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Abstract 

 

Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and 

semiconductor substrates have been used successfully for decades for tailoring the properties of 

these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based 

systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into 

the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole 

monolayers and five reference non-substituted SAMs. We systematically varied chain lengths, 

ester group orientations, and number of ester groups contained in the chain. To understand the 

structural and electronic properties of the SAMs, we employ a variety of complementary 

experimental techniques, namely infrared reflection absorption spectroscopy (IRS), high-

resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), 

atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are 

complemented with state-of-the-art electronic band-structure calculations. We find intriguing 

electronic properties like large and variable SAM-induced work function modifications and dipole 

induced shifts of the electrostatic potential within the layers. These observations are analyzed in 

detail by joining the results of the different experimental techniques with the atomistic insight 

provided by the quantum-mechanical simulations. 
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1.  Introduction 

Self-assembled monolayers (SAMs) have become an important part of modern nanotechnology 

and continue to open opportunities to redefine and to adjust a wide range of physical and chemical 

properties of solid substrates.1-3 In particular, the interfacial electronic properties of metal and 

semiconductor surfaces can be tailored to significant advantage for device applications such as 

organic solar cells, light-emitting diodes, and organic thin film transistors.4-10 The typically 

employed strategy involves self-assembly of suitably chosen molecules bearing electric dipolar 

functional groups on an electrode surface. The resulting monolayer modifies the electrode work 

function and the alignment between its Fermi energy and the electronic levels of the active organic 

layer. In this way, significant improvements in charge injection during device operation can be 

achieved.4,8,9,11,12 In addition to work function modifications, in the case of metal electrodes, SAMs 

on semiconductor surfaces can also modulate electric transport of the sub-surface channel via 

introduction of a local electric field or new surface states.13-16 This phenomenon is now utilized in 

sensor technology and field-effect transistors.13,17-19  

When employing SAMs for tuning work functions, a functional group with an electric dipole is 

usually attached to the molecular backbone as the terminal moiety.4,20-25 The surface potential and 

work function () shift correlate well with the polarity of this moiety, following simple trends and 

providing a practical recipe for work function engineering. Additional tuning strategies such as 

varying the dipole associated with the bonding to the substrate by modifying the docking group or 

altering the molecular backbone26 are less frequently applied.  

Adjusting the terminal polar group, however, has essential drawbacks since it not only changes the 

work function of the SAM-covered substrate, but simultaneously can modify associated chemical 

and physical properties of the SAM-ambient interface. This effect can, for example, significantly 

change the growth mode of a subsequently deposited semiconductor film, with significant 

implications for the performance of the entire device.11 In addition, terminal groups of the SAM 

can be modified by the semiconductor growing on them, especially if these groups are reactive. 

This can then result in a change of their polarity and, consequently, diminish their positive effect. 

An alternative strategy to avoid the above drawbacks is the embedding of a polar group into the 

molecular backbone.9,27-29 Of particular importance in the context of the present study is the 

example of thioaromatic SAMs with an embedded pyrimidine moiety.28,29 Depending on the 
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orientation of this group in the backbone, the work function of the system can be changed by either 

+0.57 or −0.42 eV relative to a reference oligophenylene SAM. This variation is achieved without 

changing the chemistry for docking to the substrate or the chemical composition of the SAM-

ambient interface.28 Tuning the work function is, however, not the only effect of the embedded 

pyrimidine group in these systems, since it also induces a potential discontinuity inside the 

monolayer. This effect significantly changes the transport properties of the SAM, shifting the 

transition voltage and resulting in current rectification.30,31 The potential discontinuity also shifts 

the core-level energies in the regions above and below the embedded dipoles relative to each other. 

These shifts can be observed directly by X-ray photoelectron spectroscopy (XPS), reflected as 

different binding energies (BEs) for the photoemission peaks associated with both regions. This 

observation, along with others,32-35 lead us to question the generally accepted chemical shift model 

that assumes that shifts in the core-level BEs in monomolecular films are solely a consequence of 

different chemical environments of the respective atoms,36 with the energy referenced to the Fermi 

level of the substrate. In contrast, it suggests that electrostatic shifts not related to the immediate 

chemical environment of an atom are similarly important. Generally, such electrostatic shifts are 

superimposed on the chemical ones and can under certain circumstances even play a dominant 

role.37 

The respective electrostatic effects in photoemission associated with embedded dipoles have also 

previously been observed for SAMs of mid-chain ester functionalized alkanethiols (ATs) on 

