying
specific humidity.

2



1.1. Earth’s time variable gravity field

Solid earth processes Mass changes in the solid earth are primarily caused by glacial
isostatic adjustment (GIA) and seismic activities. GIA describes the adjustment
process of the earth to an equilibrium state as a result of retreating polar and
continental ice sheets after the last ice age. The reduced load causes the crust to
rebound, thus allowing mantle material to flow back under previously glaciated
areas, resulting in a regional density change. Larger GIA signals can be observed
in Antarctica, Canada, Fennoscandia and Greenland. Next to the secular GIA
process, mass changes occur during major earthquakes. These co-seismic events
have already been studied using satellite gravimetry (Han, Jekeli, & Shum, 2004;
Panet, Bonvalot, Narteau, Remy, & Lemoine, 2018) and can be extremely well
resolved when long time series of observation data is available (Kvas, Brockmann,
et al., 2019). Earthquakes are typically followed by a post-seismic relaxation phase,
where the affected regions exhibit a continuing mass change on the time scales of
months to years.

The gravitational potential in the Earth’s exterior is given through Newton’s law of
universal gravitation, which states that two mass particles attract each other with a force
directly proportional to the product of their mass and inversely proportional to the
square of their distance along the line intersecting the particles. A different interpretation
of this statement is that a mass particle mQ at position rQ creates a vector field g(r), with

g(r) = −GmQ
r− rQ

‖r− rQ‖3 , (1.1)

where G is the gravitational constant, which represents the gravitational acceleration
generated by this point mass. If the density distribution of a solid body can be described
through a continuous function ρ(rQ, t), the gravitational acceleration of the whole body
can be obtained through the superposition principle by integrating over the body’s
volume Σ:

g(r, t) = −G
∫∫∫

Σ

r− rQ

‖r− rQ‖3 ρ(rQ, t) dΣ. (1.2)

In (1.2), the time dependency of the gravitational acceleration due to changes in the
density distribution of the body is explicitly added. Due to this gravitational field being
conservative, there consequently exists a potential field

V(r, t) = G
∫∫∫

Σ

ρ(rQ, t)
‖r− rQ‖

dΣ, (1.3)

which satisfies g(r, t) = ∇V(r, t). In the body’s exterior, this gravitational potential can
be expanded into a series of spherical harmonics (e.g., Heiskanen & Moritz, 1967). For
this representation it is convenient to introduce spherical coordinates, which consist of
the radius r, the spherical colatitude ϑ, and the longitude λ. They are connected to the
position vector r through r = r · [sin ϑ cos λ, sin ϑ sin λ, cos ϑ]T. The potential in terms of
spherical harmonics is then given by

V(r, t) =
GM

R

∞

∑
n=0

(
R
r

)n+1 n

∑
m=−n

anm(t)Ynm(r), (1.4)
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1. Introduction

where M is the Earth’s mass, R is the mean equatorial radius, anm(t) are time variable
potential coefficients, and Ynm are surface spherical harmonics. The surface spherical
harmonics can be further decomposed into

Ynm(r) = Pn|m|(cos ϑ)

{
cos mλ if m ≥ 0
sin mλ if m < 0

, (1.5)

where Pn|m| is the associated Legendre function of degree n and order m. As in this thesis
the temporal changes of the potential are of primary interest, typically only differences
to a long-term mean field are considered. This can be reflected in (1.4) by substituting the
spherical harmonic coefficients anm with ∆anm(t) = anm(t)− ānm, where ānm is the static
or average part of the corresponding coefficient.

While (1.4) provides a strict mathematical description of Earth’s time variable gravity field,
it is often useful to provide more intuitive representations of potential changes. Especially
for applications where potential changes are used to study geophysical processes, e.g.,
the global water cycle, it suggests itself to express these changes through the mass
redistribution which cause them. The caveat with this approach is that, while a specific
mass distribution has a unique potential field, the inverse does not hold. However, this
problem can be overcome by reducing the solution space to a thin layer on Earth’s
surface. Given that short-term variations in Earth’s gravity field are primarily governed
by mass flux in the ocean, on Earth’s surface, and in lower atmospheric layers, this
assumption is certainly justified (Wahr, Molenaar, & Bryan, 1998). A widely used gravity
field representation which is based on this thin layer approximation is equivalent water
height (EWH), where

EWH(r, t) =
M

4πR2ρw

∞

∑
n=0

2n + 1
1 + k′n

n

∑
m=−n

∆anm(t)Ynm(r). (1.6)

This quantity describes the amount and distribution of water with density ρw on Earth’s
surface which generates the potential change represented by ∆anm(t). In (1.6) the load
Love numbers k′n account for the indirect effect caused by the deformation of the solid
Earth due to the mass of the water layer.

1.2. The satellite missions GRACE and GRACE Follow-On

The Gravity Recovery And Climate Experiment (GRACE, Tapley, Bettadpur, Watkins, &
Reigber, 2004) satellite mission was in orbit for over 15 years and provided an invaluable
data record for climate and Earth system sciences. Its primary data product was a time
series of monthly gravity field snapshots - a proxy for mass distribution in the Earth
system. These time-variable gravity field observations have been used to study a variety
of geophysical processes, such as ice mass loss, continental hydrology, or sea level rise
(e.g., Chambers, 2006; Chen, Wilson, & Tapley, 2010; Velicogna, 2009).

GRACE was implemented and operated as a cooperation between the National Aeronau-
tics and Space Administration (NASA) in the United States of America and the German
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1.2. The satellite missions GRACE and GRACE Follow-On

Aerospace Center (DLR). It was a joint proposal by the Center of Space Research at the
University of Texas (CSR), the German Research Centre for Geosciences (GFZ), the Jet
Propulsion Laboratory (JPL), Space Systems/Loral (SSL), DLR and Astrium to NASA’s
Earth System Science Pathfinder (ESSP) program.

The measurement principle of GRACE relies on extremely precise ranging measurements
between a leading and a trailing satellite in the same orbit. Both satellites can be viewed
as proof masses in Earth’s gravitational field, thus knowledge about the absolute and
relative positions and their rate of change can be used to infer information about the
mass distribution causing the gravitational pull. The twin-satellites were launched aboard
a Rokot/Briz-KM launch vehicle from Plesetsk, Russia on March 17, 2002. Both spacecraft
were placed in a near-circular, polar orbit at an initial height of about 500 km with a sepa-
ration of about 220 km. Following a battery failure in September 2017, science operations
were terminated in October 2017. Both satellites were subsequently decommissioned
and re-entered the atmosphere on December 24, 2017 (GRACE-B) and March 10, 2018

(GRACE-A) respectively.

The primary science objectives of GRACE were to continuously monitor Earth’s time-
variable gravity field and to provide atmosphere profiles through radio occultation. To
achieve these goals, both satellites were equipped with an identical payload designed
to measure the absolute position and orientation in space, the relative distance between
both spacecraft, and the forces acting on the satellite bodies. The satellites’ position
is tracked using a Global Positioning System (GPS) receiver, which also provides the
time system all other instruments are aligned to. For gravity field recovery, the most
important sensor is the K-band ranging instrument (KBR), which continuously measures
the distance between the satellites. A star camera assembly (SCA), consisting of two heads
located in the side panels of the satellite body provides attitude information. In order
to distinguish between gravitational and non-gravitational forces acting on the satellite,
an accelerometer (ACC) in each satellite’s center of mass measures non-conservative
accelerations acting on the satellite body.

The GRACE successor, GRACE Follow-On (GRACE-FO) was successfully launched on
May 22, 2018 from Vandenberg Air Force Base aboard a SpaceX Falcon 9 rocket. GRACE-
FO was implemented and is operated under a German/US partnership, as was GRACE.
The instrumentation of GRACE-FO is an evolution compared to its predecessor, driven by
technical advancements and lessons learned from the GRACE mission. Key differences
include a third star camera head and improved mounting of the camera assembly for
better attitude determination, an updated accelerometer and improvements to the IMU,
the GPS receiver, and the K-band ranging instrument. GRACE-FO is also a technical
demonstrator for a laser ranging interferometer (LRI), which has provided the first
ever optical interferometry between two satellites. The In-Orbit-Checkout phase for the
mission successfully ended in January 2019, which means that science data has been
available since June 2019.

While the instrumentation aboard GRACE-FO is a clear evolution compared to GRACE,
the design parameters such a orbit height, inclination, and eccentricity are identical for
both missions. This means that the spatio-temporal sampling characteristics of GRACE

5



1. Introduction

Figure 1.1.: Accuracy of an unconstrained daily GRACE solution propagated to space domain. The red line
shows the ground track of the satellites for the given day.

can be directly applied to GRACE-FO as well. While the North-South sampling deter-
mined by the sampling rate of the measurement system due to the polar orbit of the
satellites, the East-West sampling is determined by the unique equator crossing within
a given time span. In a typical, i.e. non-repeat, orbit cycle the GRACE/GRACE-FO
satellites perform 15 full revolutions per day. Weigelt, Sneeuw, Schrama, and Visser
(2013) have shown that this is only sufficient to resolve the global gravity field up to
spherical harmonic order 15. In the spatial domain this means that the information gain
from the satellite missions is concentrated in areas next to ground tracks, while little
to no information is gained for regions between ground tracks. This effect is shown in
figure 1.1, by examining the accuracy of an unconstrained daily GRACE solution. As
can be seen, the gravity field in regions between ground-tracks cannot reasonably be
determined as they exhibit uncertainties in the order of a few kilometers of equivalent
water height, while the expected signal lies in the centimeter range. A homogeneous
observation distribution, which is a requirement for a stable determination of the global
gravity field, is only reached after approximately one month. This is also the sampling
of the primary GRACE/GRACE-FO data products, as provided by the official GRACE
processing centers.

There are however geophysical processes which occur on sub-monthly time scales.
Floods, for example, may only take hours to days to build up and drain. To mitigate
the deficiencies in the spatio-temporal sampling of GRACE which are a direct result
of the reduced accumulation period, different approaches have been developed. The
most prominent one is the so called Kalman filter approach introduced by Kurtenbach,
Mayer-Gürr, and Eicker (2009) and later refined by Kurtenbach et al. (2012). This method
has already been successfully used in a variety of gravity field solutions (Mayer-Gürr et
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1.3. Outline of the thesis

al., 2016, 2018; Mayer-Gürr, Kurtenbach, & Eicker, 2010; Mayer-Gürr, Zehentner, Klinger,
& Kvas, 2014). The key characteristic of this approach is the use of stochastic information
about Earth’s gravity field in order to stabilize daily solutions in a two-step prediction-
correction scheme. Since in principle, this approach only requires information from
the past, it provides a natural starting point for near real-time applications. Another
approach which aims at providing high-frequency gravity field variations is the sliding-
window approach presented in Sakumura, Bettadpur, Save, and McCullough (2016).
Here regularized solutions are produced by forming a weighted average over a longer
time span. The weighted average is designed in a way that observations of the central,
reference epoch have the largest contribution, while the weights of epochs further in the
past and future slowly decrease. These sub-monthly gravity field solutions have been
used to study a variety of geophysical processes, for example, ocean variations (Zenner
et al., 2014) or large flood events (e.g., Gouweleeuw et al., 2018). Flood early-warning
and forecasting systems additionally require information in near-real time (NRT) to
estimate probabilistic flood risk with typical lead times of a few days for larger river
basins. Thus, total water storage anomalies (TWSA) derived from temporal variations
of the Earth’s gravity field with not only an increased temporal sampling, but also with
low-latency are key to observe such dynamic events. One prerequisite for such a unique
data product is a sophisticated processing chain for the satellite measurements. In order
to fully exploit the information content of the observations, systematic and random
errors have to be understood and treated properly. Secondly, to mitigate the sparse data
coverage, prior information has to be introduced appropriately. It is key to find a balance
between inhibiting noise and overconstraining the solution. Further challenges arise
when these concepts are applied in NRT. The availability and quality of observations
and auxiliary data lead to compromises in the processing chain. Furthermore, the lack
of information from the future requires a tailored scheme to combine observations and
prior information.

This thesis presents an approach which tackles these challenges and enables the op-
erational processing of gravity field observations to derive daily snapshots of Earth’s
gravity field. The method was tested in a three-month long test run based on GRACE
mission data, where a maximum latency of 5 days was required. The performance of the
approach is evaluated by a comparison of the operational solutions with a reanalysis
time series, and a post-processing solution.

1.3. Outline of the thesis

Chapter 2 provides an overview how sub-monthly mass variations in the Earth system can
be inferred from GRACE/GRACE-FO. The basic concepts of gravity field recovery using
least-squares adjustment are introduced. This includes the formulation of observation
equations, the elimination non-gravity field parameters from the adjustment problem, and
the introduction of prior information. After the general framework of constraint gravity
field solutions is presented, the special case where sub-monthly gravity field variations
are modeled as stationary process is investigated. By introducing vector autoregressive
models, a highly efficient approach of how these pseudo-observations can be introduced

7



1. Introduction

into the gravity field recovery process is described. The Kalman filter is derived through
the formulation of appropriate observation equations and an equivalent adjustment
problem to the Kalman smoother is presented. This is the basis for a generalization of the
approach of Kurtenbach et al. (2012) to vector autoregressive models of arbitrary order.

In chapter 3, concepts and requirements for operational near real-time processing of
GRACE/GRACE-FO data are outlined. As a first step, a thorough review of all required
data products, the interdependency between each data set and a detailed processing
chain is given. All required tasks from raw data processing to the derivation of gridded
mass anomalies are described and the corresponding scheduling is presented. Key steps,
in this process are the computation of kinematic satellite orbits, establishment of the
functional and stochastic observation model, and the determination of an appropriate
observation weighting. Next to the daily processing schedule, necessary auxiliary tasks
which are performed in irregular intervals are presented. Finally, contingency plans for
possible failures during the processing are discussed.

Chapter 4, introduces the European Gravity Service for Improved Emergency Man-
agement (EGSIEM) near real-time (NRT) service and shows the performance of the
developed processing chain in an operational test run. Firstly, pre-operational simulations
concerning the expected data characteristics during the later stages of the GRACE mission
are presented. Then results of the three-month operational test run, where daily GRACE
solutions were computed in a fully automated fashion are presented. Focus is given here
to the changing data characteristics and the challenges during the last months of the
GRACE science operations.

A reanalysis of the operational gravity field solutions produced during the NRT Service
test run is presented in chapter 5. This reprocessing serves as basis for a quantitative
evaluation of the operational solutions and the identification of areas for improvement
for future NRT applications.

Finally, in Chapter 6, the findings are summarized and an outlook on the application of
the developed NRT processing chain for future satellite missions is given.

8



2. High-frequency mass variations from
GRACE/GRACE-FO

2.1. Gravity field recovery from GRACE/GRACE-FO

In order to recover Earth’s gravity field from satellite data in a least squares sense the
acquired observation vector l has to be related to the sought-after gravity field parameters
x through a functional model of the form

l = f (x, . . .). (2.1)

The approach chosen in this thesis makes use of kinematic orbit positions rA and rB of
the satellites and inter-satellite range-rates ρ̇AB. Therefore, the observation vector has the
structure

l =

 rA
rB

ρ̇AB

 , (2.2)

where each of the vectors rA and rB, are time series of kinematic orbit positions for satellite
A and B respectively, and ρ̇AB are range-rate observations between the satellites. The
range-rate observations are connected to the satellites’ positions and velocities through

ρ̇AB = eAB · (ṙB − ṙA), (2.3)

where eAB = 1
‖rB−rA‖ (rB − rA) is a unit vector in line-of-sight (LOS) direction between

the satellites. By combining the satellite’s position and velocity to the satellite state
y = [ṙT, rT]T, the observation vector l can be expressed as a function of both satellites’
states, with

l = f (yA, yB). (2.4)

The connection between the satellite state and the sought-after gravity field parameters is
established through Newton’s second law of motion. This axiom states that the change
of momentum acting on a body is proportional to the forces applied. Assuming constant
mass of the body in motion, this can be expressed through

F = mr̈, (2.5)

9



2. High-frequency mass variations from GRACE/GRACE-FO

where F is the sum of all forces acting on the body, m is the body’s mass and r̈ is its
acceleration. To utilize (2.5) as function model, it first has to be rearranged to

r̈ =
1
m

F. (2.6)

By integrating (2.6) twice, the inhomogeneous system of differential equations

ṙ(t) = ṙ0 +
1
m

∫ t

t0

F(t′)dt′

r(t) = r0 + ṙ0(t− t0) +
1
m

∫ t

t0

∫ t′

t0

F(t′′)dt′′dt′
(2.7)

is obtained. The solution to this system of equations, the satellite state y(t), can be
determined in a variety of ways. Two popular approaches include the integral equation
approach (e.g., Mayer-Gürr, 2006), or the variational equation approach (e.g., Beutler &
Mervart, 2010; Montenbruck & Gill, 2000). A detailed review of the variational equation
approach and its application to GRACE/GRACE-FO can be found in Ellmer (2018). Once
the solution to (2.7) is available, the satellite state can be written as a function of the
initial state y0 and the forces acting on the satellite, with

y = y(y0, F(x, . . .)) = y(x, y0, . . .). (2.8)

In (2.8) it is explicitly stated, that F not only depends on Earth’s gravity field but is
a combination of a variety of forces, including, for example, atmospheric drag, solar
radiation pressure and the gravitational attraction of other bodies in the solar system. A
comprehensive list of all components of F and corresponding geophysical models used
in gravity field recovery can be found in table 3.3. Substituting the solution (2.7) into (2.4)
then establishes the relation between the observations and the unknown parameters

l = f (x, y0,A, y0,B, . . .). (2.9)

In practice, F will be evaluated using fixed model output, resulting in a functional
model fm only depending on Earth’s gravity field. However, for GRACE and GRACE-FO,
non-conservative accelerations acting on the satellites are measured by the onboard
accelerometers which suffer from biases and drifts. These sensor imperfections are
notoriously difficult to model beforehand and are therefore also introduced as unknowns
in the adjustment process (e.g., Klinger & Mayer-Gürr, 2016). For brevity, all non-gravity
field parameters, including initial states and instrument calibration parameters are
combined in the vector z, which leads to the, generally non-linear, observation model

l = fm(x, z). (2.10)

In order to estimate the unknown parameters (x, z) from the functional model (2.1) in a
least squares sense, fm is expanded into a Taylor series with respect to (x, z) at (x0, z0),
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2.1. Gravity field recovery from GRACE/GRACE-FO

following the standard procedure for a non-linear least squares adjustment (e.g., Koch,
2004). The resulting power series

l = fm(x0, z0) +
∂ fm

∂x

∣∣∣∣∣
(x0,z0)

(x− x0) +
∂ fm

∂z

∣∣∣∣∣
(x0,z0)

(z− z0) + · · · (2.11)

is then truncated after the linear term. For clarity, the design matrices A and B, which
are the Jacobian of fm with respect to x and z, evaluated at (x0, z0) and the parameter
corrections ∆x and ∆z defined as x− x0 and z− z0 are introduced. Moving the zero-order
term of the power series to the left hand side yields

∆l = l− fm(x0, z0) = A∆x + B∆z + e, (2.12)

which relates the reduced observations ∆l to the parameter corrections. The residual
vector e is added to the right hand side of (2.12) because the system of observation
equations will generally be inconsistent due to measurement errors in l and model
imperfections.

The residuals are assumed to be correlated, hence a metric P has to be defined in order
to appropriately minimize the norm of e. In the case at hand, the metric is given by the
inverse of the covariance matrix of the residuals Σe, that is P ≡ Σ−1

e . To obtain the metric,
covariance propagation is applied to (2.12) which yields

Σe = Σl, (2.13)

where Σl is the covariance matrix of the observations l. The determination of Σl is key
for a statistically optimal estimate of x. For a comprehensive description of a method
which determines the covariance matrix of observations iteratively during the adjustment
process, the reader is referred to Ellmer (2018). Computing the system of normal equations
from (2.12) leads to[

ATPA ATPB
BTPA BTPB

] [
∆x̂
∆ẑ

]
=

[
ATP∆l
BTP∆l

]
, (2.14)

or [
Nxx Nxz
NT

xz Nzz

] [
∆x̂
∆ẑ

]
=

[
nx
nz

]
, (2.15)

which can be solved for the estimates ∆x̂ and ∆ẑ.