Au(111), and were originally explained within a tentative, phenomenological model combined 

with density functional theory (DFT) calculations of isolated molecules to determine the direction 

and magnitude of the dipole of the ester group.38 This model was based on structural data obtained 

by a careful characterization of the SAMs by quantitative infrared reflection absorption 

spectroscopy (IRS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and 

ancillary ellipsometry. These measurements allowed the establishment of the structure of the 

molecular chain and the ester group orientations, and yielded information on the film thickness.38 

Given the success of the above study and considering the recent progress in theory regarding the 

understanding of electrostatic properties of SAMs,28,29,37,39,40 we have decided to revisit mid-chain 

ester functionalized ATs on Au(111). The first step along these lines was made by us recently, viz. 

a detailed theoretical analysis of the C 1s XPS spectra of a representative mid-chain ester 
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functionalized monolayer.37 As a second step, in the present study, we have further expanded both 

the set of dipole-containing SAM precursors and the types of experiments used to characterize the 

electrostatic behavior of the SAMs. Most importantly, we performed work function measurements 

in addition to studying the core-level excitations. The former were done employing two different 

techniques, namely by determining the secondary electron cutoff in ultraviolet photoelectron 

spectroscopy (UPS) experiments and by Kelvin probe measurements using non-contact atomic 

force microscopy (KP-AFM). To provide further insight, the experimental studies were combined 

with DFT-based simulations of extended metal-SAM interfaces. These simulations go far beyond 

a simple phenomenological model developed by us in ref 38. 

 

2.  Experimental methods 

2.1. Studied systems. The studied systems are mid-chain ester functionalized ATs and non-

substituted ATs serving as references. The non-substituted ATs will be designated as Cn, where n 

denotes the number of CHx moieties in the alkyl chain. To designate the mid-chain ester 

functionalized ATs, we use the nomenclature CmECk, where m and k denote the numbers of CHx 

moieties below and above the ester group. The −(CH2)m− segment closest to the substrate will be 

referred to as the bottom segment while the one at the ambient side is considered the top segment. 

One system containing two ester groups is designated C10EC4EC5 and contains 21 carbon atoms 

in total with both ester groups aligned in the same direction. 

The orientation of the embedded ester group in each system studied has the ester carbonyl group 

closest to the substrate and the ether oxygen directly above it, with the sole exception of the 

C10E*C10 compound in which the orientation of the ester group has been reversed. As 

prototypical examples, the structures of C10EC10 and C10E*C10 are shown in Figure 1a, where, 

respectively, they are characterized by a downward (-z) and upward (+z) tilting of the C=O part of 

the −COO− unit, which in turn imparts a corresponding downward and upward tilt to the negatively 

charged end of the dipole. The compounds studied and the abbreviations for their SAMs are listed 

in Table 1. Note that certain properties of the monolayers of C5EC10, C10EC5, C10EC10, and 

C15EC5 have already been described in our previous publication38 and the SAM of C10EC5 

served as a model system to describe the photoemission from the mid-chain functionalized ATs,37 
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whereas SAMs of C10EC15, C15EC10, C20EC5, C10E*C10, and C10EC4EC5 are now discussed 

for the first time.   

 

Figure 1. a) Schematic structures of the embedded ester ATs, C10EC10 and C10E*C10 attached 

to a gold surface in all-trans configuration (yellow: sulfur, gray: carbon, red: oxygen, white: 

hydrogen). The orientations of the dipole moments are also indicated. b) Definition of the chain 

tilt and twist angles (note that the carbon backbones and ester groups are assumed to be initially 

aligned in the xz plane). 

 

2.2. Sample Preparations. Non-substituted ATs were purchased from Sigma-Aldrich and used as 

received. General details for the synthesis of the mid-chain ester molecules have been described 

previously.38 In brief, the procedures involved a simple esterification of the starting -

mercaptocarboxylic acid (HSCm-CO2H) with the selected alkanol (Ck-OH). In the case of the 

inverse ester configuration, the -mercaptoalkanol (HSC10-OH) was used to esterify the alkanoic 

acid (C10CO2H) and, in the case of the diester, the starting -mercaptocarboxylic acid was first 

esterified with the selected -hydroxy acid and then the hydroxyl group of the resulting molecule 

was esterified with the selected alkanoic acid. Characterization of the molecules was performed 

using standard methods of infrared spectroscopy and nuclear magnetic resonance.   