In this thesis the unknown gravity field parameters are of primary interest, hence an
adjustment problem which only explicitly contains ∆x is preferred. This can be achieved
by performing parameter elimination (e.g., Koch, 2004). By applying the orthogonal
projector Π⊥B = I − B(BTPB)−1BTP to (2.12), the system of observation equations is
mapped into the orthogonal space of B, resulting in

Π⊥B ∆l︸ ︷︷ ︸
∆l̄

= Π⊥B A︸ ︷︷ ︸
=Ā

∆x + Π⊥B B︸ ︷︷ ︸
=0

∆z + Π⊥B e︸︷︷︸
=ē

. (2.16)

11



2. High-frequency mass variations from GRACE/GRACE-FO

Since the residuals are now subject to a linear transformation, their covariance matrix has
to be consequently propagated through

Σē = Π⊥B ΣeΠ⊥
T

B . (2.17)

After substituting (2.13) this can be rearranged to

Σē = Π⊥B ΣlΠ⊥
T

B

= Π⊥B [Π
⊥
B Σl]

T

= Π⊥B [Σl − B(BTPB)−1BT]T

= Π⊥B [Σl − B(BTPB)−1BT]

= Π⊥B Σl −Π⊥B B︸ ︷︷ ︸
=0

(BTPB)−1BT,

(2.18)

from which follows

Σ−1
l = Σ−1

ē Π⊥B . (2.19)

To obtain a least squares solution from the system of equations (2.16), the weighted
square sum of the projected residuals

qē = ēTΣ−1
ē ē (2.20)

has to be minimized. By exploiting the idempotence of orthogonal projectors (Roman,
2007), (2.19) can be substituted into (2.20):

qē = ēTΣ−1
ē ē = ēTΣ−1

ē (Π⊥B ē) = ēT(Σ−1
ē Π⊥B )ē = ēTΣ−1

l ē. (2.21)

Thus, the least squares solution to (2.16) can be obtained by using the original metric
P ≡ Σ−1

l . The final overdetermined system of observation equations therefore reads

∆l̄ = Ā∆x + ē. (2.22)

Parameter elimination can also be performed on a normal equation level. This can easily
be shown by computing and expanding the system normal equations corresponding to
the least squares adjustment (2.22). Starting with the normal equations coefficient matrix,
it is found that

ĀTPĀ = ATΠ⊥
T

B PΠ⊥B A

= AT(I− B(BTPB)−1BTP)TPΠ⊥B A

= AT(I− PB(BTPB)−1BT)PΠ⊥B A

= AT(P− PB(BTPB)−1BTP)Π⊥B A

= ATP(I− B(BTPB)−1BTP)Π⊥B A

= ATPΠ⊥B Π⊥B A = AT(PΠ⊥B )A

= AT(P− PB(BTPB)−1BTP)A

= ATPA︸ ︷︷ ︸
=Nxx

−ATPB︸ ︷︷ ︸
=Nxz

(BTPB︸ ︷︷ ︸
=Nzz

)−1 BTPA︸ ︷︷ ︸
=NT

xz

.

(2.23)
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2.2. Incorporation of prior information

Performing the same operations for the right hand side leads to

ĀTP∆l̄ = ATP∆l︸ ︷︷ ︸
=nx

−ATPB(BTPB)−1 BTP∆l︸ ︷︷ ︸
=nz

. (2.24)

Combining both the expressions for the coefficient matrix and right hand side finally
yields a system of normal equations which only has ∆x̂ as explicit unknowns:

(Nxx −NxzN−1
zz NT

xz)∆x̂ = (nx −NxzN−1
zz nz). (2.25)

This relates the system of observation equations (2.16) where z is eliminated, to the full
system of normal equations arising from (2.12), through the matrices Nxx, Nxz, and Nzz
as well as the right hand side vectors nx and nz.

For some applications, not only the parameters, but also the post-fit residuals ê are of
interest. After the parameter subset ∆z is eliminated, the estimates ∆ẑ are not explicitly
available, thus ê = ∆l−A∆x̂− B∆ẑ can no longer be directly evaluated. However, it can
easily be shown that ˆ̄e = ∆l̄− Ā∆x̂ = ê. Simply factoring out the orthogonal projector
from the expression ∆l̄− Ā∆x̂ yields

ˆ̄e = ∆l̄− Ā∆x̂ = Π⊥B (∆l−A∆x̂− B∆ẑ) = Π⊥B ê. (2.26)

By further expanding the right hand side of this equation

Π⊥B ê = ê− B(BTPB)−1BTPê (2.27)

is obtained. For ˆ̄e = ê to hold true, it is sufficient to show that BTPê = 0. By substituting
ê this expression can be related to the full system of normal equations (2.14) as

BTPê = BTP∆l− BTPA∆x̂− BTPB∆ẑ = nz −NT
xz∆x̂−Nzz∆ẑ. (2.28)

This expression can easily be verified to yield 0 by examining the second block row of
(2.14), thus ê = ˆ̄e = ∆l̄− Ā∆x̂.

In the following, the bar denoting reduced observations, design matrix, and residual
vector after parameter elimination is dropped for brevity. It is however assumed that there
are non-gravity field parameters eliminated in the discussed least squares adjustments.

2.2. Incorporation of prior information

As outlined in section 1.2 global, sub-monthly gravity field variations cannot be de-
termined from GRACE/GRACE-FO alone, but require prior information. One way to
introduce said prior information is by extending the least-squares adjustment (2.12) with
pseudo-observations lp of the form

lp = Fx + v, v ∼ N (0, Σv), (2.29)

(e.g. Koch & Kusche, 2002). These pseudo-observations are not the result of a mea-
surement process, but are generally a linear combination of information about the
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2. High-frequency mass variations from GRACE/GRACE-FO

parameters, for example, derived from a physical law. To be consistent with the actual
GRACE/GRACE-FO observations, the Taylor series expansion point has to be reduced
in the same fashion, leading to the reduced pseudo-observations ∆lp = lp − Fx0. For
simplicity it is assumed that ∆lp = 0 and F = I, with I being a unit matrix of appropriate
dimensions. The resulting observation equations

0 = I∆x + v, v ∼ N (0, Σv), (2.30)

can be interpreted as conditions for the sub-monthly gravity field variations which do
not have to be strictly fulfilled (Caspary & Wichmann, 1994). Specifically, (2.30) states
that the parameters are close to the background models represented by x0, where ”close”
is determined by the covariance matrix Σv. Combining (2.22) and (2.30) then leads to the
blocked system of observation equations[

∆l
0

]
=

[
A
I

]
∆x +

[
e
v

]
,

[
e
v

]
∼ N

([
0
0

]
,
[

Σl
Σv

])
. (2.31)

The block diagonal structure of the combined covariance matrix implies that observations
and prior information are uncorrelated. This assumption is certainly justified, as the
pseudo-observations are not produced by a measurement process, but rather from
external information about the gravity field. The system of normal equations arising
from (2.31) takes the form

(ATΣ−1
l A + Σv

−1)∆x̂ = ATΣ−1
l ∆l̄, (2.32)

which can be abbreviated to (N + Σv
−1)∆x̂ = n by introducing the normal equation

coefficient matrix N and the corresponding right-hand-side n.

Up to now, no restrictions except for positive definiteness, have been imposed onto Σv.
However, given the application discussed in this thesis, a few further assumptions about
the characteristics of the sought-after high frequency gravity field solutions can be made.
Given that only corrections ∆x are estimated, it can be assumed that the expectancy,
variances and covariances of the underlying process do not vary with time, if all secular
and seasonal gravity signals are properly modeled in x0 (Kurtenbach et al., 2012). If this
is the case, the process is wide-sense stationary (e.g., Lütkepohl, 2005) which is extremely
beneficial for practical applications. Furthermore, given a high-quality a priori gravity
field, the time series of high-frequency gravity field estimates can also be assumed to be
centered, which is already implied in (2.31).

A key feature of stationary stochastic processes is that their covariance matrix is block
Toeplitz (Akaike, 1973). This means that if the vector of unknown parameters contains
each epoch ∆xi with i ∈ {0, . . . , N − 1}, ascending in time with ∆x = [∆xT

0 , . . . , ∆xT
N−1]

T,
the corresponding covariance matrix can be simply expressed as

(Σv)ij =

{
Σv(|j− i|) for i ≤ j
Σv(|j− i|)T otherwise

(2.33)
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2.2. Incorporation of prior information

or more explicitly as

Σv =


Σv(0) Σv(1) Σv(2) . . .

Σv(1)T Σv(0) Σv(1) . . .
Σv(2)T Σv(1)T Σv(0) . . .

...
...

...
. . .

 , (2.34)

where Σv(h) is the covariance matrix between two epochs spaced h time steps apart.

In practice, the true spatio-temporal covariance function of the stochastic process is not
known, hence it has to be approximated by an empirical estimate. One way to obtain
such an empirical estimate is to apply the unbiased estimator

Σ̃v(h) =
1

M− h

M−1

∑
j=h

ṽj−hṽT
j , (2.35)

to a realization ṽj ∈ Rmx1 with j ∈ {0, . . . , M− 1} of the underlying process (Brockwell
& Davis, 2010). For the application at hand, such a realization can be obtained from
long time series of geophysical model output as discussed in Kurtenbach et al. (2012).
The drawback of directly composing (2.34) is that the covariance matrices for all lags
h = {0, . . . , N − 1} need to be estimated for Σv to be fully determined. This is difficult to
achieve as the number of epochs M in the process realization must exceed the length of
the covariance function drastically to yield a robust estimate (e.g., Fan, Liao, & Liu, 2016),
and the available geophysical models are scarce.

A more practical approach is to use a parametric method to estimate the spatio-temporal
correlations of ṽ. The principle difference between parametric and non-parametric meth-
ods for spectral estimation is that non-parametric methods do not make assumptions
about the underlying process except for stationarity. In contrast, parametric estimators
assume that the process satisfies a generating model with known form, but unknown
model parameters. To derive spatio-temporal correlations through a parametric estimator,
first the model parameters have to be determined. Then the covariance function of the
process can be computed based on the now known model coefficients. In cases where the
chosen model is close to reality, parametric methods provide a more accurate representa-
tion of the spectrum due to the potentially increased redundancy of the estimate (Stoica
& Moses, 2005). To exploit this fact, the process which describes the spatial and temporal
correlations of the sought after gravity field snapshots, is represented as a finite, stable
vector-autoregressive (VAR) model in the form of

vi =
p

∑
k=1

Φ
(p)
k vi−k + wi, wi ∼ N (0, Σ

(p)
w ), (2.36)

(e.g., Lütkepohl, 2005). In (2.36), Φ
(p)
k ∈ Rmxm are the VAR model coefficients and

wi ∈ Rmx1 is a white noise sequence with the covariance structure

E{wiwT
j } =

{
Σ
(p)
w if i = j

0 if i 6= j
. (2.37)
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2. High-frequency mass variations from GRACE/GRACE-FO

The superscript p of Φ
(p)
k and Σ

(p)
w denotes that these quantities are part of a VAR(p)

model, where p is the model order. To derive the unknown model coefficients and the
white noise covariance matrix, again the sample ṽi can be used. There exist a number
of methods to derive these quantities, such as the Yule-Walker (YW) equations and
maximum likelihood estimators (e.g., Lütkepohl, 2005), or least squares approaches
(Neumaier & Schneider, 2001). A method specifically tailored to the derivation of VAR
models from geophysical model output is presented in section 2.4.

Once the model parameters and white noise covariance are determined, the spatio-
temporal correlations of the process for all lags h and consequently (2.34) can be com-
puted. From a computational perspective it is however beneficial to avoid assembling
(2.34) directly, if either the number of epochs N is large or the dimension m is high. Then,
the VAR equation can be used to transform the pseudo-observation equations in (2.31).
By separating v and w in (2.36) to the left- and right-hand side respectively,

wi = vi −
p

∑
k=1

Φ
(p)
k vi−k (2.38)

is obtained. When assembled in ascending chronological order for all epochs i ∈
{0, . . . , N − 1}, (2.38) yields a linear mapping Φ̄ relating the full time series of pro-
cess realizations v to the white noise sequence w through

w = Φ̄v. (2.39)

To evaluate (2.38) for epochs of the white noise sequence with i < p, epochs of v with
i < 0 are required. These epochs are assumed to be unknown, so warm-up effects are
introduced to (2.39). To mitigate this undesired behavior, shorter VAR models can be
estimated and placed in the corresponding block rows of Φ̄. Assuming a maximum
model order of pmax = 3, the structure of Φ̄ is then given by

Φ̄ =



I
−Φ

(1)
1 I

−Φ
(2)
2 −Φ

(2)
1 I

−Φ
(3)
3 −Φ

(3)
2 −Φ

(3)
1 I

−Φ
(3)
3 −Φ

(3)
2 −Φ

(3)
1 I

. . . . . . . . . . . .


. (2.40)

Here, the first block row corresponds to a VAR(0) model, the second block row corre-
sponds to a VAR(1) model and so on. By applying (2.40) to the pseudo-observations in
(2.31), the transformed system of observation equations

0 = Φ̄∆x + w, w ∼ N (0, Σ̄w), (2.41)
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2.2. Incorporation of prior information

with

Σ̄w =



Σ
(0)
w

Σ
(1)
w

Σ
(2)
w

Σ
(3)
w

Σ
(3)
w

. . .


(2.42)

is obtained. It is briefly noted that the equality Σ̄w = Φ̄ΣvΦ̄T only holds if v is a
VAR(pmax) process, otherwise, if the process order is higher than pmax, it is an approxi-
mation. From a computational perspective, the VAR model representation of Σv has the
advantage that the normal equation coefficients matrix

R = Φ̄TΣ̄−1
w Φ̄ (2.43)

arising from (2.41), is block banded with a bandwidth of pmax. When deriving daily
gravity field snapshots for the whole GRACE time-span from 2002-04 to 2017-06, this
results in a reduction of required in-core memory by 99.86% for pmax = 3, if sparsity
of the normal equation matrix is considered. Furthermore, through the inclusion of the
shorter AR models with p = {0, . . . , pmax − 1} the inverse of (2.43) is also block Toeplitz,
thus satisfying the assumption of a stationary process. The combined system of normal
equations using (2.41) as pseudo-observations is then given by

(N + Φ̄TΣ̄−1
w Φ̄)∆x̂ = n. (2.44)

When processing the satellite observations required for the assembly of N and n, each
observation taken will have to be identified with an epoch. For example, when daily
gravity field estimates are of interest, the natural choice will be to assign all measurements
taken in interval [00:00, 24:00) to the corresponding epoch with reference time at 12:00.
By neglecting temporal correlations of the observations across interval boundaries, the
observation equations for each epoch i

∆li = Ai∆xi + ei, ei ∼ N (0, Σli). (2.45)

may then be computed independently. When assembling these epoch-wise observation
equations for all epochs i = {0, . . . , N − 1} ascending in time, the result is a block
diagonal normal equation matrix N, with the diagonal blocks Ni = AT

i Σ−1
li

Ai. It is briefly
noted that for epochs where no satellite observations are available, the corresponding
diagonal block will be zero, as the introduced pseudo-observations require a constant
sampling. This implies that in practical applications, where data gaps occur, N must be
assumed positive semi-definite and thus not invertible.

As previously mentioned, the normal equation matrix of the prior information R is block
banded with bandwidth pmax. This follows from the structure of (2.40). Since Φ̄ is a
lower triangular matrix in which only the first pmax subdiagonal blocks are non-zero, the
sparsity structure of Φ̄ is given by

Φ̄mn 6= 0 ⇐⇒ m ∈ {n, . . . , n + pmax}. (2.46)
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2. High-frequency mass variations from GRACE/GRACE-FO

Figure 2.1.: Sparsity structure of the combined system of normal equations for N = 10 and pmax = 3.
Red squares indicate blocks only non-zero in R, while blue squares indicate blocks which are
non-zero in both N and R.

For the regularization matrix R, this means that its blocks

Rij =
min{j+pmax,N−1}

∑
k=j

Φ̄T
kiΣ̄
−1
wkk

Φ̄kj (2.47)

are only non-zero for |j− i| ≤ pmax. This structure is retained after the combination with
observation information, because the daily normal equation coefficient matrices Ni are
only added to the main diagonal.

The solution to (2.44) will in practice be computed through an in-place Cholesky de-
composition, followed by forward and back substitution. This means that the system
of equations is solved in three steps. First, the coefficient matrix is decomposed into its
upper triangular Cholesky factor W with

(N + Φ̄TΣ̄−1
w Φ̄) = WTW. (2.48)

Then, an intermediate solution r is computed by solving the triangular system of equa-
tions

WTr = n (2.49)

through forward substitution. Finally, the estimated parameters are computed by solving

W∆x̂ = r, (2.50)

through back substitution. Analogous steps are performed if the lower triangular
Cholesky factor L is computed. These operations do not change the sparsity struc-
ture of the matrix, thus no additional in-core memory is required. However, if in addition
to the estimated gravity field variations ∆x̂, the covariance matrix of the estimated pa-
rameters Σ̂∆x̂ is of interest, the normal equation matrix needs to be inverted. Due to the
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2.3. Relation between least-squares adjustment and Kalman smoother

Toeplitz-structure of the prior information covariance matrix, the result of this operation
will be dense, which leads to excessive additional memory requirements. Therefore, an
incomplete inverse, which retains the sparsity structure of the original matrix is desired.
Fortunately, there exist efficient recursive algorithms to compute the inverse of block
banded, symmetric matrices based on its Cholesky factor (e.g., Asif & Moura, 2005, cf.
Appendix B), which operate in-place.

2.3. Relation between least-squares adjustment and Kalman
smoother

In this section, the relation of the least-squares adjustment (2.31) to the Kalman smoother
approach introduced by Kurtenbach et al. (2012) will be outlined. Since the Kalman
smoother approach formulates the determination of high-frequency gravity field varia-
tions as a discrete state estimation problem, some fundamental concepts and notations
will be outlined first.

While the least-squares adjustment representation of the smoothing problem allows for
an arbitrary VAR model order, the fixed interval smoother considers only correlations
between consecutive epochs. Thus, the linear dynamic system

li = Aixi + ei ei ∼ N (0, Σli) (2.51)
xi = Bxi−1 + wi wi ∼ N (0, Q)

is considered. In (2.51), the VAR(1) model coefficient B = Φ
(1)
1 and the corresponding

white noise covariance Q = Σ
(1)
w is introduced, to match the notation of Kurtenbach et al.

(2012). The sought after state in the application at hand is the gravity field correction ∆xi
at a certain epoch i. For brevity’s sake, ∆ has been omitted for both state and observations
in (2.51) and the following derivations, however still only parameter corrections are
considered, except where explicitly stated otherwise.

Depending on whether observations lj from the past (j < i), past and present (j ≤ i) or
the future (j > i) are used to determine xi, state estimation can be classified as:

Prediction A state estimate for epoch i is called predicted if only observation information
from epochs j < i, i.e. the past, is used. Predicted values will be indicated with a
”−” superscript, e.g., x−i .

Filtering In a filtered state estimate for epoch i, all observations of epoch j ≤ i are
incorporated in the estimation process, thus knowledge of past and present is
required. Filtered values will be indicated with a ”+” superscript, e.g. x+i .

Smoothing Smoothing additionally incorporates measurement information from epochs
j > i for the state estimate of epoch i. Smoothed values will be indicated by
an ”s” superscript, e.g., xs

i . While the requirement for measurements from the
future does in principle exclude smoothing algorithms from real-time applications,
the additional information improves state estimates in post-processing or offline
applications.
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2. High-frequency mass variations from GRACE/GRACE-FO

Prediction
x−i = Bx+i−1
Σ̂−i = BΣ̂+

i−1BT + Q

Update
Ki = Σ̂x−i

AT
i (AiΣ̂x−i

AT
i + Σli)

−1

x+i = x−i + Ki(li −Aix−i )
Σ̂x+i

= (I−KiAi)Σ̂x−i

Initial state

Figure 2.2.: Schematic principle of the two-step Kalman filter procedure.

The concepts of prediction and filtering naturally go hand-in-hand and are most promi-
nently realized in the Kalman filter (Kalman, 1960). There, prediction constitutes the
time update which propagates the current state estimate and its covariance to the next
epoch. Filtering is then performed by improving the predicted state and its covariance
matrix using the observations taken the current epoch during the measurement update.
This two-step procedure has to be initialized with the so-called initial state x+−1 and the
initial state covariance Σ+

−1, from which the first prediction is made. A schematic of the
prediction-update procedure can be found in Figure 2.2. During the prediction step,
which is given by

x−i = Bx+i−1 (2.52)

Σ̂x−i
= BΣ̂x+i−1

BT + Q

the state transition matrix B is used to propagate the updated state from the previous
epoch. Concurrently, the covariance matrix of the predicted state is computed through
variance propagation. The update step

Ki = Σ̂x−i
AT

i (AiΣ̂x−i
AT

i + Σli)
−1

x+i = x−i + Ki(li −Aix−i ) (2.53)

Σ̂x+i
= (I−KiAi)Σ̂x−i

starts with the computation of the Kalman gain matrix Ki. This matrix determines
the amount the innovation vector di = li − Aix−i corrects the predicted state. Then,
the predicted state is corrected to yield the updated state for this epoch. Finally, the
covariance matrix of the updated state is computed (e.g., Gelb, 1974).

Smoothing can further be subdivided into whether a single epoch, an epoch with a
fixed time lag or all epochs in a specified interval are improved with epochs from the
future. Fixed-point smoothing aims at improving the state estimate of a single epoch
with newly available observations. Fixed-lag smoothing improves the state estimate of
epochs h time steps in the past. This method can be useful in operational application
where a higher latency is acceptable. Finally, fixed-interval smoothing improves the state
estimates of all epochs in a certain interval with all observations available. In principle,
this aligns with the minimum-variance property of the least-squares adjustment, which
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2.3. Relation between least-squares adjustment and Kalman smoother

in fact yields identical state estimates if the initial state is chosen appropriately. A
popular implementation of a fixed-interval smoothing is the Rauch-Tung-Striebel (RTS)
smoother (Rauch, Striebel, & Tung, 1965), which operates on the Kalman filter output
and recursively improves the state estimates from the last to the first epoch. According to
Simon (2006), the smoothed state for epoch i and its covariance matrix is given by

xs
i = x+i + Wi(xs

i+1 − x−i+1) (2.54)

Σ̂xs
i
= Σ̂x+i

−Wi(Σ̂x−i+1
− Σ̂xs

i+1
)WT

i

with

Wi = Σ̂x+i
BT(Q + BΣ̂x+i

BT)−1. (2.55)

To show the equivalence of the fixed interval smoother with the least squares estimate
(2.31), it is beneficial to first represent the filtering problem as a least squares adjust-
ment.