(b)

(a) C10EC10 C10E*C10
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For formation of the SAMs, two kinds of substrates were used, viz., vacuum-deposited Au on mica 

substrates (Agilent/Molecular imaging, Tempe, AZ) and thermally evaporated Au/Cr on native 

oxide covered Si wafers (200 nm/10 nm thickness of the metal layers, respectively, ~1-1.5 nm rms 

surface roughness of the final Au film). The former substrates were hydrogen flame annealed 

before use while the latter ones were used directly after removal from the thermal evaporator. We 

assume that the properties of the SAMs on these two types of substrates were essentially identical, 

as e.g. evidenced by the similar values of the work function derived from the UPS and KP-AFM 

experiments performed on the Au/Cr/Si and Au/mica supported samples, respectively (see below). 

The substrates were immersed into a 0.1 mM thiol solution in absolute ethanol (Pharmco) for 24 

h. Upon removal from solution, the surface was thoroughly rinsed with dichloromethane, acetone, 

and ethanol, and then dried under a nitrogen flow.   

2.3. Sample Characterization: General Comments. The mid-chain functionalized and reference 

AT SAMs were characterized using IRS, high-resolution XPS (HRXPS), UPS, AFM, and KP-

AFM. All experiments were performed at room temperature. The HRXPS, UPS, and NC-AFM 

measurements were conducted under ultra-high vacuum (UHV) conditions (base pressure < 7  

10-8 Pa). The spectroscopic and microscopic experiments were performed on the Au/Cr/Si and 

Au/mica supported samples, respectively. The IRS, AFM, and KP-AFM experiments were 

performed on freshly prepared samples. For transport to the synchrotron for the HRXPS and UPS 

data collection, the freshly made samples were immediately put into clean fluoroware wafer 

containers and packed in plastic bags sealed under an argon purge for transport. This procedure 

has proved very effective for maintaining sample integrity. The experiments were complemented 

by theoretical simulations. 

2.4.  Infrared Reflection Spectroscopy and Associated Spectral Simulations. Details of the IR 

instrumentation and spectroscopy procedures have been described earlier.38 In brief, reflection 

spectra were obtained using a customized Fourier transform infrared spectrometer (BioRad FTS-

7000, Digilab, Randolph, MA) modified to accommodate the sample and detector optics housed 

in an external N2 purge box and a custom made optical train to produce a ±2º divergent beam at 

the sample. The signal was collected by a liquid N2 cooled MCT detector. Spectra were obtained 

using p-polarized light at an 86o incidence angle with 2 cm-1 resolution and averaged over 800 

scans to improve the signal-to-noise ratio.   
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Details of the spectral simulation procedures have been previously presented38 and the procedures 

in the present case follow the previous work in exact detail. The simulations utilize a combination 

of experimental and theoretical data. In brief, isotropic optical function spectra were obtained from 

transmission spectra of pressed KBr pellets containing precisely known concentrations of pure, 

polycrystalline thiols. Vibrational assignments and the determination of transition moment 

directions were based on DFT calculated spectra for isolated molecules fixed in a planar, all-trans 

conformation. The isotropic optical function spectra were converted to anisotropic tensor spectra 

by use of the transition moment directions in molecular coordinates and the tensor spectra were 

then used to simulate spectra of an assembly of fully extended oriented molecules at selected 

orientations on the Au surface by using previously reported computational methods based on the 

electromagnetic theory of plane waves interacting with planar surfaces.41   

2.5. Photoemission Experiments. HRXPS measurements were performed at the bending magnet 

beamline D1011 of the MAX IV synchrotron radiation facility in Lund, Sweden, using a 

SCIENTA SES200 electron energy analyzer. The spectra were recorded in the Au 4f, S 2p, C 1s, 

and O 1s regions with a special emphasis on the C 1s range to monitor the electrostatic effects. All 

spectra were acquired in normal emission geometry at photon energies (PEs) of either 350 or 580 

eV. The binding energy (BE) scale of each spectrum was individually calibrated by setting the BE 

values relative to the Au 4f7/2 photoemission peak of the underlying Au substrate at 84.0 eV.42 The 

energy resolution was 70-100 meV, which is noticeably smaller than the full width at half 

maximum (fwhm) of the spectral features relevant in this study. The spectra were fitted by 

symmetric Voigt functions and either Shirley-type or linear backgrounds. For all samples, the same 

fit parameters were used for identical spectral regions for a given photon energy. The 

measurements for most samples were repeated several times, with good agreement between the 

spectra. 