The Kalman filter aims at providing the optimal state estimate x+i using observations li
taken at the same epoch and the estimate x+i−1 of the previous epoch, while incorporating
the process model B. These three components can be used to formulate the least squares
adjustment li

0
x+i−1

 =

 Ai
B −I
I

 [xi−1
xi

]
+

 ei
wi

si−1

 ,

 ei
wi

si−1

 ∼ N
0

0
0

 ,

Σli

Q
Σ̂x+i−1

 , (2.56)

where the observation residual ei, the prediction error wi and the estimation error of the
previous epoch si−1 are minimized (Saltzmann, 1993). Forming the system of normal
equations from (2.56) yields[

BTQ−1B + Σ̂−1
x+i−1

−BTQ−1

−Q−1B Ni + Q−1

] [
xs

i−1
x+i

]
=

[
Σ̂−1

x+i−1
x+i−1

ni

]
. (2.57)

Analogous to a standard least squares adjustment, the solution to this system of normal
equations is an estimate xs

i−1, x+i of the true values xi−1 and xi. The state estimate for
epoch i is denoted as ”filtered” because no observations lj with j > i are used in its
determination. Consequently, the state estimate for epoch i− 1 is donated as ”smoothed”
because it also depends on li. Since in the filtering problem only the current epoch is
of interest, the parameters corresponding to epoch i− 1 are eliminated on the normal
equation level following (2.25):

[Ni + Q−1 −Q−1B(BTQ−1B + Σ̂−1
x+i−1

)−1BTQ−1]x+i

= ni −Q−1B(BTQ−1B + Σ̂−1
x+i−1

)−1Σ̂−1
x+i−1

x+i−1.
(2.58)

This expression can be simplified by applying the matrix inversion identities (A.11)
and (A.12) to the left- and right hand side respectively. The resulting system of normal
equations

[Ni + (Q + BΣ̂x+i−1
BT)−1]x+i = ni + (Q + BΣ̂x+i−1

BT)−1Bx+i−1, (2.59)
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2. High-frequency mass variations from GRACE/GRACE-FO

then serves as basis for the derivation of both, the Kalman filter prediction- and update
steps. It is briefly noted that this representation is closely related to the information form
of the Kalman filter (Verhaegen & Van Dooren, 1986). Considering the case where state
xi is solely determined through information from the previous epoch, either during the
prediction step of the time update, before observation information will be incorporated,
or if no observations are available, the estimated state will be a prediction. This can
equivalently be interpreted as using observations with zero weight in (2.59), where
consequently both Ni and ni vanish. The predicted state x−i and its covariance matrix
Σ̂x−i

are then given by

x−i = Bx+i−1, Σ̂x−i
= Q + BΣ̂x+i−1

BT. (2.60)

Once observations for epoch i are available, (2.59) constitutes the measurement update
of the Kalman filter, which yields the updated state x+i . By substituting the predicted
quantities from (2.60) and expanding Ni and ni, an abbreviated form

[AT
i Σ−1

li
Ai + Σ̂−1

x−i
]x+i = AT

i Σ−1
li

li + Σ̂−1
x−i

x−i (2.61)

of (2.59) is obtained. The solution to this system of equations is given by

x+i = [AT
i Σ−1

li
Ai + Σ̂−1

x−i
]−1AT

i Σ−1
li

li + [AT
i Σ−1

li
Ai + Σ̂−1

x−i
]−1Σ̂−1

x−i
x−i . (2.62)

Applying the matrix identities (A.12) and (A.11) to the first and second right-hand-side
term in (2.62) respectively, yields the well-known expression of the measurement update

x+i = x−i + Σ̂x−i
AT

i [AiΣ̂x−i
AT

i + Σli ]
−1︸ ︷︷ ︸

=Ki

(li −Aix−i ), (2.63)

where Ki is the so-called Kalman gain matrix and li −Aix−i is the Kalman innovation for
epoch i. It is briefly noted that condensed observation equations[

li
x−i

]
=

[
Ai
Ii

]
xi +

[
ei
ui

]
,

[
ei
ui

]
∼ N (

[
0
0

]
,

[
Σli

Σ̂x−i

]
) (2.64)

also leads to the system of normal equations (2.57), which can easily be verified.

While the state of the preceding epoch was eliminated for the derivation of the Kalman
filter, retaining and possibly expanding the number of previous epochs in (2.56) allows the
derivation of the smoother equations. Since all epochs are connected through the process
model xi = Bxi−1 + wi, any new information represented by additional observations
can be used to improve estimates from the past. By extending (2.56) to epochs j < i, the
estimation error of these epochs is also minimized. The Rauch-Tung-Striebel (RTS, Rauch
et al., 1965) smoother used by Kurtenbach et al. (2012) can be derived by extending (2.57)
to also include the epoch i− 2. The first line of the resulting system of normal equations

BTQ−1B + Σ̂−1
x+i−2

−BTQ−1

−Q−1B BTQ−1B + Σ̂−1
x+i−1

−BTQ−1

−Q−1B Ni + Q−1


xs

i−2
xs

i−1
x+i

 =

Σ̂−1
x+i−2

x+i−2

Σ̂−1
x+i−1

x+i−1

ni

 , (2.65)
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will be the starting point of this derivation. Multiplying the state estimates with the first
line of the system of equations leads to

(BTQ−1B + Σ̂−1
x+i−2

)xs
i−2 − BTQ−1xs

i−1 = Σ̂−1
x+i−2

x+i−2. (2.66)

Then, after multiplying the equation with (BTQ−1B + Σ̂−1
x+i−2

)−1,

xs
i−2 = (BTQ−1B + Σ̂−1

x+i−2
)−1BTQ−1xs

i−1 + (BTQ−1B + Σ̂−1
x+i−2

)−1Σ̂−1
x+i−2

x+i−2 (2.67)

is obtained. The first term on the right-hand side of (2.67) can be rewritten as

Σ̂x+i−2
BT(Q + BΣ̂x+i−2

BT)−1xs
i−1 = Wi−2xs

i−1, (2.68)

by applying the matrix identity (A.12). Likewise, by applying (A.11), the second term
can be expressed as

[Σ̂x+i−2
− Σ̂x+i−2

BT(Q + BΣ̂x+i−2
BT)−1BΣ̂x+i−2

]Σ̂−1
x+i−2

x+i−2 (2.69)

which reduces to

x+i−2 −Wi−2x−i−1. (2.70)

Combining (2.68) and (2.70), finally yields the smoothed state at epoch i− 2 as a function
of the smoothed and predicted state of the previous epoch, and the filtered state of the
current epoch

xs
i−2 = x+i−2 + Wi−2(xs

i−1 − x−i−1), (2.71)

which is exactly the RTS formulation of the smoothing problem (cf. Rauch et al., 1965).
This recursive algorithm acts as a backward pass through the time series of (forward)
filtered states, starting at the last epoch N− 1. The smoother is initialized with the Kalman
filter solution at N− 1, thus xs

N−1 = x+N−1 (cf. also Gelb, 1974). Hence, the computationally
very efficient Kalman filter algorithm is sufficient for operational applications if only the
last epoch is of interest.

To show that the least squares adjustment (2.44) is equivalent to the Kalman smoother,
it is verified that the smoothed state xs

i is a solution to the system of normal equations
for all epochs i. The reasoning behind this approach is that since the normal equation
matrix is required to be positive definite and therefore invertible, the system of normal
equations has a unique solution. Thus, any vector that satisfies (2.44) is the least squares
solution to the constrained adjustment problem. As a preliminary step, the structure of
the normal equation coefficient matrix in (2.44) is explicitly derived for a pmax = 1. If
only a VAR(1) model is considered, the matrices Φ̄ and Σ̄w simplify to

Φ̄ =


I
−B I

−B I
. . . . . .
−B I

 and Σ̄w =


Σ
(0)
w

Q
Q

. . .
Q

 . (2.72)
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2. High-frequency mass variations from GRACE/GRACE-FO

This sparsity structure of Φ̄ means that R matrix will be block tridiagonal. For an arbitrary
row i ∈ 1, . . . , N − 2 only the blocks Ri,i−1, Ri,i, and Ri,i+1 will therefore be non-zero.
Evaluating the general expression of the blocks of R for pmax = 1,

Rij = Φ̄T
jiΣ̄
−1
wjj

Φ̄jj + Φ̄T
j+1,iΣ̄

−1
wj+1,j+1

Φ̄j+1,j (2.73)

for j ∈ {i− 1, i, i + 1} leads to

Ri,i−1 = −Q−1B, Rii = BTQ−1B + Q−1, and Ri,i+1 = −BTQ−1. (2.74)

Completing the system of normal equations with the normal equations of the satellite
observations and the estimated parameter vector

N =


N0

N1
. . .

NN−1

 , n =


n0
n1
...

nN−1

 , and ∆x̂ =


xs

0
xs

1
...

x+N−1

 (2.75)

yields the expression for a single block row i with

−Q−1Bxs
i−1 + (BTQ−1B + Q−1 + Ni)xs

i − BTQ−1xs
i+1 = ni. (2.76)

Then, xs
i−1 is substituted with the RTS solution for epoch i− 1 in (2.76). and all terms

containing xs
i , xs

i+1, x−i , and x+i are combined, which leads to

−(Q−1 −Q−1BWi−1)x−i +

(BTQ−1B + Ni + Q−1 −Q−1BWi−1)xs
i+

−BTQ−1xs
i+1 = ni.

(2.77)

This expression can be further simplified by using (A.12) and (A.11), since

Q−1 −Q−1BWi−1 = Q−1 −Q−1B[Σ̂x+i−1
BT(Q + BΣ̂x+i−1

BT)−1]

= Q−1 −Q−1B(Σ̂−1
x+i−1

+ BTQ−1B)−1BTQ−1

= (Q + BΣ̂x+i−1
BT)−1 = Σ̂−1

x−i
.

(2.78)

From (2.59) it is found that Ni = Σ̂−1
x+i
− Σ̂−1

x−i
and ni = Σ̂−1

x+i
x+i − Σ̂−1

x−i
x−i . Substituting this

into (2.77) then yields

−Σ̂−1
x−i

x−i + (BTQ−1B + Σ̂−1
x+i
)xs

i+

−BTQ−1xs
i+1 = Σ̂−1

x+i
x+i − Σ̂−1

x−i
x−i .

(2.79)

In the next step, through substitution of xs
i with the RTS solution (2.71) for the corre-

sponding epoch i,

−Σ̂−1
x−i

x−i + (BTQ−1B + Σ̂−1
x+i
)x+i − BTQ−1x−i+1+

+BTQ−1xs
i+1 − BTQ−1xs

i+1 = Σ̂−1
x+i

x+i − Σ̂−1
x−i

x−i
(2.80)
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is obtained. As can be seen the terms containing xs
i+1 cancel out. Expanding (BTQ−1B +

Σ̂−1
x+i
)x+i − BTQ−1x−i+1 and using the definition of the predicted state, leaves

−Σ̂−1
x−i

x−i + BTQ−1x−i+1 + Σ̂−1
x+i

x+i − BTQ−1x−i+1 = Σ̂−1
x+i

x+i − Σ̂−1
x−i

x−i , (2.81)

which further reduces to

−Σ̂−1
x−i

x−i + Σ̂−1
x+i

x+i = Σ̂−1
x+i

x+i − Σ̂−1
x−i

x−i , (2.82)

as all terms containing B and Q cancel. This shows that for epochs i ∈ {1, . . . , N − 2},
the Kalman smoother is a solution to the system of normal equations.

Due to the block tridiagonal structure of (2.44), the first and last epoch have to be treated
differently. First, the expression for the normal equation block row of the last epoch
i = N − 1,

−Q−1Bxs
N−2 + (NN−1 + Q−1)x+N−1 = nN−1 (2.83)

is derived from (2.73). In (2.83), the property that the last smoothed state is identical
to the filtered state, xs

N−1 = x+N−1 is used (cf. Gelb, 1974). Substituting (2.71) for the
smoothed state at epoch N − 2 yields

−Q−1x−N−1−Q−1BWN−2x+N−1 +Q−1BWN−2x−N−1 +(NN−1 +Q−1)x+N−1 = nN−1. (2.84)

Through combining terms with x−N−1 and x+N−1

−(Q−1−Q−1BWN−2)x−N−1 + (Q−1−Q−1BWN−2)x+N−1 + NN−1x+N−1 = nN−1 (2.85)

is obtained. Considering that (Q−1−Q−1BWN−2) = Σ̂−1
x−N−1

, this can be further simplified
to

−Σ̂−1
x−N−1

x−N−1 + Σ̂−1
x−N−1

x+N−1 + NN−1x+N−1 = nN−1. (2.86)

By substituting Ni = Σ̂−1
x+i
− Σ̂−1

x−i
and ni = Σ̂−1

x+i
x+i − Σ̂−1

x−i
x−i from (2.59), we again find that

−Σ̂−1
x−N−1

x−N−1 + Σ̂−1
x+N−1

x+N−1 = Σ̂−1
x+N−1

x+N−1 − Σ̂−1
x−N−1

x−N−1. (2.87)

Which shows that also the last epoch satisfies the assumption that the RTS smoother is a
solution to (2.44). Finally, the first epoch of the least squares adjustment is treated. This
epoch is of special interest, as it implicitly depends on the initial state of the Kalman
filter x+−1 and its covariance matrix Σx+−1

. Evaluating (2.73) for i = 0 yields

(BTQ−1B + Σ
(0)−1

w + N0)xs
0 − BTQ−1xs

1 = n0. (2.88)

After substituting the RTS smoother solution (2.71) for epochs 0 and 1 and some tedious
matrix algebra it is found that

Σ
(0)−1

w xs
0 − Σ̂−1

x−0
xs

0 = Σ̂−1
x−0

x−0 , (2.89)
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which can also be expressed as

[Σ̂x−0
Σ
(0)−1

w − I]xs
0 = x−0 = Bx+−1. (2.90)

It can be clearly seen that this equation is satisfied if Σ̂x−0
= Σ

(0)
w and x−0 = 0. The

covariance matrix of the predicted state at epoch 0 is defined as Q + BΣx+−1
BT. From the

covariance structure of a VAR(1) process, it follows that

Q = Σ
(0)
w − BΣ

(0)
w BT, (2.91)

(e.g., Lütkepohl, 2005). When substituted into the definition of the predicted state covari-
ance matrix, this leads to

Σ̂x−0
= Σ

(0)
w − BΣ

(0)
w BT + BΣx+−1

BT !
= Σ

(0)
w . (2.92)

Obviously, this equation is satisfied when the terms containing B vanish, which is the case
when Σx+−1

= Σ
(0)
w , which is the auto-covariance matrix of the process. This means that

(2.44) can either be solved directly, or through a forward Kalman filter sweep followed
by the application of the RTS smoothing algorithm, if the initial state and its covariance
matrix is chosen as x+−1 = 0 and Σx+−1

= Σ
(0)
w respectively. This choice of initial state is

a quite natural one, as it is based on the properties of the process. As the process is
required to be centered and wide-sense stationary, thus xi ∼ N (0, Σ

(0)
w ) holds true for all

epochs i.

This equivalence of the optimal smoother and the least squares adjustment in (2.31) can
also be seen from an algorithmic point of view. Since both approaches yield identical
results, the forward-backward algorithm acts as an alternative solver for a symmetric,
positive-definite, block tridiagonal system of equations.

2.3.1. Extension of the Kalman filter to VAR models of arbitrary order

As shown in Lütkepohl (2005), every VAR(p) model can be expressed as a VAR(1)
model by extending the state vector. Thus, for each VAR(p) an equivalent VAR(1) model
x̃i = B̃x̃i−1 + w̃i, with

xi
xi−1

...
xi−p+2
xi−p+1


︸ ︷︷ ︸

=x̃i

=


Φ

(p)
1 Φ

(p)
2 · · · Φ

(p)
p−1 Φ

(p)
p

I · · ·
I · · ·

. . .
I


︸ ︷︷ ︸

=B̃


xi−1
xi−2

...
xi−p+1
xi−p


︸ ︷︷ ︸

=x̃i−1

+


wi
0
...
0
0


︸ ︷︷ ︸
=w̃i

(2.93)

can be found. The key difference to an ordinary VAR(1) model is that the white noise
vector w̃i contains entries that are known to be zero, therefore it follows the distribution

w̃i ∼ N (0, Q̃), (2.94)
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with

Q̃ =


Σ
(p)
w 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 . (2.95)

This implies that the covariance matrix Q̃ of the augmented white noise vector w̃i is posi-
tive semidefinite and therefore not invertible. The observation equations corresponding
to the augmented process model are

li =
[
Ai 0 · · · 0 0

]


xi
xi−1

...
xi−p+2
xi−p+1

+ ei, ei ∼ N (0, Σli), (2.96)

or more concise li = Ãix̃i + ei. Similarly to the white noise covariance, the normal
equation matrix computed from (2.96) will be positive semidefinite. From a practical
point of view, the augmented linear dynamic system

li = Ãix̃i + ei ei ∼ N (0, Σli) (2.97)

x̃i = B̃x̃i−1 + w̃i w̃i ∼ N (0, Q̃)

can be readily used in the Kalman filter and Kalman smoother equations. To obtain a
state estimate identical to the solution of the system of normal equations (2.44) when
using a VAR model of order pmax, an appropriate choice of initial state as well as
a special treatment of the first pmax − 1 epochs is however necessary. Similar to the
treatment of warmup effects in the pseudo-observations (2.40), VAR models of order
p ∈ {1, . . . , pmax − 1} are used to predict the first epochs. For example, the augmented
VAR model used to predict x̃−0 and Σ̂x̃−0

has the structure
Φ

(1)
1 0 · · · 0 0
I · · ·

I · · ·
. . .

I

 ,


Σ
(1)
w 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 . (2.98)

As can be seen, the first block row of this augmented VAR model contains a VAR(1)
model, while the dimension corresponds to a VAR(pmax) model. For epoch i = 1, a
VAR(2) model is placed in the first block row and the augmented white noise covariance
is changed accordingly:

Φ
(2)
1 Φ

(2)
2 · · · 0 0

I · · ·
I · · ·

. . .
I

 ,


Σ
(2)
w 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 . (2.99)
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This augmented VAR structure can be abbreviated with the notation B̃(p, pmax), where
the first argument corresponds to the order of the model placed in the first block row,
while the second argument describes the maximum order and correspondingly the
augmented state dimension. It is evident that p ∈ {1, . . . , pmax}. Since now both state
transition matrix and white noise covariance depend on the epoch i, every component of
the linear dynamic system is time variable. This means that

li = Ãix̃i + ei ei ∼ N (0, Σli) (2.100)

x̃i = B̃ix̃i−1 + w̃i w̃i ∼ N (0, Q̃i)

with

B̃i =

{
B̃(i + 1, pmax) for i ∈ {0, . . . , pmax − 1}
B̃(pmax, pmax) otherwise

(2.101)

and

Q̃i =


Σ
(min{i+1,pmax})
w 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 . (2.102)

If both the initial state and the prediction is handled in the way presented here, the
smoothed state estimates based on the augmented linear dynamic system (2.97) are
identical to the least squares solution to (2.44) even for higher order VAR models. This
implies that the least squares adjustment proposed in (2.44), is a generalization of the
approach by Kurtenbach et al. (2012) from a VAR(1) model to VAR models of arbitrary
order, which can be verified numerically.

2.3.2. Smoothing vs. filtering — practical considerations

From a statistical point of view, a smoothed state estimate will always have a smaller
or equal variance compared to a filtered estimate. However, there are some practical
applications where a higher variance of the state estimate has to be accepted. For example,
in (near) real-time applications, smoothing does not provide any advantages. There, one
operates on the edge of the smoothing interval where no information from the future is
available. Thus, filtered and smoothed state estimates are identical (Gelb, 1974). A second
consideration is the phase conservation property of the smoother. Since the Kalman
smoother is equivalent to a forward and backward filter sweep, it conserves the phase of
the input data. This behavior is exemplified with the GRACE Kalman filter/smoother
used throughout this thesis.

On the basis of the normal equations used as input for the Kalman filter in (2.59) and
the Kalman smoother (or the equivalent least squares adjustment) a set of synthetic
observations can be constructed. The goal of this exercise is to investigate the response of
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2.3. Relation between least-squares adjustment and Kalman smoother

both filter and smoother to a sudden shock. This can then be interpreted as the impulse
response of filter and smoother. To construct the impulse response, the epoch-wise system
of normal equations Nix̂i = ni is used. Substituting the unconstrained estimates x̂i with
a sequence of synthetic state vectors x̃i yields right hand sides ñi which only contain the
impulse response, rather than the original observations. The sequence x̃i is given by

x̃i =

{
d if i = D
0 otherwise

, (2.103)

where d is a non-zero column vector and D denotes the epoch where the impulse is
introduced into the system. The values of d, are derived from the auto-covariance matrix
of the process Σ

(0)
w . Since Σ

(0)
w is symmetric and positive definite it can be decomposed

into

Σ
(0)
w = UΛUT, (2.104)

where U is an orthogonal matrix and Λ is a diagonal matrix which contains the Eigenval-
ues λk on the main diagonal (Golub & Loan, 1996). A reasonable choice for an impulse
vector d is then given by

d =
m−1

∑
k=0

u(k)
√

λk, (2.105)

u(k) being the k-th column of U. The expression for d is closely related to principal
component analysis (PCA, Pearson, 1901). The set of Eigenvectors U represent a new
orthogonal basis for the state vector and the Eigenvalues λk describe the expected variance
along each of the new basis vectors. This means the vector d is an impulse of magnitude√

λk along each principal axis. The resulting normal equations with the synthetic right
hand sides

ñi =

{
Nid if i = D
0 otherwise

, (2.106)

are then used to estimate both filtered and smoothed states over a certain time interval.
The norm of the obtained smoothed and filtered state estimates ‖xs

i‖ and ‖x+i ‖ can be
seen in Figure 2.3. As can be observed, the impulse response of the Kalman smoother
decays symmetrically around the epoch where the impulse was introduced. The Kalman
filter on the other hand remains zero for epochs i < 0, is excited at epoch i = 0 and then
tends towards zero in later epochs.

For certain applications, for example, the investigation of flood dynamics, a symmetric
impulse response is not desired, as the smoother already ”knows” of any extreme events
prior to their actual onset. Here, a purely filtered solution is preferred even in offline
applications although it is suboptimal in a statistical sense.
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2. High-frequency mass variations from GRACE/GRACE-FO

(a) Kalman smoother (b) Kalman filter

Figure 2.3.: Norm of state estimates xs
i and x+i of a Kalman smoother and Kalman filter excited by an

impulse at epoch D = 0.

2.4. Derivation of the process model

Lütkepohl (2005) provides a thorough review of a variety of methods for the estima-
tion of VAR processes, which will be briefly summarized here. All presented methods
assume that a realization of the underlying stationary process given as N samples of
dimension m is available. Further, this sample is assumed to be centered which, while
not strictly required, does allow for a more concise mathematical description without
loss of generalization.

As first method, the multivariate least squares estimator is discussed. By transposing
the VAR model equation (2.36), the observation equation for a single process realization
epoch, with

vT
i =

[
vT

i−1 vT
i−2 · · · vT

i−p

]


Φ
(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p

+ wT
i (2.107)

is obtained. When arranged for all available epochs i ∈ {p, . . . , N − 1}, the overdeter-
mined system of equations

 vT
p
...

vT
N−1


︸ ︷︷ ︸

=L

=

vT
p−1 vT

p−2 · · · vT
0

...
...

...
vT

N−2 vT
N−3 · · · vT

N−1−p


︸ ︷︷ ︸

=A


Φ

(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p


︸ ︷︷ ︸

=X

+

 wT
p

...
wT

N−1


︸ ︷︷ ︸

=W

(2.108)

30



2.4. Derivation of the process model

can then be solved using the standard method for multivariate parameter estimates (e.g.
Koch, 2004). It is briefly noted that the process realizations vi are treated as stochastic
quantities on the observation side of the least squares adjustment but as deterministic
quantities in the design matrix A. This approximation results in a biased estimation of the
VAR model coefficients as the first p are implicitly treated as constant initial values (Wei,
2006). The relative influence of this bias however decreases with increasing number of
samples, thus asymptotically, the least squares adjustment yields unbiased estimates for
the VAR model. Once the model coefficients are estimated, the noise covariance matrix
Σ
(p)
w can be determined from the estimated residuals ŵi through the empirical estimator

Σ
(p)
w =

1
N −mp

N−1

∑
i=p

ŵiŵT
i . (2.109)

An efficient QR factorization (Golub & Loan, 1996) based implementation of this method
can be found in Neumaier and Schneider (2001).

Assuming that the distribution of the process is known, maximum likelihood (ML)
estimation is an alternative to the the multivariate least squares estimator. With the
assumption that the VAR(p) process is Gaussian, the probability density of w is

fw(w) =
1

((2π)mN/2 |I⊗ Σ
(p)
w |−1/2exp

[
−1

2
wT(I⊗ Σ

(p)−1

w )w
]

, (2.110)

where m is the dimension of the process, ⊗ denotes the Kronecker product, and |I⊗Σ
(p)
w |

is the determinant of the matrix. This leads to the log-likelihood function

ln l(Φ(p)
1 , . . . , Φ

(p)
p , Σ

(p)
w ) = −mN

2
− ln 2π − N

2
ln |Σ(p)

w |

−1
2

tr
[
(L−AX)Σ(p)−1

w (L−AX)T
]

,
(2.111)

where L, A, and X are defined as in the least squares estimator. The values for X and
Σ
(p)
w which maximize this function are than the ML estimates for the VAR(p) model

coefficients and white noise covariance. When the underlying distribution function is
Gaussian, this ML estimate is identical to the least squares approach.

The last method discussed are the so-called the Yule-Walker (YW) equations. Multiplying
(2.107) with vj from the left yields

vjvT
i =

[
vjvT

i−1 vjvT
i−2 · · · vjvT

i−p

]


Φ
(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p

+ vjwT
i . (2.112)
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2. High-frequency mass variations from GRACE/GRACE-FO

After taking the expectancy of (2.112),

Σv(j− i) =
[
Σv(j− i + 1) Σv(j− i + 2) · · · Σv(j− i + p)

]


Φ
(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p

+ E{vjwT
i }

(2.113)

is obtained when taking into account that vi is a stationary process. The covariance matrix
E{vjwT

i } vanishes for j 6= i, since wi is assumed to be white noise. Arranging (2.113) for
j− i = h ∈ {−1, . . . ,−p} then leads to the system of equations


ΣT

v (1)
ΣT

v (2)
...

ΣT
v (p)

 =


Σv(0) Σv(1) · · · Σv(p− 1)
ΣT

v (1) Σv(0) · · · Σv(p− 2)
...

...
. . .

...
ΣT

v (p− 1)T Σv(p− 2)T · · · Σv(0)




Φ
(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p

 , (2.114)

where the property Σv(−h) = ΣT
v (h) of a multivariate stationary covariance function was

used. After solving (2.114), which yields the coefficients Φ
(p)
k , the white noise covariance

matrix Σ
(p)
w , can be computed from (2.113) for j = i. Thus, after evaluating

Σ
(p)
w = Σv(0)−

[
Σv(1) Σv(2) · · · Σv(p)

]


Φ
(p),T
1

Φ
(p),T
2
...

Φ
(p),T
p

 , (2.115)

the VAR(p) model is fully determined. What stands out in (2.114) is that the covariance
structure of the underlying process has to be known in order to populate the equations.
In practice, this is however not the case. Thus, an estimate for Σv(h), for example, (2.35)
has to be used to set up and solve the YW equations. If the unbiased estimator (2.35) is
used, the YW equations are numerically identical to the normal equations of the least
squares estimate (2.108), which can easily be verified.

As discussed earlier, all methods for the determination of the VAR(p) model require a
process realization either implicitly, like the YW equations, or explicitly, like the least
squares approach. The question now arises as to what constitutes the process for the case
at hand, the determination of high frequency gravity field solutions, and how such a
realization can be obtained. According to Kurtenbach et al. (2012), the following can be
postulated. The underlying process consists of all geophysical signals contained in the
observations, which are not reduced by the background models. For a standard GRACE
solution, this predominantly includes continental hydrology, changes in the cryosphere,
residual atmosphere and ocean signals and variations of the solid earth (Bettadpur,
2018).
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2.4. Derivation of the process model

(a) H component (b) I component

(c) aoErr

Figure 2.4.: Temporal RMS of H, I, and aoErr after reducing a linear trend and an annual oscillation, which
serve as basis for the process model.

The realization of the process is obtained from the European Space Agency (ESA)
Earth System Model (ESA ESM, Dobslaw et al., 2015, 2016) for satellite gravity mission
simulations. The dataset provides six-hourly time series of potential changes from
atmosphere (A) ocean (O), hydrosphere (H), cryosphere (I), and solid Earth (S), as well as
a time series of estimated atmosphere and ocean model errors (aoErr). All subsystems are
given to a maximum spherical harmonic degree of 180 for a full solar cycle of 12 years. To
match the sampling of the sought-after gravity field snapshots, first a temporal low pass
filter is applied. Then a downsampling to the appropriate time intervals is performed.
Furthermore, the spatial resolution is also reduced by truncating at the same expansion
degree as the parametrization of ∆xi. Since ∆xi are estimated relative to a long-term
mean field, including secular and annual variations, these constituents are estimated and
reduced from the data set. The resulting residual time series

ṽi = ṽH
i + ṽI

i + ṽaoErr
i (2.116)

is then interpreted as a realization of the underlying process. It is briefly noted that
variations in the solid Earth are not considered in (2.116), as the instantaneous co-seismic
gravity field changes caused by earthquakes cannot be modelled through a stationary
process. The temporal root mean square (RMS) of the three components H, I, and aoErr
after reducing a linear trend and an annual oscillation can be seen in Figure 2.4. Even
though ṽi is of global nature, an argument can be made that errors in the ocean model
are not correlated with the residual hydrological signal on the continents or changes
in the cryosphere. Since these two processes are spatially separated, this assumption
can be reflected in the covariance structure of ṽi, by introducing land/ocean masks in
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2. High-frequency mass variations from GRACE/GRACE-FO

the estimation of Σ̃v. In practice, this is implemented by propagating ṽi to the spatial
domain as EWH and deriving covariance matrices for individual landmasses and the
ocean independently. The reason for choosing the water height kernel as opposed to
potential is that the potential generating masses are assumed to be localizing and can
therefore be windowed. For each defined region Ωi, the empirical covariance estimator
(2.35) is applied to the time series of gridded EWH values, resulting in a set of covariance
matrices ΣΩi . Finally, the covariance matrices of all regions are then assembled in a block
diagonal fashion with

(ΣΩ)ii = ΣΩi . (2.117)

The spatial covariance matrix is then transformed back to the spectral domain through
variance-covariance propagation with

Σ̃v = FΣΩFT, (2.118)

where

( fnm,j) =
R

GM
aj

4π

(
4πR2ρw

M
1 + k′n
2n + 1

)(
rj

R

)n+1

Ynm

(
rj

rj

)
. (2.119)

The matrix F constitutes a quadrature, which yields spherical harmonic coefficients
from a EWH values given at points at position rj, with area element aj and geocentric
radius rj. In (2.119), R is the reference radius, GM is the geocentric gravitational constant,
M is Earth’s mass, ρw is the density of water, k′n are load Love numbers, and Ynm are
surface spherical harmonics. The availability of the covariance matrix in the spatial
domain also opens up another possibility to improve the robustness of the VAR model
computation. By reducing the correlation between individual grid points, the compound
covariance matrix ΣΩ becomes more diagonally dominant, thus potentially improving
the condition of the matrix. The elements of ΣΩ can be written as σij = rijσiσj, where rij
is the correlation between the points i and j, with the corresponding standard deviation
σi and σj, (e.g., Huber & Ronchetti, 2009). This allows the introduction of the modified
correlation r̃ij = rij · f (ψij), where f is a function of the spherical distance ψij between
the two points. For the application at hand, an exponential decay of the form

f (ψ) = e−
ψ

ψ0 (2.120)

was chosen, although other functions are equally applicable. The amount of correlation
change is governed by the parameter ψ0. For ψ0 → ∞, the original matrix is obtained, for
ψ0 → 0, the matrix becomes strictly diagonal. The effect of this correlation scaling and
its dependency on ψ0 can be seen in figure 2.5. The reciprocal condition number of the
auto-covariance Σ̃v(0) is closer to 1 for smaller ψ0, increasing the stability of the Yule-
Walker equations. Compared to the unmodified covariance matrix, the condition improves
by two orders of magnitude for a ψ0 corresponding to a half-width of approximately
1100 km, when using this approach. The impact of each step, namely the introduction of
a land/ocean mask and the artificial decrease of correlations between far away points,
can be seen in Figure 2.6. Here, the spatial correlations of a single point at (15E, 47N)
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2.4. Derivation of the process model

Figure 2.5.: Dependency of the condition number of Σ̃v(0) on the parameter ψ0.

(a) unmodified (b) land/ocean mask

(c) land/ocean mask, reduced correlation

Figure 2.6.: Effect of correlation scaling and land/ocean mask on the spatial correlations of a single point
(15E, 47N).
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2. High-frequency mass variations from GRACE/GRACE-FO

with all other points of the globe is visualized. In Figure 2.6a, which is based on the
covariance matrix directly computed from the spherical harmonic vectors, thus includes
no further information, global correlations can be observed. Striking are the ringing effects
in the oceans which can reach up to ±30%. The situation improves once a separation
of landmasses and the ocean is introduced, which can be seen in Figure 2.6b. Finally,
the introduced distance dependent exponential decay of the correlation does drastically
reduce the correlation length, which results in a very localized covariance structure. While
this in itself is not a guarantee for an improved description of the stochastic properties of
the process, the improved condition during the process model computation as well as
the clear reduction of ringing effects are an indication of a potential improvement. The
processing of the ESA ESM potential coefficients can be summarized as

Truncation The potential coefficients are truncated to spherical harmonic degree 40, to
reduce the dimensionality of the problem. While this improves both the computation
time and the robustness of the covariance estimates, it also limits the spatial
resolution of the VAR(p) models.

Downsampling From six-hourly potential coefficient time series, daily averages are com-
puted. This constitutes both a low-pass filter and downsampling in time domain.

EWH covariance matrices The daily potential coefficient time series is propagated to
EWH grids. From these grid time series, covariance matrices are estimated using
the unbiased estimator (2.35). Correlations between land and ocean points are set
to zero, the correlations between the remaining points are scaled with a distance-
dependent function.

Propagation to spherical harmonic domain Finally, the resulting covariance matrices
are propagated back to spherical harmonic domain.

The obtained covariance matrices Σ̃(h) are then used to estimate VAR(p) model coeffi-
cients using Yule-Walker equations. Result of this step are pmax + 1 VAR(p) models, each
consisting of model coefficients Φ

(p)
k and white noise covariance matrix Σ

(p)
w . When using

the 12 years of ESA ESM data in conjunction with the land/ocean mask and correlation
scaling, the maximum order of the derived VAR(p) models was pmax = 3. For higher
orders, the coefficient matrix of the YW equations was singular and thus not invertible.
The white noise covariance matrices for each of the derived VAR(p) models, propagated
to space domain, can be seen in Figure 2.7. It is evident, that the white noise covariance of
the VAR(0) model is higher than the other model orders. This is simply explained by the
fact that, since no correlations in time are considered, it is identical to the auto-covariance
of the process. For all orders p > 0 the picture looks pretty similar. In order to better
identify areas of variance change, the variance reduction (VR) of each grid point for
consecutive model orders is shown in Figure 2.8. VR is defined as

VR = 1−
σ2

y

σ2
x

(2.121)

and maps the variances of two stochastic variables onto the interval (−∞, 1]. This allows
for a unitless comparison of two variance values. It is evident that, unsurprisingly, the
largest variance reduction happens from order 0 to order 1. From order 1 to order 2, large
improvements in ocean areas can be observed. While globally, the improvement from
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(a) VAR(0) (b) VAR(1)

(c) VAR(2) (d) VAR(3)

Figure 2.7.: White noise covariance matrix Σ
(p)
w for autoregressive models of order p = {0, 1, 2, 3} (standard

deviation propagated to EWH).

(a) VAR(0) to VAR(1) (b) VAR(1) to VAR(2)

(c) VAR(2) to VAR(3)

Figure 2.8.: White noise variance reduction between consecutive orders of VAR(p) models.

37



2. High-frequency mass variations from GRACE/GRACE-FO

order 2 to order 3 is only moderate, locally a variance reduction of up to 25% can be
seen. It is also briefly noted that the variance reduction is always positive with increasing
model order. This can be explained trough the equivalence of the YW equations with
the least squares estimator for VAR models. Increasing the model order requires more
parameters to be estimated, which implies that the adjusted residuals ŵi become smaller.
Since Σ

(p)
w is essentially the covariance matrix of these adjusted residuals, their variances

also decrease.

2.4.1. Evaluation of the derived process model

The innovation sequence

In order to gauge the quality of the derived process model, a variety of methods exist.
A first key question concerning the process model is: ”How well does the prediction fit
actual GRACE observations?” Starting from a VAR(p) constrained gravity field estimate
∆x̂(p), the gravity field prediction

∆x−i =
p

∑
k=1

Φ
(p)
k ∆x̂(p)

i−k, (2.122)

can be computed. By substituting the predicted state ∆x−i into the corresponding obser-
vation equations, predicted observations denoted ∆l−i are obtained. It is important to
remember here that the observations do not only depend on the gravity field but also
satellite state and instrument calibration parameters. Thus, the predicted observations
have to be computed from the full functional model

∆l−i = Ai∆x−i + Bi∆z−i . (2.123)

However, since the parameter subset z is not contained in the process model, no prior
information about these unknowns is introduced. This can equivalently be interpreted
as predicting these parameters with a zero-vector and complete uncertainty. Thus, the
prediction of ∆zi is given by

∆z−i = 0, with Σ∆z−i
→ ∞. (2.124)

Consequently, the predicted observations reduce to

∆l−i = Ai∆x−i . (2.125)

The difference vector

di = ∆li − ∆l−i (2.126)

then gives a measure of how well the predicted observations fit with the actual mea-
surements. In the context of state estimation, it is often denoted the innovation vector
(Lütkepohl, 2005).
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(a) range-rate (b) range-acceleration (band-pass filtered)

Figure 2.9.: PSD of pre-fit residual, post-fit residuals, and innovation as range rates (left) and band-pass
filtered range acceleration.

For an easier interpretation, each epoch of di can be mapped to a point on the Earth’s
surface through the satellites’ ground track pattern. Given the polar orbit of GRACE-type
missions, a rule-of-thumb which relates the spatial frequencies of the spherical harmonic
spectrum to the time series domain can be formulated. Denoting the orbital period of the
satellites T, thus relation between a spherical harmonic degree n and spectral line in the
Fourier domain fn is simply given through fn = n

T . For GRACE, where T ≈ 5400 s and
the chosen parametrization of the gravity field with n = {2, . . . , 40}, the frequency band
of interest therefore spans approximately 3.7 · 10−4 Hz to 7.4 · 10−3 Hz. Furthermore,
it is reasonable to convert the range-rates to range-accelerations through numerical
differentiation. This high-pass filter reduces the correlation length, which reveals more
localized geophysical features along the orbit. The spectral characteristics of di compared
to pre-fit and post-fit residuals for a single month before and after filtering can be seen in
figure 2.9. Unsurprisingly, pre-fit residuals exhibit the highest power in the frequency
band where gravity signal is expected. In the innovation sequence, the situation slightly
improves, which means the prediction is at least better than assuming a zero state vector.
Finally, the post-fit residuals have the lowest magnitude as they are based on both the
estimated gravity field, instrument calibration, and satellite state parameters. To evaluate
the prediction capabilities of the computed VAR models, filtered differences in the time
span from 2005 to 2010 were computed. This time period was chosen because a nearly
homogeneous observation quality due to the still-active thermal management of the
satellites (Tapley, Flechtner, Watkins, & Bettadpur, 2015), minimal orbit decay, and an
extended solar flux quiet period (e.g., Agee, Cornett, & Gleason, 2010). Moreover, this
time span contains no large data gaps or orbit repeat cycles. Therefore, a consistent set of
estimates ∆x̂(p)

i can be expected.

In order to gauge the effect of the introduced geophysical constraints, a comparison
between two VAR(1) models is performed. For the derivation of the first model, neither
land/ocean mask nor distance depended scaling have been applied, that is, the unbi-
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2. High-frequency mass variations from GRACE/GRACE-FO

(a) no constraints (b) constraints applied

Figure 2.10.: RMS of band-pass filtered range-acceleration innovation for two VAR(1) models.

ased estimator (2.35) is directly applied to the time series of potential coefficients. This
corresponds to the approach used by Kurtenbach et al. (2012). It is briefly noted that in
order for the auto-covariance to be positive definite, the diagonal of the matrix had to
be augmented with isotropic noise. This post-processing step is discussed in detail in
Kurtenbach (2011). The second VAR(1) model is based on the same input data, however
both geophysical constraints are applied. Filtered innovations di based on the two VAR(1)
models, mapped to Earth’s surface can be seen in Figure 2.10. All epochs within the
evaluation time span were binned in 1× 1 degree tiles and the RMS for each tile was
computed. The innovations di clearly carry geophysical information, as the largest RMS
values occur in regions where the geophysical models used to derive the VAR model are
known to have deficiencies (Dobslaw et al., 2015, 2017). This includes marginal seas like
the Black Sea, the Mediterranean Sea, the North Sea or the Gulf of Carpentaria. Regions
with large ocean currents such as the Gulf Stream or the Agulhas Current can also be
identified. Another very prominent signal is visible in the Argentinian basin, where a
stochastic eddy generation process which cannot be modelled in non-assimilated ocean
models is a major driver of the variability. It is evident that the geophysical constraints
reduce the RMS of the innovation sequence with an average RMS reduction of 33%. RMS
reduction in this context is defined as

RRΩ = 1− RMSΩ(yi)

RMSΩ(xi)
, (2.127)

where RMSΩ(·) denotes the RMS of all values in a single tile Ω. This is a clear indication
that the developed approach does improve the derived Kalman filter process models.

Decorrelation properties of VAR(p) models

The mapping w = Φ̄v can be interpreted as a decorrelation filter, since the input sequence
v is possibly correlated in time, while the output w is white noise. This will only hold
true if the VAR(p) perfectly represents the temporal correlations of the process. Given
the challenges encountered in the determination of the model coefficients as outlined in
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(a) median correlation (b) cumulative distribution

Figure 2.11.: Median autocorrelation function for different VAR models separated into land points (dark
colors) and ocean points (light colors).

the previous section, it is reasonable to assume that the estimated stochastic properties
are only an approximation. In order to gauge the quality of the approximation, one can
investigate if the supposed white noise sequence w still contains correlations in time.

To gauge the decorrelation properties of the VAR(p) models, the post-fit residuals ŵi of a
least squares adjustment with GRACE data are investigated. To provide a more intuitive
geophysical interpretation, the residual potential coefficients are propagated to a Reuter
grid (Reuter, 1982) in EWH. This grid was chosen as the even point distribution avoids the
overrepresentation of higher latitudes when, for example, a geographic grid is used. The
representation in space domain also allows to easily discriminate between land and ocean
points, for a more detailed analysis. As a measure of remaining temporal correlation in
the residuals, the auto-correlation function for each of these EWH time series was then
computed. Figure 2.11 shows different representations of the autocorrelation function of
the post-fit residuals. In Figure 2.11a, the median correlation of all land/ocean points
for an unconstrained VAR model and constrained VAR model of different orders are
shown. As can be seen, the unconstrained VAR model exhibits a higher correlation length
compared to the constrained models. The residual time series of the constrained models
are much closer to white noise, with a sharp drop in correlation in the first few days. Also,
the median correlation for land and ocean pixels is much more similar compared to the
unconstrained model, which suggests a globally homogeneous fit. A minor improvement
can be observed when the model order is increased. From Figure 2.11b, which shows the
cumulative distribution of the auto-correlation function, similar conclusions can be drawn.
Again, the number of non-zero correlation values is much higher for the unconstrained
model compared to the constrained VAR(p) estimates. These investigations lead to the
same conclusions as the analysis of the innovation sequence, indicating an overall better
fit of the constraint VAR(p) to the GRACE data.
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3. Near real-time processing chain

To obtain gravity field estimates from GRACE/GRACE-FO, not only data collected by the
satellites themselves, but a variety of external data and geophysical models are required.
A key challenge when operating in near real-time is the acquisition of these data, which
are generally distributed across multiple data centers. The availability, latencies, and
update periods generally vary between data sources. The implementation of a robust
strategy for acquiring the necessary observation and model values, tailored to each
source, is therefore fundamental. After all required data is available, the gravity field
recovery process can be initiated. Ideally, this procedure is designed in a way so that it
can easily be automated to enable operational applications which do not require manual
intervention. To ensure traceability of the results, a thorough documentation of each
processing step and archiving of intermediate results is key.

3.1. Observables and data stream

The main observables for GRACE/GRACE-FO based gravity field solutions used in
the approach outlined here are kinematic orbit positions and inter-satellite range-rates
as listed in section 2.1. In order to compute these quantities, a variety of input data
from multiple data sources is required. Naturally, the measurements taken aboard the
spacecraft are fundamental for the further processing steps. For GRACE/GRACE-FO,
pre-processed observation data are contained in the Level-1B (L1B) data stream, which
consists of daily files for the primary instruments, housekeeping data, and auxiliary
telemetry. A comprehensive list of all available data files is given in Table 3.1. Relevant
instrument files for gravity field recovery include SCA1B, ACC1B, KBR1B, GPS1B,
GNV1B. Furthermore, the sequence-of-event (SOE) file contains additional information
about the satellite state, such as active instrument, attitude modes and orbit maneuvers.
The GRACE/GRACE-FO data stream is self-contained and directly provided by JPL.
To process the instrument files however, external data is required. Kinematic orbit
positions are derived by performing precise point positioning (PPP) using phase and
code measurements of the GPS receiver aboard the spacecraft. This requires precise
orbit and clock data from the GPS satellites. In order to ensure high-quality kinematic
orbit positions of the satellites, auxiliary global navigation satellite system (GNSS) data
products are required to perform corrections to the GPS observations. Examples of such
auxiliary data products are differential code bias (DCB), or precise antenna phase center
variations (ACV) for the transmitting GPS satellites contained in an Antenna Exchange
Format (ANTEX) file, as well as GRACE. Since the GPS ACV of GRACE also depend
on the state of instruments aboard the satellites, additional metadata and telemetry are
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3. Near real-time processing chain

Table 3.1.: GRACE quick-look L1B data files.

File name Satellite ID Contents
ACC1B A/B accelerometer measurements (linear and angular)
ACC1B (R3) B accelerometer transplant
AHK1B A/B accelerometer housekeeping data
CLK1B A/B satellite clock estimate
GNV1B A/B dynamic orbit
GPS1B A/B GPS flight data
IHK1B A/B processing unit housekeeping data
KBR1B both KBR ranging data
MAG1B A/B Magnetic torquer activation, magnetometer data
MAS1B A/B Spacecraft mass
SCA1B A/B Star camera data
TDP1B A/B intermediate clock solution
THR1B A/B Thruster activation data
TIM1B A/B Mapping of onboard to GPS time
TNK1B A/B Gas tank sensor data
USO1B A/B Oscillator frequency

required (Zehentner, 2017). These include the SOE file and external information, for
example, if and in what configuration radio occultation is performed. Primary source
of these GPS related data products are analysis center (ACs) of the International GNSS
Service (IGS). For example, the Center for Orbit Determination in Europe (CODE)
provides all relevant products in an operational manner.

Another key component in the processing of GRACE/GRACE-FO data is the atmosphere
and ocean dealiasing product (AOD1B, Dobslaw et al., 2017). Primary purpose of this
dataset is the reduction of high-frequency mass variations from the input data to reduce
temporal aliasing effects. The potential coefficients are provided by GFZ in daily files
with model values from 00:00 to 21:00 in 3-hourly intervals.

Earth orientation parameters (EOP) are required for the transformation between earth-
and space-fixed reference frames. These are required to rotate orbits as well as background
models, such as ocean tides, given in the earth fixed frame into the quasi-inertial frame
where the computations are performed.

Finally, in order to derive mass estimates from the computed gravity field solutions,
additional geophysical models are required for each specific subsystem. If, for example,
continental water storage changes are of interest, other sources of mass change, such
as GIA have to be reduced. Furthermore, it is reasonable to provide the water storage
changes not in the center of mass frame of the whole earth, but rather in the center
of mass of subsystem of interest. This is performed by adding degree 1 coefficients
to the solution, which cannot be determined by GRACE alone, but require additional
information (Bergmann-Wolf, Zhang, & Dobslaw, 2014; Rietbroek et al., 2009; Sun, Ditmar,
& Riva, 2016; Swenson, Chambers, & Wahr, 2008). Table 3.2 lists all required input data in
their respective latency. Next to observation data sets, (geophysical) models are required
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3.2. Daily process flow and scheduling

Table 3.2.: Input data, latency and update period for all required input datasets.

Category Product Provider Nominal latency Update period
GNSS Rapid orbits CODE/IGS 17-41 hours daily

Rapid clocks CODE/IGS 17-41 hours daily
DCB CODE ≈ 4 days monthly
ANTEX JPL - on demand

GRACE/ L1B JPL ≈ 17 hours daily
GRACE-FO AOD1B GFZ ≈ 6 hours daily

SOE JPL on demand daily
EOP Rapid EOP IERS predicted daily

in the gravity field recovery process. The purpose of these models is on the one hand to
perform signal separation, for example, remove effects from ocean and Earth tides, on the
other hand models are required to reduce high-frequency signal which causes temporal
aliasing. A non-exhaustive set of forces typically modelled in GRACE processing and
examples for geophysical models which represent these forces can be found in Table
3.3. Some of these models are based on fixed sets of constants and require only the
evaluation time (e.g., pole tide) as parameter. Others also depend on the satellite state
(e.g., relativistic corrections), but generally the models themselves are static and require
no updates. Two notable exceptions are the non-tidal atmosphere and ocean loading
model AOD1B and the measured non-conservative forces. Both of these models are
data driven, as AOD1B relies on ECMWF forcing data (Dobslaw et al., 2017) and the
non-conservative forces are directly measured. The accelerometer data is contained in
the L1B data stream, whereas AOD1B is provided by GFZ in an operational manner. In
principle also the model representing Earth’s static gravity field should be updated if it
includes time-variable constituents. The reason behind this is that strictly co-estimated
trend and annual signals are only valid for the time span of the input data. This is an
important detail, especially for the Kalman filter approach as the Kalman solutions are
constrained towards the background gravity field model. Since in NRT application one
probably operates outside this interval, a regular update might become necessary in
order to compensate for changes in long-term trend and annual signal.

3.2. Daily process flow and scheduling

In order to provide a structured process flow which is easy to automate, maintain, and
possibly alter during an operational service a top down analysis of the gravity field
recovery was performed. Starting with the final task, the upload of gridded water storage
anomalies to a dedicated File Transfer Protocol (FTP) server, each processing step was
recursively disaggregated into smaller parts. This resulted in a task sequence which is
closely tied to the hierarchy of the input data starting from raw observation data (L1)
over gravity field solutions in the form of potential coefficients (L2) to the final gridded
product (L3). The flow chart in Figure 3.1 shows the task sequence for a single day. As
depicted in this diagram all identified tasks roughly fit into one of four categories:
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3. Near real-time processing chain

Figure 3.1.: Dependency graph for all tasks required to compute a daily gravity field solution.
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3.2. Daily process flow and scheduling

Table 3.3.: Examples of force models used in GRACE gravity field recovery.

Force Model (example)
Earth’s static gravity field, trend,
and annual oscillations

GOCO05sa, GOCO06sb

Non-tidal atmosphere and ocean
loading

AOD1Bc, MOG-2Dd

Tidal effects from Moon, Sun, and
planets

IERS2010
e

JPL DE421 ephemerides f

Atmospheric tides AOD1Bc, van Dam and Ray (2010)
Ocean tides FES2014bg, EOT11ah

Solid Earth tides IERS2010
e

Pole tides IERS2010
e

Ocean pole tides Desai (2002)
Non-conservative forces ACC1Bi

Relativistic corrections IER2010
c

aMayer-Gürr and GOCO Team (2015), bKvas, Brockmann, et al. (2019),
cDobslaw et al. (2017), dCarrère and Lyard (2003), ePetit and Luzum
(2010), f Folkner, Williams, Boggs, Park, and Kuchynka (2009), gCarrere,
Lyard, Cancet, and Guillot (2015), hSavcenko and Bosch (2012), iJPL
(2018)

Acquisition Download, renaming, and possibly file format conversion of raw data files
from external sources such as FTP servers.

Conversion Here, one or more raw input data files are converted into the internally used
file formats. This might also include modification of the data, for example, the
rotation of satellite orbits from terrestrial to the celestial reference frame or gap
filling through interpolation.

Processing Computation of a new quantity from one or more input data sets. An
example of such a task is the determination of kinematic satellite orbits from GPS
data products and GRACE L1B quick look (Q/L) data.

Auxiliary Tasks which are either performed periodically in longer intervals (e.g. weekly)
or irregularly (on demand). An example of such irregular task is the estimation
of the stochastic observation model, which is performed in weekly intervals or if
drastic change in instrument behavior occurred.

The level of disaggregation for each task was chosen as a trade-off between flexibility,
which requires smaller work chunks, and manageable implementation complexity. An
example of such a non-atomic processing step is the blunder detection in the GRACE L1B
data. Here, the outlier detection was performed for all instruments in a single task, rather
than treating each data file independently. Given the nature of the daily gravity field
recovery, it suggested itself to define the tasks as processes which transform one or more
input data files into one or more output data files. This is also very convenient from an
implementation point of view, as it allows individual tasks to monitor the task-relevant
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3. Near real-time processing chain

Table 3.4.: Description of Task 1.1 — Download of rapid GNSS orbits and clocks.

T1.1: Download rapid GNSS orbits/clocks
Start: 16:00 Grace period: 5 days
Poll interval: 60 min Scheduling: daily
Dependencies: -
Input: -
Output: Rapid GNSS ephemerides and clocks (un-

compressed)

progress, by simply checking whether a specific output file exists. A task can therefore be
started by a job scheduler at the earliest time all preceding tasks are expected to finish. It
then checks whether all necessary intermediate results are present, and if so, performs its
own processing steps. Since delays must be expected in an operational environment, each
task is assigned a specific grace period in which it checks whether the required input
files are present. The length of the grace period has to be chosen in accordance with the
required latency of the final product and take into account both idle and computation
time of all subsequent steps. If the processing interval is shorter than the target latency
of the service and an interdependency between epoch exists, multiple instances of the
same task, albeit for different epochs, might also be active in parallel. From a monitoring
perspective the partitioning of the process flow also has the advantage that each task can
produce a log file which records the progress. This is key from a traceability point of
view and allows for convenient notifications if a task failed. Another aspect to consider
is the graphical representation of data time series. While this generally only provides a
qualitative overview of the processing steps performed by a task, if a solution quality
measure indicates anomalous input data, such figures can be used to quickly identify
the problem. A practical example of how this graphical indication can be helpful was
the pitch bias removal of the GRACE satellites on March 29, 2017 (Flechtner, Bettadpur,
Kruizinga, Dahle, & Tapley, 2017). This event was only reported after the fact; however
the changed attitude was clearly visible in the pointing angle time series (cf. also Chapter
4).

3.2.1. Data acquisition

The tasks in the data acquisition group generally follow a very similar structure. Their
primary goal is to check remote locations, such as FTP servers, and download the specified
raw data files. Some of the download tasks also directly uncompress archive files and
pre-select files for further processing. This is, for example, the case for the GRACE L1B
Q/L data, where all data and metadata files are provided as a single archive.

The first group of tasks described here consists of the acquisition of GNSS orbits and
clocks (T1.1, cf. Table 3.4), the ANTEX file update (T1.2, cf. Table 3.5) and the download
of the DCB (T1.3, cf. Table 3.6). GNSS orbits and clocks are fundamental for the deter-
mination of a GNSS receiver position (Teunissen & Montenbruck, 2017). The IGS and
the contributing ACs provide these data sets in an operational manner with different
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3.2. Daily process flow and scheduling

Table 3.5.: Description of Task 1.2 — Download of GNSS ANTEX file.

T1.2: Download GNSS ANTEX file
Start: 17:00 Grace period: 14 days
Poll interval: 60 min Scheduling: daily
Dependencies: -
Input: -
Output: GNSS ANTEX file

Table 3.6.: Description of Task 1.3 — Download of differential code biases (DCB).

T1.3: Download DCB file
Start: 17:00 Grace period: 14 days
Poll interval: 60 min Scheduling: 25th DOM
Dependencies: -
Input: -
Output: DCB files

latencies and accuracies. There are ultra-rapid ephemerides and clocks for real-time
applications (predicted, ≈ 3− 9 hours), rapid products (≈ 17− 41 hours) for near real-
time applications and final products (≈ 12− 18 days) for post-processing applications
(IGS Quality of Service Fact Sheet, 2013). For the application at hand the rapid products
are suitable, given their latency. The GNSS ANTEX file contains information about the
ACV of the transmitting satellite required for PPP. These satellite ACV are estimated
in conjunction with satellite orbits, clocks and a global station network (e.g., Schmid,
Steigenberger, Gendt, Ge, & Rothacher, 2007). This file is updated regularly when new
receiver or satellite antenna values become available. Therefore, one has to either compare
the contents of the local and remote files in order to detect changes, or download the
remote file before processing regardless of whether a change occurred. The DCB are
estimated monthly using the last 30 days of GNSS observation data (e.g., Montenbruck,
Hauschild, & Steigenberger, 2014, and references therein). They are usually published
within the first days of the following month. Since the monthly update interval does not
align well with daily NRT applications, the latest DCB estimates are taken as the best
information available.

Another critical dataset for the processing of GRACE data are observations of the EOP.
This stems from the fact that the functional model based on the equation of motion is
expressed in the (quasi-) inertial reference frame, whereas some input data sets and
models are given in an Earth fixed frame. In order to connect these two coordinate frames,
a rotation matrix based on a mathematical model (Petit & Luzum, 2010; Seidelmann, 1982)
and observation based corrections are required. These corrections are based on a variety
of space geodetic techniques (Bizouard, Lambert, Gattano, Becker, & Richard, 2019) and
provided through the International Earth Rotation and Reference Systems Service (IERS,
Dick & Richter, 2004). Similar to the GNSS products provided by the IGS and contributing
ACs, the IERS also offers data products with different latencies. For the GRACE NRT
application, the rapid time series consisting of quick-look daily EOP estimates based on
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3. Near real-time processing chain

Table 3.7.: Description of Task 1.4 — Download of rapid EOP.

T1.4: Download rapid EOP file
Start: 17:00 Grace period: 5 days
Poll interval: 60 min Scheduling: daily
Dependencies: -
Input: -
Output: Rapid EOP XML file (time-stamped)

very long baseline interferometry (VLBI) 24-hour sessions, GPS, and atmospheric angular
momentum data is the best fit. The rapid data product uses observation data available
up to the current epoch if possible, and predicts the following epochs. It features a daily
update interval where the data file is updated in-place (i.e. overwritten) on the remote
location and spans 181 days (from 90 days in the past to 90 days into the future). This
update happens regardless of the amount of new data available, which means that there
is essentially no latency, as the current file always represents the best EOP estimate. Since
this data product employs backward smoothing, data points in the past change over time.
To ensure a traceable and reproducible processing chain, the data files are time-stamped
once downloaded (see Table 3.7). This means the for each (daily) processing epoch a
dedicated EOP file is stored.

The AOD1B is a fundamental part of GRACE processing, and provides a priori informa-
tion about high-frequency temporal variations in the Earth’s gravity field caused by mass
redistribution in atmosphere and ocean. It is based on analysis and forecast data from
the European Centre for Medium-Range Weather Forecasts (ECMWF) and ocean bottom
pressure from a global ocean circulation model that is consistently forced with ECMWF
atmospheric data. Its main purpose is to reduce sub-monthly gravity field variations to
reduce temporal aliasing in the standard monthly GRACE solutions. GFZ provides this
dataset in an operational manner in the framework of the GFZ operational Earth System
Model (GFZESM) (cf. Dill & Dobslaw, 2013; Dill, Dobslaw, & Thomas, 2017). AOD1B
data files are updated daily and are available through GFZs Information System and
Data Center for geoscientific data (ISDC). The download and uncompressing of these
files is handled by task T1.5 (cf. Table 3.8). In a single file, non-tidal coefficients for four
individual components denoted as ATM, OCN, GLO, and OBA are provided. The effects
of the atmosphere are contained in the ATM coefficients. This includes the contribution of
atmospheric surface pressure over the continents, the static contribution of atmospheric
pressure to ocean bottom pressure and the much weaker contribution of upper-air density
anomalies over continents and oceans. OCN contains the contribution of the dynamic
ocean to ocean bottom pressure. The dealiasing product used in GRACE/GRACE-FO
processing is given by the GLO coefficients which constitutes the sum of ATM and
OCN. Finally, OBA is zero over the continents and provides the simulated ocean bottom
pressure that includes air and water contributions. The difference between OBA deviates
and GLO over the ocean domain is the disregard of the small contribution of upper-air
density anomaly contributions to the external gravity field in the OBA data set.

The core data set for GRACE NRT processing is naturally the data stream of the satellite
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3.2. Daily process flow and scheduling

Table 3.8.: Description of Task 1.5 — Download of AOD1B.

T1.5: Download AOD1B potential coefficients
Start: 10:00 Grace period: 5 days
Poll interval: 60 min Scheduling: daily
Dependencies: -
Input: -
Output: AOD1B potential coefficients

Table 3.9.: Description of Task 1.6 — Download of GRACE L1B Q/L data.

T1.6: Download GRACE L1B Q/L data
Start: 17:00 Grace period: 5 days
Poll interval: 60 min Scheduling: daily
Dependencies: -
Input: -
Output: Raw GRACE L1B Q/L data files (uncom-

pressed)

mission itself. Within the L1B data archive, all observations and auxiliary housekeeping
data collected during a single day are contained. For NRT applications, the standard L1B
data files cannot be used, as they exhibit a varying latency of 1-2 months for GRACE
and 2-3 weeks for GRACE-FO. Rather, the L1B Q/L data stream, which is not publicly
available, is required for low-latency use cases. The file format for the Q/L data is nearly
identical to the final L1B product, however it deviates in a few critical places, as not
all post-processing steps have been applied yet (cf. T2.5, Table 3.14). Specifically, the
reduced-dynamic orbit is given in 60 second sampling rather than 5 second sampling
in the final product. It is also briefly noted that due to the time tag correction, which
also depends on the GPS receiver clock error, differences in the data files between Q/L
and final have to be expected for all sensors. Typically, the data is available ≈ 17 hours
after the latest measured epoch with daily update intervals. Task 1.6 (see Table 3.9), is
responsible for the download and unpacking of the data file archive.

3.2.2. File format conversion

To alleviate further processing, the downloaded raw data files are converted into con-
solidated file formats which are tailored to the processing software. The focus here
no longer lies on human readability, but more so on efficient storage and read/write
operations. Thus, most raw text files are converted from American Standard Code for
Information Interchange (ASCII) to binary format, or machine readable text formats such
as in Extensible Markup Language (XML), which can be efficiently parsed. This also
allows for same data types of different sources to be coerced into a single file format
(e.g., GNSS satellite orbits and GRACE orbits), which increases the reusability of source
code.

51



3. Near real-time processing chain

Table 3.10.: Description of Task 2.1 — Conversion of rapid EOP files.

T2.1: Conversion of rapid EOP files
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T1.4
Input: Rapid EOP XML file (T1.4)
Output: EOPs in internal format

Table 3.11.: Description of Task 2.2 — Conversion of auxiliary GNSS products.

T2.2: Conversion of auxiliary GNSS products
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T1.2, T1.3
Input: GNSS ANTEX file (T1.2), GNSS DCB files

(T1.3)
Output: Antenna definitions and DCB files in internal

format

The conversion of the rapid EOP file (cf. Table 3.10) is essentially only a format conversion
from the IERS XML format to a XML format understood by the processing software.
Values of the EOP time series are not changed during this step.

During the conversion of the auxiliary GNSS data products (T2.2, cf. Table 3.11), the
ANTEX and DCB files are parsed. For each pseudorandom noise number (PRN), a file
which contains the mapping to a physical satellite represented by the space vehicle
identifier (SV ID) based on time is created. This is then the key to properly associate the
satellite ACVs, which are stored per SV ID, to the PRN during further GNSS processing.
Similarly, a file for each PRN which contains the current DCB estimate is created.

GNSS orbits and clocks are also stored per PRN after they are extracted from the
ephemeris and clock files respectively (cf. Table 3.12). Since the orbits are given in the
terrestrial reference frame, the previously converted EOPs (T2.1) are used to rotate the
positions into the celestial reference frame.

The raw data files of AOD1B contain potential coefficients with a sampling of 3 hours
from 00:00 to 21:00. To avoid redundant information at the midnight epochs, the values

Table 3.12.: Description of Task 2.3 — Conversion of rapid GNSS orbits/clocks.

T2.3: Conversion of rapid GNSS orbits/clocks
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T1.1, T2.1
Input: EOPs (T2.1), raw GNSS orbits/clocks (T1.1)
Output: GNSS orbits and clocks in internal format
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3.2. Daily process flow and scheduling

Table 3.13.: Description of Task 2.4 — Conversion of AOD1B.

T2.4: Conversion of AOD1B
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T1.5
Input: Raw AOD1B potential coefficients (T1.5)
Output: AOD1B as linear splines of potential coeffi-

cients from 00:00 to 24:00 with 3 hour node
interval.

Table 3.14.: Description of Task 2.5 — Conversion of GRACE L1B Q/L data.

T2.5: Conversion of GRACE L1B Q/L data
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T1.6, T2.1
Input: EOPs (T2.1), raw GRACE L1B Q/L data

(T1.6)
Output: Accelerometer data (ACC1B), GPS re-

ceiver observations (GPS1B), dynamic or-
bits (GNV1B, resampled to 5 seconds), satel-
lite velocities (from dynamic orbit), satellite
tracking data and corrections (KBR1B), atti-
tude data (SCA1B) in internal format

at 24:00 are omitted in the original files. For the GRACE processing, these epochs are
however required during the gravity field recovery process. The value at 24:00 was
computed by forming the average over the 8 given data points (from 00:00 to 21:00). The
resulting 9 sets of potential coefficients are then interpreted as nodal points of linear
basis splines and stored as the results of T2.4 (cf. Table 3.13).

For the conversion of the GRACE L1B data the output of T1.6 and T2.1 is required.
Equivalent to the GNSS orbits, the GRACE dynamic orbits are also stored in the terrestrial
reference frame. To rotate the epochs, the EOPs of T2.1 are used. Compared to the final
L1B data set, where the dynamic orbits are given with a 5 seconds sampling, the Q/L
dynamic orbit positions are given every minute. To resample to Q/L orbits to 5 seconds,
a polynomial of degree 15 is used. For all other data files, T2.5 (cf. Table 3.14) simply
consists of a file format conversion, where no modification to the data is performed. This
implies that the quality flag given in the L1B files are fully ignored.

3.2.3. Data processing

The main purpose of the star camera/accelerometer fusion (Table 3.15) is to improve the
satellite attitude by supporting the absolute attitude measured by the star cameras with
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3. Near real-time processing chain

Table 3.15.: Description of Task 3.1 — Star camera/accelerometer fusion.

T3.1: Star camera/accelerometer fusion
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T2.5
Input: Star camera data, accelerometer data, dy-

namic orbits (T2.5)
Output: Smoothed attitude product, smoothed K-

band antenna center correction

(a) PSD of angular acceleration (pitch) (b) PSD of antenna offset correction

Figure 3.2.: Effect of the combination of star camera data with angular accelerations measured by the
onboard accelerometer on the satellite attitude (left) and the antenna offset correction (AOC,
right).

angular accelerations measured by the onboard accelerometer. This not only results in a
reduction of high frequency noise in the combined attitude product (Klinger, 2018), but
also allows to fill gaps in the star camera observations with a data driven approach, rather
than simple interpolation. Since the K-band antenna offset correction (AOC) also depends
on the measured satellite attitude (Horwath, Lemoine, Biancale, & Bourgogne, 2011),
any improvements in the attitude determination also benefit the intersatellite ranging
observations. The low pass filter effect for both attitude and AOC is clearly visible in
their respective power spectral densities shown in Figure 3.2.

Kinematic orbits are a purely geometric quantity and provide information about the
absolute position of the satellites. To compute the kinematic orbit positions, precise point
positioning (PPP) after the approach by Zehentner and Mayer-Gürr (2016) is performed.
Next to the code and phase observations recorded by the GPS receiver aboard GRACE,
the GNSS constellation in the celestial reference frame, the clock product, and additional
telemetry from the GRACE satellites is required. This primarily consists of the satellite
attitude derived in task T3.1 to relate the observations to the satellites’ center of mass
rather than to the GPS antenna phase center. Further information about if and in which
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3.2. Daily process flow and scheduling

Table 3.16.: Description of Task 3.2 — Kinematic orbit computation.

T3.2: Kinematic orbit computation
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T2.1, T2.2, T2.3, T2.5, T3.1
Input: EOPs (T2.1), auxiliary GNSS products (T2.2),

GNSS orbits/clocks(T2.3), GPS receiver ob-
servations, dynamic orbits (T2.5), smoothed
attitude product (T3.1)

Output: Kinematic orbit positions, corresponding 3×
3 covariance matrices

Table 3.17.: Description of Task 3.3 — Instrument preprocessing.

T3.3: Instrument preprocessing
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T2.5, T3.1, T3.2
Input: GRACE L1B Q/L data (T2.5), smoothed at-

titude product (T3.1), kinematic orbit posi-
tions (T3.2)

Output: Cleaned and synchronized GRACE L1B Q/L
data (large outliers and yaw turns removed,
accelerometer precalibrated)

configuration radio occultation is performed is required as this influences the antenna
phase centers (Zehentner, 2017). Compared to the CODE final products, where post-
processed 5 second GPS clocks are available, the CODE rapid constellation only provides
clocks with 30 second sampling interval (Dach et al., 2018). It was therefore decided
to not use the full 10 second code/phase observations contained in the GRACE L1B
data, but to only process epochs where a clock estimate is available. The derived orbits
are later used as observations in the gravity field recovery process. There, in order to
find an appropriate weighting for the positions with respect to the intersatellite ranging
observations, not only the 3D positions of the satellites are determined, but also the
corresponding precision represented by the 3× 3 covariance matrix obtained during the
PPP process (cf. Table 3.16).

After both the smoothed satellite attitude and the kinematic orbit positions have been
determined, all GRACE L1B Q/L datasets required for further processing are subjected
to a blunder detection represented by task T3.3 (see Table 3.17). The accelerometers are
precalibrated using the values from Technical Note 2 (TN-02, Bettadpur, 2009). Then,
values larger than 103 nm/s2 are discarded. Furthermore, epochs at the beginning and
end of satellite yaw-turns are also excluded. Finally, all epochs which do not have a
simultaneous intersatellite ranging, accelerometer and attitude measurement are excluded
from further processing. The remaining epochs are then divided into contiguous segments
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3. Near real-time processing chain

Table 3.18.: Description of Task 3.4 — Integration of dynamic force model.

T3.4: Integration of dynamic force model
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T2.1, T2.4, T3.3
Input: EOPs (T2.1), AOD1B (T2.4), smoothed atti-

tude product, accelerometer data, kinematic
orbit positions, satellite tracking data and
corrections (cleaned, T3.3), gravity field back-
ground models

Output: Dynamic force model (variational equations),
integrated dynamic orbit, recomputed an-
tenna center offset correction

Table 3.19.: Description of Task 3.5 — Assembly of normal equations.

T3.5: Assembly of normal equations
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T3.3, T3.4, T4.1
Input: Smoothed attitude product, accelerometer

data, kinematic orbit positions, satellite track-
ing data and corrections (cleaned, T3.3), dy-
namic force model (variational equations,
T3.4), stochastic observation model (T4.1),
gravity field solutions from previous epoch

Output: daily normal equation

with a maximum length of 3 hours, so called ”arcs”, for further processing. Also, the
sampling of the kinematic orbit positions is reduced to 300 seconds, which reduces the
computational burden and the information contribution to the gravity field estimates.
This improves the solutions, an effect which has also been observed by other GRACE
processing centers (Meyer, Jäggi, Jean, & Beutler, 2016), however is not fully understood. A
key component and the initial step of the gravity field recovery process is the integration
of the dynamic force model, which constitutes the solution of the variational equations.
All background models are evaluated at approximate orbit positions given by the GRACE
L1B dynamic orbit, then an initial dynamic orbit is integrated and the corresponding
state transition matrix is computed. The initial state of this orbit is then fitted to both
kinematic orbit positions and intersatellite ranging observations. This brings the orbit
closer to the actual satellite trajectory and servers as starting point for the next orbit
integration. The procedure is stopped once the maximum orbit difference between two
iteration steps is below the µm level, which is typically reached after 2-3 iterations.

Once the dynamic force model is determined, the system of normal equations can be
assembled. Next to the functional model represented by (2.12), another integral part to
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3.2. Daily process flow and scheduling

this processing step is the stochastic observation model. The covariance functions of all
observation groups (kinematic orbit positions and intersatellite ranging observations) are
assumed to be known from task T4.1 (cf. Table 3.23). In order to determine appropriate
weights for the observations, variance component estimation (VCE, e.g., Koch & Kusche,
2002) is employed. This allows the determination of the relative weighting of the 3 hourly
data batches and possibly identify erroneous observations. Basis for the VCE is the
normal equation representation of the Kalman filter update step (2.59), which can be
written more concisely as

[Ni + Σ̂−1
x−i
]x+i = ni + Σ̂−1

x−i
x−i . (3.1)

As previously stated, all observations within one day are divided into contiguous seg-
ments with a maximum length of 3 hours. If all observations in one day are available,
and no data gaps are present this results in 8 different observation groups. In practice
however, this number, denoted J will vary depending on data availability and data gaps.
For each of these segments, which are treated as uncorrelated, a variance factor σ2

j is set

up. The covariance matrix Σlj
i

of the observations lj
i of each segment is assumed to be

known, thus only the relative weighting has to be determined. The system of normal
equations of each segment is then given by

Nj
ix

+
i = nj

i , (3.2)

where i denotes the Kalman filter epoch and the superscript j denotes the data batch
within the corresponding interval. An additional variance factor σ2

x− is set up for the
pseudo-observations of the initial state. Applying all these assumptions to (3.1), leads to
the system of normal equations[

J−1

∑
j=0

1
σ2

j
Nj

i +
1

σ2
x−

Σ̂−1
x−i

]
x+i =

J

∑
j=0

1
σ2

j
nj

i +
1

σ2
x−

Σ̂−1
x−i

x−i . (3.3)

The variance components σ2
j and σ2

x− are determined by iteratively solving (3.3) and
updating their values with

σ2
j :=

qj

rj
. (3.4)

Here, qj is the square sum of the residuals for observation group j with

qj = x+
T

i Nj
ix

+
i − 2 njT

i x+i + ljT

i Σ−1
lj
i

lj
i (3.5)

and rj is the redundancy of the nj observations with

rj = nj −
1
σ2

j
tr


[

J−1

∑
j=0

1
σ2

j
Nj

i +
1

σ2
x−

Σ̂−1
x−i

]−1

Nj
i

 . (3.6)
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3. Near real-time processing chain

Table 3.20.: Description of Task 3.6 — Kalman filter update step.

T3.6: Kalman filter update step
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T3.5
Input: Daily system of normal equations (T3.5),

gravity field solutions from previous epoch
Output: Updated state and corresponding covariance

matrix, daily mean of background models

Equivalently, the variance factor for the pseudo-observations of the predicted state is
computed through

σ2
x− :=

qx−

rx−
, (3.7)

with

qx− = (x+i − x−i )
TΣ̂−1

x−i
(x+i − x−i ) (3.8)

and

rx− = m− 1
σ2

x−
tr


[

J−1

∑
j=0

1
σ2

j
Nj

i +
1

σ2
x−

Σ̂−1
x−i

]−1

Σ̂−1
x−i

 (3.9)

respectively. Once the procedure is converged, the relative weights of all observations and
the predicted state as well as the updated state x+i is obtained. In practice, it is however
convenient to store the final system of normal equations given by

Ni =
J−1

∑
j=0

σ2
x−

σ2
j

N(j)
i and ni =

J−1

∑
j=0

σ2
x−

σ2
j

n(j)
i (3.10)

and perform the Kalman filter update in a separate processing step. The reason for
additionally scaling the individual system of normal equations with the variance factor
of the predicted state is that (2.59) can then be directly used, i.e. no information about
the VCE has to be passed on to the Kalman filter update step.

In task T3.6 (cf. Table 3.20), the Kalman filter update step is performed. This essentially
means the evaluation of (2.59). If no system of normal equations is available at the current
epoch, e.g., because of missing data or a processing failure, only the prediction step is
performed and the predicted state and its covariance matrix is seen as the best gravity
field estimate for this epoch.

Based on the output of T3.6, task T3.7 (cf. Table 3.21) computes gridded water storage
anomalies from the current gravity field estimate. Since the Kalman filter output is given
relative to trend and annual signal of the background gravity field, these constituents
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3.2. Daily process flow and scheduling

Table 3.21.: Description of Task 3.7 — Computation of gridded water storage anomalies.

T3.7: Computation of gridded water storage anomalies
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T3.6
Input: Kalman filter solution, daily mean of AOD1B

(T3.6), background gravity field, GIA model
Output: Gridded water storage anomalies (geocenter

and GIA corrected)

Table 3.22.: Description of Task 3.8 — Publishing/upload of solution.

T3.8: Publishing/upload of solution
Start: 17:00 Grace period: 2 days
Poll interval: 10 min Scheduling: daily
Dependencies: T3.6, T3.7
Input: Kalman filter solution, gridded water storage

anomalies
Output: -

are restored first. Then non-hydrological signals such as GIA are removed. The reduced
potential coefficients are subsequently propagated to equivalent water heights on a
1× 1 degree grid by evaluating (1.6). In order to transform the gridded water storage
anomalies into the appropriate coordinate system, degree 1 coefficients determined using
the approach of Swenson et al. (2008) are added to the solution.

The last step (T3.8, Table 3.22) in each daily processing schedule is the upload of both the
estimated potential coefficients and gridded water storage anomalies to a remote location
for further processing. Next to file handling, that is, creating a compressed archive of the
output files, this task also categorizes each solution according to the GRACE contribution
(cf. Section 3.3).

3.2.4. Auxiliary processing tasks

In order to compute an optimal least squares solution in a statistical sense, the covari-
ance structure of the observations Σl has to be known. While the instruments aboard
the satellites are characterized reasonably well (e.g, Flury, Bettadpur, & Tapley, 2008;
Frommknecht, Fackler, & Flury, 2006; Inácio, Ditmar, Klees, & Farahani, 2015; Meyer,
Jäggi, & Beutler, 2012; Peterseim, 2014; Touboul, Foulon, Rodrigues, & Marque, 2004),
the changing mission environment, for example, sensor degradation, increased drag
due to orbit decay, and varying solar flux, suggests that a data driven determination of
the measurement accuracy might provide better results. For the task at hand, a post-fit
residual analysis using VCE as it is used in the ITSG-Grace processing was chosen.
Here, only a brief summary of the methodology will be given, a detailed description of
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3. Near real-time processing chain

Table 3.23.: Description of Task 4.1 — Estimation of stochastic observation model.

T4.1: Estimation of stochastic observation model
Start: 9:00 Grace period: -
Poll interval: - Scheduling: weekly/on de-

mand
Dependencies: T3.3, T3.4
Input: Cleaned GRACE L1B Q/L data (T3.3) and

dynamic force model (T3.4) from at least 14

of the previous 30 days
Output: Stochastic observation model (covariance

functions for K-band range rates and kine-
matic orbit positions, valid until next update

the algorithm can be found in Ellmer (2018, section 6.5). The covariance function of a
wide-sense stationary process is connected to the process’ power spectral density through
the inverse Fourier transform (Pisarenko, 1973). Arranging both the covariance function
of the process c(τ) for discrete time lags τj and the power spectral density (PSD) P( f )
for discrete frequencies fk as column vectors c and p respectively allows to express this
relationship as a matrix-vector product. Specifically, the covariance function c is given by

c = F−1p. (3.11)

Here, F−1 is the inverse discrete Fourier transform (IDFT) matrix (Rao & Yip, 2000). More
explicitly, the covariance function is the linear combination of N vectors, where N is the
number of lags considered and f−1

k is the k−th column of the IDFT matrix:

c =
N−1

∑
k=0

f−1
k P( fk). (3.12)

The underlying process is assumed to be wide-sense stationary, so its covariance matrix
is symmetric with Toeplitz structure (Akaike, 1973). Since this means the covariance
matrix is purely determined by a single vector, it is convenient to introduce the notation
T{·}, which represents the Toeplitz matrix constructed from a column vector. Using this
notation, the covariance matrix of the process can be written as C = T{c}. For (3.12) this
means that

C = T{c} = T

{
N−1

∑
k=0

f−1
k P( fk)

}
, (3.13)

which can be simplified to

C =
N−1

∑
k=0

T
{

f−1
k

}
P( fk), (3.14)

Thus, the covariance matrix of the process can be expressed as the sum of Toeplitz matrices
based on the columns of the IDFT-matrix, scaled by the PSD value of the corresponding
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frequency. According to Koch (2004, chapter 36) this representation of a covariance
matrix can be used to perform VCE. Specifically, the variance components σ2

k = P( fk)
can be determined iteratively within the least squares adjustment which also yields the
estimated potential coefficients, instrument calibration and satellite state parameters. The
drawback of this approach is that a certain number of epochs are required in order to
obtain a robust estimate of the PSD. Similar to the methods of Bartlett (Bartlett, 1948,
1950) and Welch (Welch, 1967), the VCE approach reduces the spectral resolution of the
PSD estimates, for the benefit of increased redundancy. Here, the 3-hour arcs determine
the spectral resolution, which results in spectrum from f0 = 0 to fN−1 = 0.1 Hz for
range rate observations and f0 = 0 to fN−1 ≈ 1.7 mHz for the kinematic orbits with a a
frequency spacing ∆ f ≈ 0.1 mHz. Since the fundamental assumption is the wide-sense
stationarity of the process, any changes in sensor behavior which results in different
noise characteristics can not be modeled by this approach. It is therefore necessary if
such an event occurs, to split the input data into appropriate segments and perform a
separate estimate for each resulting interval. For near real-time applications, this might
not be possible. On the one hand, sudden changes in instrument behavior need to be
detected first, on the other hand even if they are detected a re-estimation of the PSD
might not be immediately possible due to a lack of observation data. Such an event
occurred during the operational test run of the near real-time processing chain and is
discussed in chapter 4.

3.3. Operational quality control and blunder detection

For the operational processing, an automated quality control and blunder detection is
crucial for the delivery of a robust water storage product. In the case at hand, three
measures of how blunders can be detected, treated, and communicated were implemented.
The first measure to ensure a robust solution is the gross outlier detection performed
in task T2.1 (cf. Table 3.10). The second measure undertaken is the adaptive relative
weighting between observations and predicted state as described in task T3.3 (cf. Table
3.17). Closely tied to the relative weighting is the contribution of GRACE to the updated
state parameters, which can give an overall impression of the data quality. Finally, a
classification scheme based on the contribution measure was developed to communicate
the solution quality to downstream users. The contribution of GRACE can be computed
from the normal equation representation of the Kalman filter in (2.59). The solution to
this system of normal equations is given by

x+i = [Ni + Σ̂−1
x−i
]−1ni + [Ni + Σ̂−1

x−i
]−1Σ̂−1

x−i
x−i . (3.15)

Substituting ni = Nix̂i, where x̂ is the unconstrained GRACE estimate for epoch i, yields

x+i = [Ni + Σ̂−1
x−i
]−1Ni︸ ︷︷ ︸

=Rx̂

x̂+ [Ni + Σ̂−1
x−i
]−1Σ̂−1

x−i︸ ︷︷ ︸
=Rx−

x−i . (3.16)
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3. Near real-time processing chain

The matrices Rx− and Rx̂ are known as resolution matrices (Jackson, 1972) and have
already been used by Kurtenbach et al. (2012) to study the contribution of GRACE to
the updated state. They can be interpreted as coefficients of a weighted mean between
observations and predicted state. It can easily be verified that Rx− + Rx̂ = I and thus

tr{Rx−}+ tr{Rx̂} = m. (3.17)

The quantity

c =
1
m

tr{Rx̂} · 100 (3.18)

then represents the total contribution of GRACE to the updated state parameters in
percent with c ∈ [0, 100). Since the relative weights of the GRACE observations and the
predicted state are determined through VCE, where bad data patches are downweighted,
a low contribution value is a strong indicator for erroneous observations in the current
state estimate. The extreme case where c = 0 happens when no observations are available,
i.e. the solution is predicted. A significantly lower value than a ”standard solution”
(c ≈ 14), derived from historic data) therefore indicates a less trustworthy water storage
estimate. For the operational processing a categorization scheme was implemented in
task T3.8 (cf. Table 3.22) before a solution was uploaded. If GRACE has a significant
non-zero contribution, the solution was flagged with ”A”. If the solution is predicted
or the contribution is close to zero, but there has been a state update in the last three
days, the solution was flagged with ”B”. In the case where no GRACE information was
available at the current epoch and the last three days, the solution was flagged with ”C”.
The threshold values would typically be derived from a historical data set, for the case at
hand this was not possible, since the data characteristics towards the end of the GRACE
mission was expected to vastly differ from the rest of the observation period. Therefore, a
conservative empirical value (c0 = 1) was chosen until a large enough sample for a proper
characterization of the contribution during the operational test run was feasible.

These quality control measures were tailored to the planned application of the daily
water storage estimates. VCE reduces the weight of non-matching data batches, thus the
overall contribution of GRACE is reduced, which results in a smaller state update. In
combination with the exponential decay of the predicted state, the water storage estimate
then tends towards zero. This in turn means that an underestimation of the global water
storage is more likely. For the application at hand — the detection of extreme events
— this is a reasonable outcome. Other applications might however require different or
additional quality control measures.

Since the Kalman filter approach yields constraint gravity field estimates, which may
hide unexpected features in the data due to the implicit filtering process, it was decided
to also compute a ”companion solution” based on the last five days of data. As opposed
to the sophisticated Kalman filter process dynamic, a simple Kaula-type function was
used to constrain the accumulated system of normal equations. While this yields a noisier
gravity field estimate, it can reveal possible problems with the data which might be
filtered out by the Kalman constraints. A comparison of a Kalman smoother estimate
and the Kaula-type constraint can be seen in Figure 3.3. As the Kaula-type constraint
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(a) Kaula-type (b) Kalman smoother

Figure 3.3.: Comparison of a Kaula-type constraint solution using 5 days of data and the Kalman smoother
estimate of the central epoch.

solution spans multiple Kalman filter epochs, the comparison is made with the central
epoch, which is defined as the reference epoch. The effect of the different constraints can
be clearly seen. While the large geophysical signals on the continents are similar, the
Kalman filter has a stronger filter effect over the oceans. This is a direct consequence of
the isotropic signal model of the Kaula-type constraint as opposed to the non-isotropic
VAR process model. From an operational point of view, a companion solution of this
form has the advantage that it is trivial to implement. All necessary input is readily
available, since it is also basis for the primary gravity field solutions. Therefore, it can
provide an additional, albeit qualitative, measure of the data characteristics with very
little additional implementation and computational effort.
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4. Test run of the EGSIEM Near Real-Time
Service

4.1. Introduction and overview

Within the Horizon 2020 funded project European Gravity Service for Improved Emer-
gency Management (EGSIEM), a technology demonstrator for a near real-time (NRT)
service was established (Jäggi et al., 2019). The primary purpose of this service was to
show the usefulness of gravity based indicators for flood and drought prediction. Its goal
was to provide gridded water storage anomalies from daily gravity field solutions with
a maximum latency of five days. For this purpose, two independent approaches were
developed at the German Research Centre for Geosciences (GFZ, Gruber & Gouweleeuw,
2019) and TU Graz (TUG, presented in detail in chapter 3). These daily solutions served
as input data for the derivation of flood and drought indicators at the EGSIEM Hydrolog-
ical Service run at GFZ, with offline evaluation of the solutions through GNSS loading
observations by the University of Luxembourg (Jäggi et al., 2019, section 6). Final user of
these derived data products was the Center for Satellite based Crisis Information (ZKI) of
the German Aerospace Center (DLR). The operational test run of the NRT- and dependent
services was planned to start on April 2017 and run for 6 months. However, due to a
battery failure on GRACE-B, the test run was cut short and ended with last available
GRACE measurements on June 29th 2017. The daily process flow for the interconnected
services started with acquisition of all required data to compute a daily gravity field
solution (c.f. chapter 3). This step happened in parallel at GFZ and TUG as two indepen-
dent gravity field solutions were produced by the respective processing centers. After the
daily gravity field solutions were finished and converted to water storage anomalies, the
dataset was uploaded for further processing. The Hydrological Service used this data to
compute flood- and drought indicators which were then passed on to the ZKI for use in
their remote sensing satellite tasking software. Here, the application was to potentially
change the image acquisition scheme of the satellites to increase the number of scenes
in affected areas, possibly even before the onset of a flood. A general flowchart of this
process can be found in figure 4.1. The remainder of this chapter exclusively focuses on
the operational gravity field processing performed at TUG.

4.2. Pre-operational simulations

As the health of the GRACE satellites was expected to further deteriorate in 2016 and
2017, a simulation study based on one year of (historic) data was conducted in mid-2016
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GRACE Q/L Data
Auxiliary Data

Gravity Field
Recovery GNSS Evaluation

Flood/Drought
indicators

Satellite Tasking

Figure 4.1.: Daily process flow of the EGSIEM NRT Service and related services. GNSS Evaluation was not
performed operationally, but in offline (manual) mode.

to estimate the quality of the daily gravity solutions during the NRT Service test run. Two
constraints were considered: measurements only in orbital segments where the satellites
are in full sunlight, leading systematic data gaps and reduced observation count, as well
as the unavailability of accelerometer measurements on GRACE-B. Both constraints were
considered a direct cause of a battery cell failure, which happened on 17 September
2016 (Flechtner, Bettadpur, Kruizinga, Dahle, & Tapley, 2016b). The simulated data sets
were generated by removing all measurements taken in Earth’s shadow. To identify the
affected observations, a shadow function based on a conical shadow model (Montenbruck
& Gill, 2000, Fig. 3.4) was used. Figure 4.2 shows the distribution of the observations
collected in sun- and shadow segments during nominal science operations. As is evident,

Figure 4.2.: Observation distribution in sun/shadow for the study period.
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4.2. Pre-operational simulations

Figure 4.3.: Ground track and shadow function of the GRACE satellites for 15 May 2008.

this ratio depends on the orientation of the satellites’ orbital plane with respect to the
sun (β′ angle), which is represented by the black line. During periods of low beta-prime
angles (|β′| < 25◦), the overall observation count is reduced by nearly 40%. Since whole
data segments rather than single epochs will be lost when the satellites pass through
Earth’s umbra and penumbra, the effect these long data gaps have on the recovered
gravity fields is of primary interest. Specifically, any change in the spectral characteristics
represented by the maximum resolvable order has to be carefully reviewed. The extreme
case of β′ = 0 can be seen in Figure 4.3, where the ground track of the satellites for 15

May 2008 is shown. The color code of the ground track represents the shadow function of
the satellite at the given epoch. Red colors mean the satellite is exposed to sunlight, while
blue colors mark shadow crossings. As can be seen 15 unique equator crossings with
observations still remain, even in time periods where β′ = 0 and if only observations in
sunlight are considered. Therefore, it can be concluded that the spatio-temporal sampling
of GRACE does not change in these conditions, rather the redundancy of the solutions is
decreased due to the lower observation count.

Further, the accelerometer measurements on GRACE-B were created by a rotating and
time-shifting the corresponding GRACE-A data set. This approach corresponds to the
one presented in Save, Bettadpur, and Tapley (2006). Following the battery cell failure on
GRACE-B on 17 September 2016, there was a strong possibility that the accelerometer
aboard the spacecraft would be kept offline for the remainder of the mission duration.
It was therefore envisaged by JPL to include a so called ”transplant” product, i.e. using
the accelerometer measurements of GRACE-A for GRACE-B, into the L1B data stream
(Frank Flechtner, personal communication, Flechtner, Bettadpur, Kruizinga, Dahle, &
Tapley, 2016a). Since this official product would be based on L1A data, it was expected
that the operational accelerometer transplant data would be of higher quality than the
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(a) Sunlight only (b) Acc. transplant (c) Combined effect

Figure 4.4.: Correlation with respect to ITSG-Grace2016 daily solutions for each of the computed time series:
measurements in sunlight only (a), accelerometer transplant only (b), and combined effect (c).

one used in this study (Bandikova, McCullough, Kruizinga, Save, & Christophe, 2019).
The results of this simulation study were therefore treated as a conservative estimate of
the overall solution quality.

Based on these simulated data sets, three daily gravity field time series were generated:
one for each constraint individually and additionally the combination of both. The
original — unaltered — data was used as a benchmark. From these three time series
and intercomparisons between the data sets, it was evident that the expected differences
between the data available during the operational test run and nominal science operations
will be dominated by the accelerometer transplant. This is supported by the correlation
plots in Figure 4.4, which show decreasing similarity between the time series in areas
where little signal, for example, the oceans or the Sahara desert, is expected. Fortunately,
in large river basins the correlation remains high despite the combined effect of systematic
data gaps and accelerometer transplant. When inspecting individual river basins (cf.
Figure 4.5), it can be seen that the hydrological signal — for the most part — can however
still be resolved on a reasonable quality level. The systematic data gaps introduced by only
measuring in sunlight have a minor impact on the time series, while the accelerometer
transplant does degrade the solutions in places.

4.3. Operational processing of daily gravity field solutions

Operational processing of GRACE quick-look data at TU Graz started on March 17

with the first available observations after the scheduled position switch of the spacecraft
(Flechtner et al., 2017). The test run ended on June 29, with the last intersatellite measure-
ments of the GRACE satellites before the decommissioning phase. During this period, a
total of 105 daily gravity field solutions were computed in a fully automated manner.

The observations and background force models used for the test run were mostly
consistent with the ITSG-Grace2016 processing (Mayer-Gürr et al., 2016), with two
notable exceptions. AOD1B RL06 was used as atmosphere and ocean dealiasing product
(as opposed to AOD1B RL05), and the Q/L version of the GRACE L1B was used (in
contrast to L1B RL02). These changes were necessary to fulfill the 5-day latency required.
Both L1B RL02 data and AOD1B RL05 have latencies far higher and were therefore
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Figure 4.5.: Comparison of the impact of sunlight only and accelerometer transplant observations on
catchment average time series.
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Table 4.1.: Background force models used in the EGSIEM-NRT operation test run.

Force Model
Earth’s static gravity field, trend,
and annual oscillations

GOCO05sa

Non-tidal atmosphere and ocean
loading

AOD1B RL06
b

Tidal effects from Moon, Sun, and
planets

IERS2010
c

JPL DE421 ephemeridesd

Atmospheric tides van Dam and Ray (2010)
Ocean tides EOT11ae

Solid Earth tides IERS2010
c

Pole tides IERS2010
c

Ocean pole tides Desai (2002)
Non-conservative forces measured by onboard accelerome-

ter (L1B Q/L)
Relativistic corrections IER2010

c

aMayer-Gürr and GOCO Team (2015), bDobslaw et al. (2017), cPetit and
Luzum (2010), dFolkner et al. (2009), eSavcenko and Bosch (2012)

unsuitable for operational purposes. For the same reason also the CODE rapid GPS orbits
and clocks were used instead of the final version. A full list of background models is
given in Table 4.1. GIA correction was performed using the model of A, Wahr, and Zhong
(2012).

During the service run, infrastructure failures – an unplanned GRACE quick-look data
server outage on May 21-22 - were handled in accordance with the predefined contingency
plans and the software was able to recover automatically. In the week of May 15 to May 21,
a hardware migration required a manual stop and restart of the software which however
did not cause any delay in the gravity field computation. The number of available K-band
observations was, as expected, strongly correlated with the orientation of the orbital plane
to the sun. Starting in the middle of March with just above 40% of possible observations,
the number of observations increased in April up to nearly full coverage on April 30.
With increasing exposure to the sun due to the rising β′ angle, full data coverage was
reached in the middle of May. Data collection then slowly decreased throughout June
back towards 50%. A key property for the stochastic model estimation is the length
of the longest contiguous data segment, as it determines the spectral resolution of the
estimated PSD (cf. Section 3.2.4). Since no measurements were collected in time spans
where the satellites cross Earth’s shadow, each 94 minute revolution would be split
into two segments by a data gap for low β′ angles. The evolution of the maximum
contiguous data segment length can be seen in Figure 4.7. During phases where the
maximum contiguous arc length was below 94 minutes, no once per revolution signal or
its harmonics can be represented by the estimated PSD, as the frequency spacing is too
coarse. Rather, once per revolution signals are smeared over neighboring frequencies due
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Figure 4.6.: Data coverage of K-band range rates with respect to a fully available observation set.

Figure 4.7.: Length of the longest contiguous data segment up to a maximum of 3 hours.
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Figure 4.8.: Comparison of PSD estimates for different arc lengths. Multiples of the revolution period are
depicted as vertical lines.

to the limited spectral resolution. This effect is exemplified in Figure 4.8, where two PSD
estimates from identical range-rate residuals are compared. The only difference between
the estimates is the chosen arc length of 1 and 3 hours respectively. As can be seen, the
longer arc length allows the resolution of multiples-per-revolution signatures as opposed
to the shorter arc length. There was only a very brief period from the middle to the end
of May where continuous measurements were available. For most other days within the
operational test run period the maximum arc length was at, or below, 1 hour.

Due to the long data gap before the start of the operational test run, the Kalman filter was
initialized with x+−1 = 0, x+−1 ∼ N (0, Σ

(0)
w ) on March 16. The stochastic observation model

for this initial period was taken from the last available full month, which was January
2017. This initial stochastic model was planned to be used until enough epochs for a
stable re-estimation would be available. A first re-estimation for testing purposes was
performed on March 23 based on the first 4 days of available data (March 17 to March
21). The results of this estimation were deemed reasonable and it was therefore decided
to use this estimate, despite the limited amount of input data. The second re-estimation
took place on March 26 which included 7 days of data, which was consistent with the
estimate of March 23. After this initial phase, the determination of the stochastic model
was scheduled weekly using the last 14 days of available data.

On March 29, the attitude of the spacecraft was changed by removing the pitch bias of
the satellites. As a result, the pointing angle relative to the line of sight increased by
approximately one degree. This resulted in a close agreement between the velocity vectors
of the satellites and the ±x-axis of the satellite reference (body) frame. Since this also
minimizes and homogenizes the cross section in flight direction between the satellites,
the transplant of the accelerometer measurement on GRACE-A to GRACE-B, could be
performed more easily (Gerard Kruizinga and Himanshu Save, personal communication,
Flechtner et al., 2017). The drawback of this step was a higher impact of attitude noise
on the ranging measurements, because the propagated attitude noise is proportional to
the sine of the pointing angle. A schematic of the satellite before and after the pitch bias
removal can be seen in Figure 4.9. The key here is that the range (or range-rate) between
both satellites’ KBR antenna phase center is measured, rather than the required distance
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a) pitch bias (nominal)

b) pitch bias removed

Figure 4.9.: Schematic representation of the relative orientation of the satellites during the mission period up
to March 2017 (a) and during the last months (b).

(or distance change) between the satellites’ center of mass. To correct for this discrepancy,
a geometric correction based on the position of the KBR antenna phase centers has to be
applied. The positions of these phase centers were determined in calibration procedures.
Due to the large distance between the satellites, this antenna offset correction (AOC) can
be applied by projecting the phase center vector onto the line of sight. For this projection,
the attitude of the satellites is required, therefore the AOC not only depends on the
antenna center positions, but also on star camera measurements and their respective
errors. When reducing this correction to one dimension, as depicted in Figure 4.9, it can
easily be seen that in this simplified setup, the AOC for ranges is given through

ρAOC = cos(φA + ∆φA)pA + cos(φB + ∆φB)pB, (4.1)

where φA/B is the pointing angle of the satellite, ∆φA/B is the attitude error and pA/B
is the distance between the center of mass and the antenna phase center. Applying
covariance propagation to this expression and only considering attitude errors leads to

σρAOC = 2 sin(φA/B + ∆φA/B)pA/B · σ∆φA/B . (4.2)

For simplicity it was assumed here that pointing angles, phase center offsets and attitude
errors are identical for both satellites. This expression shows that a pointing angle increase
of 1 degree raises the AOC magnitude by two orders of magnitude. Considering an
attitude accuracy of 170 µrad (Inácio et al., 2015), the standard deviation of the AOC
increases from ≈0.06 µm to ≈6 µm for ranges and from ≈0.02 µm/s to ≈2 µm/s for
range rates. This means that the proposed precision of the GRACE K-band instrument of
0.2 µm/s (Loomis, Nerem, & Luthcke, 2012) is already exceeded. This rough estimate
of the change in noise characteristics could also be confirmed by the high-frequency
content of the actual AOC values, as seen in Figure 4.10. A special characteristic of the
GRACE satellite attitude is a systematic attitude variation with a frequency of about
3.3 mHz related to the control circuit of the magnetic torquers aboard the spacecraft
(Bandikova, Flury, & Ko, 2012). As any attitude variations are also reflected in the AOC,
a similar pattern is visible there as well. This pattern is significantly accentuated after the
pitch bias removal, as can be seen in Figure 4.11. Since the estimation of the stochastic
observation model depends on a longer time span of past epochs, this drastic change was
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Figure 4.10.: Differences of the original GRACE L1B AOC with respect to the recomputed AOC using
smoothed attitude data.

Figure 4.11.: Recomputed range rate AOC based on smoothed attitude data.
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Figure 4.12.: Comparison of operational and reprocessed observation weights.

not immediately picked up in the estimated range-rate covariance function. The peak at
≈ 3.3 mHz was first visible in the estimated PSD on April 10, where a re-estimation of
the stochastic model using data from April 1 to April 8 was performed. Prior to this date,
the stochastic model estimates were dominated by data before March 29, which resulted
in a poorly fitting covariance matrix for the observations between March 29 and April 8.
In terms of solution quality however, the impact was largely mitigated by the Kalman
filter constraints, thus geophysical signal could be reasonably recovered. While there is
horizontal striping visible in the difference between predicted and updated state, similar
to the artifacts described by Bandikova et al. (2012), the effect is small compared to the
overall signal. For the remainder of April, a consistent observation quality was observed,
with a single data gap on April 15. With increasing β′ angle of the satellites’ orbital
plane and therefore increased exposure to sunlight, the accelerometer on GRACE-B was
reactivated on May 2 and remained active until May 22. For the operational solutions
however, it was decided to keep using the accelerometer transplant, as the pitch bias
removal revealed that a sudden change in instrument noise behavior requires a certain
amount of time to be represented in the stochastic model estimates.

Starting at the beginning of June, a decrease of the GRACE observation weight compared
to the predicted state was observed. This resulted in a smaller contribution of the GRACE
observations to the update state vector. The reason for this decreased weight possibly
lies in a mismatch between the AOC used in the estimation of the stochastic observation
model and the normal equation computation following a software configuration change
on May 29. For the covariance function estimation, the recomputed AOC based on the
smoothed attitude product obtained by the sensor fusion was used, while the determina-
tion of the observation weights was based on the original L1B AOC. Since the original
L1B AOC exhibits higher noise in the mid- to short-wavelength part of the spectrum (cf.
Figure 3.2, the range rate observations were downweighted during VCE. A reprocessing
with consistent AOC yielded weights around 1, which is the expected value (cf. Figure
4.12). While using the wrong AOC data meant a degradation of the solution quality, it
also showed that the developed approach is sensitive to a mismatch in data quality thus
resulting in a robust solution.
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Figure 4.13.: Latency of the computed near real-time solutions from last measured epoch to upload.

4.4. Results and discussion

Throughout the service run, the latency of the gravity field solutions was tracked. Latency
in this case was defined as the time span between the last measured epoch and the upload
of the gridded solution. The daily latency of the solutions can be seen in Figure 4.13,
which highlights that for most days the solution could be uploaded within 20 hours
after the last measured epoch, with some periods exceeding two or even three days.
These spikes were primarily caused by infrastructure failures, such as server and network
outages (May 22, June 1 and June 20). As the employed Kalman filter approach introduces
dependencies between consecutive epochs, the latency only gradually decreases after such
events. Generally, the processing duration was low enough to fulfill the goal of five-day
latency for the derived flood indicators. During the test run only 6 comparatively short
data gaps occurred. This meant that over the 3.5 months 93% (98) of all solutions were
flagged ’A’ (significant GRACE contribution), 7 solutions were flagged ’B’ (prediction).
Quality category ’C’ (no GRACE information in the last 4 days) was never used.

The daily processing schedule remained unaltered throughout the service test run except
for a period after the pitch bias removal on March 29. During this period different
parameters for the K-band ranging systems such as bias, drift and antenna offset correc-
tions were tested to better account for the increased AOC magnitude and the resulting
horizontal striping pattern in the gravity field estimates. Co-estimating antenna offset
corrections showed promising results as the non-geophysical features decreased. Previous
investigations have however shown that a) the x-component of the AOC is estimated
systematically too short (Ellmer, 2018) and b) estimating new AOC values every day,
which would be necessary to fit into the Kalman processing scheme, exhibit an extremely
large scatter. Due to the large deviation of the estimates from historic values (cf. Chapter
5), it was decided to revert back to the original parametrization in order to preserve the
consistency of the time series.

Kinematic orbit quality was very good throughout the operational test run, even though
compared to the post-processing solutions, a few trade-offs had to be made. The CODE
final clocks feature a densification to a sampling of 5 seconds, while the rapid products
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(a) GRACE-A op. (b) GRACE-A final

(c) GRACE-B op. (d) GRACE-B final

Figure 4.14.: Daily RMS values of the difference between kinematic orbit positions and a dynamic orbit.
Large outliers (>20 cm) were removed and a 15 minute high-pass filter was applied.

only provide a clock estimate every 30 seconds. To avoid the interpolation of clocks,
only GNSS receiver observations which coincide with the CODE rapid clocks were
used. This effectively limited the sampling to 30 seconds, compared to 10 seconds in
the standard L1B processing, where the L1B data rate is the limiting factor. The lower
sampling rate has no impact on the gravity field recovery since there, the orbits are
decimated to 300 seconds. However, Zehentner (2017) has shown that the sampling rate
of the observations has an impact on the orbit quality. It is therefore very interesting
to compare the kinematic orbits computed during the operational test run with orbits
from a post-processing (final) solution. Figure 4.14 shows daily RMS values of differences
between kinematic and dynamic orbit positions for both operational and final orbits.
Before the RMS values were computed, epochs which deviate more than 20 cm (3D) from
the dynamic orbit were excluded. Furthermore, a high-pass filter with a cutoff frequency
of approximately 15 minutes was applied to accentuate the high-frequency noise in
the kinematic orbit positions. For the final orbit positions, both satellites behave nearly
identical which is consistent with the findings of Zehentner and Mayer-Gürr (2016). The
scatter throughout the operational test run period shows little variations except for a
few outliers in the cross-track component. In the operational solutions GRACE-A and
GRACE-B behave differently. While GRACE-A exhibits a similar noise level in both
operational and final solutions, the scatter in the GRACE-B orbits is slightly larger in the
operational data set. However, except for the cross-track components in GRACE-B, both
operational and final solutions are on the same quality level.
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After the conclusion of the operational test run, a reanalysis of the GRACE L1B Q/L
was conducted. The motivation behind this reprocessing campaign was to gauge how
the operational solutions perform compared to a tailored post-processing scheme. The
main improvement compared to the operational solutions was expected to be that the
varying instrument noise characteristics during the final GRACE mission phase can
treated much more rigorously in post-processing. This primarily concerns the removal
of the pitch bias on March 29, 2017 which drastically changed the K-band range rate
data (see also chapter 4). The stochastic property estimation for the observables relied
on comparatively long moving (14 - 30 days) data windows, during which stationarity
was assumed. This assumption was definitely violated by the change in pointing angle,
leading to a suboptimal covariance function estimate. Next to improved noise estimates,
also post-processing algorithms such as the Kalman smoother can be applied to the data
which should also increase the robustness of the daily solutions.

5.1. Tailored processing scheme

The reanalysis was conducted using the processing scheme of ITSG-Grace2016 (Ellmer,
2018; Klinger, 2018; Mayer-Gürr et al., 2016). The major difference compared to the
operational processing lies in the availability of non-conservative force models for ac-
celerometer pre-calibration (Klinger & Mayer-Gürr, 2016). Further, the knowledge of
sudden changes of instrument behavior during the test run period, allows for the rigorous
definition of data segments where stationary instrument noise can be assumed. For the
time span of the operation test run, from March 17, 2017 to June 29, 2017, 4 segments
with similar data characteristics could be identified. The major difference in data quality
and availability stem from the pitch bias removal on March 29, 2017 and the activation
of the accelerometer on GRACE-B on May 2, 2017. An overview on start and end dates,
duration and primary data characteristics can be found in table 5.1. Figure 5.1 shows
the estimated error spectra from the operational test run (light colors) compared to
single reestimates using all data in the individual segments. Overall, a good agreement
between operational and reanalysis can be observed. In segments 2 and 3 (Figures 5.1b
and 5.1b), a large amount of energy can be observed in the frequency band around
3.3 mHz. This frequency band is associated with the dominant frequency of the magnetic
torquer attitude control (Bandikova et al., 2012). The control circuit of the attitude control
maps into the K-band measurements through the antenna offset correction (AOC) as
discussed in chapter 4. The difference in this frequency band between operational and
reanalyzed data can be explained through the varying parametrization in the course of
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Table 5.1.: Segment of similar instrument noise characteristics during the operational NRT service test run.

Start End Duration [d] Description
2017-03-17 2017-03-28 12 Pointing angle ≈ 0 degrees,

accelerometer transplant
2017-03-29 2017-05-01 34 Pointing angle ≈ 1 degrees,

accelerometer transplant
2017-05-02 2017-05-22 21 Pointing angle ≈ 1 degrees,

GRACE-B accelerometer active
2017-05-23 2017-06-29 38 Pointing angle ≈ 1 degrees,

accelerometer transplant

(a) Segment 1 (b) Segment 2

(c) Segment 3 (d) Segment 4

Figure 5.1.: Comparison of operational PSD estimates (light colors) with single re-estimates (dark colors)
based on identical input data for each segment.
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Figure 5.2.: Comparison of range rate PSDs for estimated and fixed antenna offset corrections (AOC).

the operational test run. As already mentioned in Section 4.4, experiments with different
K-band parametrizations have been carried out after the pitch bias removal on March
29. In the course of these tests, the position of the K-band antenna center was also
co-estimated with the moving-monthly solutions used to derive the stochastic observa-
tion model (cf. Chapter 3). There, all three components x, y, z in the satellite reference
frame (SRF) of the antenna center were assumed to be unknown and set up as constant
biases over the segment-wise monthly solution. The spike in the operational PSDs can be
solely explained by these additional parameters. Figure 5.2 shows the range-rate PSD
for segment 2, with and without estimated antenna center. As can be seen, estimating
the antenna center position induces the aforementioned spike, the energy in the PSD
however slightly decreases in the frequency band from 5 mHz to 20 mHz. While this
can be seen as an improvement, the estimation of the AOC parameters is problematic.
Figure 5.3 shows daily and segment-wise AOC estimates relative to the L1B product for
the NRT time series. A large scatter of the estimates compared to historical data can be
observed. Throughout the mission duration the estimates of the x- and y-component lie
in the range of ±1 mm with extremely low temporal variability (Kvas, Behzadpour, et al.,
2019). This is in stark contrast to the estimates obtained for the period of operational test
run, where both the estimates and the scatter are on the centimeter level. Additionally,
extremely unrealistic values for the x-component are obtained. This systematically too
short AOC estimate is discussed in detail in Ellmer (2018). These findings support the
decision to not co-estimate the AOC during the operational service test run. Since the
Kalman filter constraint removes a large part of the horizontal striping pattern, this
was a reasonable trade-off. Figure 5.4 shows PSD estimates for each segment from data
which went through the operational processing chain (light colors) and PSD estimates
from reanalyzed data. As can be seen, for segments 1, 2, and 4 a good agreement is
found. The large discrepancy in segment 3 can be fully attributed to the use of GRACE-B
accelerometer measurement in the reanalysis as opposed to transplant data during the
operational test run. These estimated error spectra are the basis of the reanalysis time
series which represents the best daily gravity field estimates derived from the given
L1B Q/L data. Since these solutions are derived in post-processing, also smoothed state
estimates could be derived. Therefore not only forward, but also forward-backward
filtered solutions are available. A thorough evaluation of the operational time series, the
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Figure 5.3.: Daily and segment-wise AOC estimates for GRACE A (left panel) and GRACE B (right panel)
relative to L1B.

reanalysis, and ITSG-Grace2018 (Kvas, Behzadpour, et al., 2019; Mayer-Gürr et al., 2018),
a state of the art daily post-processed solution, will be given in the next section.

5.2. Evaluation of the operational NRT solutions

The purpose of this section is to evaluate how the operational NRT solutions compare
to a full post-processing chain. As reference serve the forward sweep of the reanalysis
data set and the daily solutions of ITSG-Grace2018 (ITSG2018) which are derived using
the least squares adjustment (2.44). For the operational and reanalysis solutions only the
forward sweep, that is, the Kalman filter output, is considered. These time series are
denoted forward-only (FO). While both the operational test run and the reanalysis are
based on the same input data, ITSG-Grace2018 uses the L1B RL03 data set which features
improvements in the attitude and K-band processing (JPL, 2018). Some background
models and model parameters differ between ITSG-Grace2018 and the other two datasets,
such as the definition of the mean pole (e.g., Wahr et al., 2015) and the ocean tide model.
Given the setup of this comparison, which focuses on land areas and is based on a
rather short time series, these differences play a minor role. Next to the differences in
the background models, also conceptual differences within the processing chain, that is,
smoothing compared to filtering, exist. As shown in Section 2.3.2, a smoothed solution
conserves the phase of the input while the filter introduces a phase shift. Also, the noise
level of the filtered and smoothed solutions are likely to differ.
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(a) Segment 1 (b) Segment 2

(c) Segment 3 (d) Segment 4

Figure 5.4.: Comparison of PSD estimates (light colors) based on operational pre-processing data with PSD
estimates from reanalyzed data.
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An initial qualitative comparison of the three time series is conducted by performing
principal component analysis (PCA). First, the potential coefficients time series are
propagated to space domain to obtain point-wise EWH time series. For reasons elaborated
in section 2.4, a Reuter grid was chosen as point distribution. These time series are then
interpreted as columns of a matrix which constitutes the input for the PCA. Since PCA
is performed independently for each of the three data sets, a few considerations have
to be made beforehand. First of all, for each of the data sets a different set of empirical
orthogonal functions (EOF) and principal component (PC) time series is obtained. It is
expected that these quantities will not differ too much since all time series should pick
up the same geophysical signals. As the daily gravity field time series are implicitly
filtered in space and time, these signals should dominate the solutions. Any deviations
or anomalies are therefore expected to arise from processing errors or systematic effects.
In Figure 5.5, the first 7 EOFs of the three time series are shown. As can be seen, EOF1 is
nearly identical in all three data sets. For the following EOFs, a decrease in similarity can
be observed. Operational and reanalysis show a rather good agreement up to EOF5, that
is, the spatial patterns in major river basins are similar. Figure 5.6 shows the temporal
evolution of the first 10 PCs. A rather good agreement of all solutions can be observed up
to PC5, which constitutes 91% of the signal. For higher PCs, the similarity drops, which
makes sense as also the corresponding EOFs differ. A striking feature is the sudden jump
on May 2 in the reanalysis solution. This is a consequence of the use of the reactivated
accelerometer measurement of GRACE-B compared to the transplant data (cf. also Figure
5.4), Due to the increase in measurement accuracy and the subsequent higher relative
weight compared to the predicted state, the GRACE innovation results in a comparatively
abrupt state change. The warmup phase of the filter during the first days after March 17

is also clearly visible. However, overall a general agreement between all three solutions
can be observed. This is confirmed when looking at snapshots from each of the 4 defined
segments, as shown in Figure 5.7. There, the spatial patterns on the continents are very
consistent, even though different input data and processing chains are applied to the
data.

A more quantitative analysis is performed by examining how much signal of the reanaly-
sis and post-processing solution is explained by the operational Kalman filter estimates.
This explained variance (EV) is defined as

EV = 1− ∑i(yi − xi)
2

∑i y2
i

. (5.1)

In (5.1), the sample standard deviation of the difference between the reference time series
yi and the time series to be evaluated xi is divided by the sample standard deviation
of the reference. It is implied that all time series are centered, that is, the mean was
estimated and reduced beforehand. For this comparison xi, the operational time series, is
fixed while the reference changes. In order to see the effect of the smoothing process, also
the Kalman smoothed (forward-backward, FB) filtered reanalysis solution is considered.
Figure 5.8 shows the explained variance of the reanalysis forward only and forward-
backward solutions as well as the daily solutions of ITSG-Grace2018. A common feature
of all solutions is that areas with low expected signal, for example, the Sahara desert,
show zero to negative explained variance. This can be explained by the fact that these
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Figure 5.5.: Empirical orthogonal functions of operational, reanalysis, and a post-processing solutions.
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Figure 5.6.: Principal component time series of operational, reanalysis, and a post-processing solutions.
Please note the different scale for PC1.
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Figure 5.7.: Snapshots of operational, reanalysis, and a post-processing solutions for each segment.
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(a) reanalysis (FO) (b) reanalysis (FB)

(c) ITSG-Grace2018

Figure 5.8.: Explained variance of operational (FO) with respect to the reanalysis forward-only and forward-
backward solutions and the daily solutions of ITSG-Grace2018.

regions are dominated by observation noise. In regions with strong hydrological signals,
for example, Southeast Asia, the Amazon basin or sub-Saharan Africa the solutions tend
to agree very well. In Figure 5.9, the distribution of explained variance values of points
within major river basins is shown. For all solutions, 80% of all points have a positive
explained variance value. The operational time series compares very similar to both
reanalysis time series, which was already evident for the spatial depiction in Figure
5.8. It is however surprising that the operational solutions also compare very well to
ITSG-Grace2018, since the solutions differ in both the used GRACE observations (L1B
RL02 Q/L compared to L1B RL03) as well as in the applied processing scheme.

Overall, both qualitative and quantitative analysis show that the operational solutions

Figure 5.9.: Distribution of explained variance values of points within major river basins.
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are comparable not only to the reanalysis but also a highly sophisticated post-processing
solution. This implies that the overall solution quality was successfully transferred from
post-processing to NRT using the approach presented here.

89





6. Conclusions and Outlook

In this thesis, a method for the determination of daily gravity field snapshots in near
real-time (NRT) was developed. The processing scheme takes the already proven Kalman
smoother post-processing approach by Kurtenbach et al. (2012) and transfers the method-
ology to NRT. This required some major adaptions of key points in the computation
chain, due to the different structure of the input data, latency requirements, and lack of
information from the future.

The first part of the thesis deals with the generalization of the Kalman smoother approach
to vector autoregressive models of arbitrary orders was derived. While an increased
model order allows for a better description of the spatio-temporal correlations introduced
as process dynamic, vastly more data is required for a stable estimate of the model
coefficients. To improve the quality of the derived constraints, geophysically motivated
prior information was introduced into the derivation of the used autoregressive models,
which led to a substantial improvement of both the stability of the model coefficients
and the gravity field solution quality. Furthermore, it was shown that a constrained
least squares adjustment can be formulated which yields the same state estimates as the
smoothing algorithm. This enables the use of highly efficient and parallelized numerical
linear algebra routines.

In the second part of this thesis the already well established Kalman smoother post-
processing approach was adapted for near real-time applications. This required some
major modifications of key points in the computation chain, due to the different structure
of the input data, latency requirements, and lack of information from the future. The
processing chain presented in this thesis is based on integrated variational equations,
with the gravity field being represented as a series of spherical harmonic coefficients.
The observational model makes use of intersatellite range rates and kinematic orbit
positions. However, since the input are daily systems of normal equations, other gravity
field recovery approaches or observables can be incorporated very easily.

The developed approach was tested using quick-look data from the GRACE mission
within the framework of the EGSIEM NRT Service. In the period between March 17 2017

and June 30 2017, 105 daily gravity field solutions were computed in a fully automated
manner. A key lesson learned during the operational test run was that the stationarity
requirement for the instrument noise over at least a few days has to be critically reviewed
for future applications. The operational test run revealed that the method used to
estimate the stochastic observation model reacts suboptimally to sudden changes in the
data characteristics. While the required stationarity assumption of the process is mostly
justified for the majority of the GRACE observation period, the degrading satellite health
in the final mission phase proved to be very challenging for the method. To get reliable
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instrument noise estimates, a longer time span of measurements has to be accumulated.
This is no issue for homogeneous data, however abrupt changes cannot be fully captured.
During the operational test run the removal of the pitch bias between the satellites caused
such an unforeseen change in data characteristics. The requirement to accumulate a longer
batch of data meant that a proper estimate of the sensor error covariance function was
only possible after a few days. For the transition period, only a badly fitting noise model
was therefore available. Nevertheless, for periods where the stationarity assumption
did hold, the operational estimates were nearly identical to tailored post-processing
solutions. From an operational perspective, the test run was also a success. Except for
a few epochs, a latency of less than 20 hours was achieved. The developed automation
software was able to produce daily gravity field estimates autonomously. Furthermore,
the implemented measures to ensure traceability, namely version control of the software
and its configuration, storing intermediate results, and logging allowed to fully reproduce
the time series. This was extremely useful for comparison with a reanalyzed daily gravity
field time series, as the cause of occurred anomalies could be identified more easily.

In summary, it was shown that it is feasible to transfer post-processing methods for the
determination of daily gravity field solutions to NRT. Despite the harsh conditions during
the last months of the GRACE mission, a time series with reasonable quality could be
computed. A reanalysis of the input data revealed that the operational solutions could
indeed compete with a tailored post-processing scheme. With the launch of GRACE-
FO, it will be possible to reactivate operational processing of NRT solutions with all
lessons learned during the operational test run. Given the unique feature of satellite
gravimetry compared to other remote sensing techniques, that is, the sensitivity to
the whole water column including ground water, new complementary information for
hydrological applications can be obtained. This in turn allows for a comprehensive
monitoring of hydrological extreme events and can potentially contribute to forecasting
systems.
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Appendix A.

Matrix inversion identities

In this chapter matrix identities for the inverse of a sum of matrices are presented. There
derivation presented here is based on the LU and UL factorization of a 2x2 block matrix.
In Henderson and Searle (1981), a comprehensive review of the origins and applications
of the derived identities, as well as alternative derivations can be found.

If the first diagonal block of the 2x2 block matrix is invertible, then the decomposition[
A B
C D

]
=

[
I

L21 I

] [
U11 U12

U22

]
=

[
U11 U12

L21U11 L21U12 + U22

]
(A.1)

exists (e.g., Higham, 2002). The values of the individual blocks, with U11 = A, U12 = B,
U22 = D− CA−1B, and L21 = CA−1 can then be easily computed. The inverse of (A.1)
is given by[

A B
C D

]−1

=

[
U11 U12

U22

]−1 [ I
L21 I

]−1

. (A.2)

To determine the block inverse of the upper triangular matrix the system of equations[
U11 U12

U22

] [
X11 X12
X21 X22

]
=

[
U11X11 + U12X21 U11X12 + U12X22

U22X21 U22X22

]
=

[
I

I

]
(A.3)

can be considered. From there it follows that[
U11 U12

U22

]−1

=

[
U−1

11 −U−1
11 U12U−1

22
U−1

22

]
. (A.4)

Equivalently, the inverse of the lower triangular matrix is given by[
I

L21 I

]−1

=

[
I
−L21 I

]
, (A.5)

which can be easily verified. Substituting both explicit inverses in (A.2) together with the
expressions for the matrix blocks derived from (A.1) leads to[

A B
C D

]−1

=

[
A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

]
. (A.6)
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Appendix A. Matrix inversion identities

Similarly to the LU decomposition, a 2x2 block matrix can also be composed into the
product of an upper unit triangular matrix and a lower triangular matrix, with[

A B
C D

]
=

[
I U12

I

] [
L11
L21 L22

]
=

[
L11 + U12L22 U12L22

L21 L22

]
, (A.7)

if the last diagonal block D is invertible. Following the same procedure as for the LU
decomposition, the inverse of the block matrix is found with[

A B
C D

]−1

=

[
(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1 + D−1C(A− BD−1C)−1BD−1

]
. (A.8)

By relating (A.6) and (A.8), the two identities

(A− BD−1C)−1 = A−1 + A−1B(D− CA−1B)−1CA−1 (A.9)

and

−(A− BD−1C)−1BD−1 = −A−1B(D− CA−1B)−1 (A.10)

are obtained. Substituting D = −E−1 yields a cleaner form of (A.9) and (A.10), namely

(A + BEC)−1 = A−1 −A−1B(E−1 + CA−1B)−1CA−1 (A.11)

and

(A + BEC)−1BE = A−1B(E−1 + CA−1B)−1, (A.12)

which is the form derived by Woodbury (1950).
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Appendix B.

Inverse of a block banded matrix

This chapter summarizes the findings of Asif and Moura (2005), who developed a
computationally efficient inversion algorithm for positive definite, block banded matrices.
A key feature of their approach is that the Cholesky factor W of is used, rather than the
original matrix N = WTW. Since the system of normal equations (2.44) will typically be
solved using forward and back substitution, W is already available, thus no additional
computations have to be performed. In general, W will be computed in-place to avoid
the use of additional memory. Furthermore, W shares the same sparsity structure as the
upper triangle of N. Thus, there are at most L non-zero superdiagonal blocks with L
being the bandwidth of N. The idea behind the algorithm relies on the same principles
as the derivation of the matrix identities in the previous chapters. Namely, the matrices
are partitioned into blocks and then a recursion scheme is determined. In the following
computation scheme, two matrices are involved. The block partitioned Cholesky factor W,
with consisting of the blocks Wij, and the covariance matrix of the estimated parameters
Σ = N−1 consisting of the blocks Σi,j, with i, j ∈ {1, . . . , J}

The algorithm steps through the matrix backwards, starting with the last block row J.
First, the min(L, J − i) off diagonal blocks of the current row i are updated with

Σij = −
min(J,i+L)

∑
k=i+1

(W−1
ii Wik)Σkj. (B.1)

Then, the main diagonal of the matrix is computed through

Σii = (WT
ii Wii)

−1 −
min(J,i+L)

∑
k=i+1

Σik(W−1
ii Wik)

T. (B.2)

The recursion is initialized with

ΣJ J = (WT
JJWJ J)

−1. (B.3)
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Klinger, B., & Mayer-Gürr, T. (2016). The role of accelerometer data calibration within
GRACE gravity field recovery: Results from ITSG-Grace2016. Advances in Space
Research, 58(9), 1597-1609. doi: 10.1016/j.asr.2016.08.007

Koch, K.-R. (2004). Parameterschätzung und hypothesentests in linearen modellen. Retrieved
from http://www.geod.uni-bonn.de

Koch, K.-R., & Kusche, J. (2002, may). Regularization of geopotential determination
from satellite data by variance components. Journal of Geodesy, 76(5), 259–268. doi:
10.1007/s00190-002-0245-x

Kurtenbach, E. (2011). Entwicklung eines kalman-filters zur bestimmung kurzzeitiger variatio-
nen des erdschwerefeldes aus daten der satellitenmission GRACE (Dissertation). Retrieved
from http://nbn-resolving.de/urn:nbn:de:hbz:5N-25739
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T. (2019). Itsg-grace2018: Overview and evaluation of a new grace-only gravity field
time series. Journal of Geophysical Research: Solid Earth. doi: 10.1029/2019JB017415

Kvas, A., Brockmann, J. M., Krauss, S., Gruber, T., Schubert, T., Meyer, U., . . . Pail, R.
(2019). The combined satellite-only gravity field model GOCO06s (in preparation).
Journal of Geodesy.

Loomis, B. D., Nerem, R. S., & Luthcke, S. B. (2012, may). Simulation study of a
follow-on gravity mission to GRACE. Journal of Geodesy, 86(5), 319–335. doi:

102

http://www.geod.uni-bonn.de
http://nbn-resolving.de/urn:nbn:de:hbz:5N-25739


References

10.1007/s00190-011-0521-8
Lütkepohl, H. (2005). New introduction to multiple time series analysis (Vol. 1). doi:

10.1007/978-3-540-27752-1
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Mayer-Gürr, T., & GOCO Team. (2015). The combined satellite gravity field model GOCO05s.
Vienna. (Presented at the EGU General Assembly 2015, Abstract EGU2015-12364)
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