2.6. UPS Experiments. Work functions of the samples were determined by measuring the 

secondary electron cutoff of the UPS spectra following a standard approach.32 The experiments 

were performed at the Max IV facility, using the same beamline and experimental station as in the 

case of the HRXPS measurements. The photon energy was set to 50 eV. The samples were biased 

by −25.6 V relative to ground so that the low energy portion of the spectrum could be observed. 

The positions of the cutoffs for the samples were referenced to those of C16/Au and freshly 
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sputtered gold. The measurements for most samples were repeated several times, with good 

agreement between the values. In such cases, the average values are reported. 

2.7.  AFM Measurements: Lateral Force Imaging. Molecular lattice images were taken in a 

home-built UHV chamber (a base pressure of 10-10 Torr) outfitted with a RHK 350 scan head and 

an RHK SPM 100 electronics system (RHK technologies, Troy, MI) by  contact mode AFM with 

lateral force imaging. The imaging was performed with force modulation probes (PPP-FMR, 

Nanosensors, Switzerland; cantilever force constant ~ 2.8 N/m). Typical images were obtained at 

~ 5 nN normal force (including the capillary force between the tip and the sample) at scan rates 

from 50 to 200 nm·s−1. Due to the stick-slip friction characteristics, lateral force images can display 

atomic features that are not necessarily shown in the topography. 

2.8.  Surface Potential (Kelvin Probe) Measurements. This technique provides a powerful, non-

invasive way to obtain spatial surface information complementary to UPS work function data.22,43 

Experiments were conducted in a Jeol JSPM-4500A AFM system equipped with SPM 100 

electronics and a PLL Pro universal AFM controller (RHK technologies, Troy, MI). Details of the 

experimental setup, associated parameters and equations are given in the Supporting Information. 

2.9.  Electronic Band-Structure Calculations. To gain insight into the electronic structure of the 

systems of interest, we performed slab type DFT calculations using the VASP44-47 code (Vienna 

Ab Initio Simulation Package, version 5.3.2). To arrive at the minimum energy configuration we 

employed a pre-optimization step using molecular dynamics (MD) simulations with the 

LAMMPS48 program package. This was done to avoid a bias regarding the specific orientations of 

the molecules within the unit cell, bearing in mind the considerable number of degrees of freedom 

owing to the flexibility of the molecular chains. Further details on the MD runs can be found in 

the Supporting Information. For the DFT calculations, we chose the PBE exchange-correlation 

functional49 including van-der Waals interactions via the PBE+vdWSurf method50 in the 

implementation of Al-Saidi et al.51 The projector-augmented wave (PAW)52,53 formalism was used 

to describe core-valence interactions. A plane wave basis set with a cutoff energy of 400 eV and 

661 Monkhorst-Pack54 k-point grid were employed in all calculations. For geometry 

optimizations, we combined VASP with the GADGET55 tool.  

The studied systems were modelled in a (2√33)rect surface unit cell containing four molecules 

consistent with literature reports on alkyl thiolates on gold substrates.56-58 We chose this system 
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set-up over the also reported (√3√3)R30° surface unit cell containing only one molecule to allow 

for a possible herringbone arrangement of the molecules (which was, in fact then also obtained in 

all our geometry optimizations). Structures consistent with the choice of the unit cell have been 

observed in the AFM experiments (see below). The gold substrate was modeled using five layers, 

of which the top two were kept mobile during the geometry optimization. To electrostatically and 

quantum-mechanically decouple periodic replicas of the slab, a self-consistent dipole correction 

in the z-direction was used59 combined with a vacuum gap of 25-30 Å between the slabs.  

Core-level energies were computed following the initial state approach,60 which is most 

appropriate for the present systems, as argued in ref 37. Screening by the metal was accounted for 

by an image charge model. For weighing the contributions of core-level excitations from different 

carbon atoms accounting for the finite escape depth of the photoelectrons, an exponential damping 

of the signal was applied.61 Further details on the quantum-mechanical simulations and the 

approach for modelling the HRXPS experiments are contained in the Supporting Information and 

in ref 37. 

 

3.  Results  

3.1.  Structure of the mid-ester SAMs 

3.1.1.  Infrared Vibrational Spectroscopy  

The IR spectra of the C5EC10, C10EC5, C10EC10, and C15EC5 SAMs have already been 

presented and analyzed in detail in ref 38, along with the spectra of their partly deuterated 

analogues. In that study the orientations of the alkyl chain segments and the embedded ester moiety 

were deduced from the best fits of spectral simulations to experimental IRS data as well as from 

the analysis of NEXAFS spectra, with the isotope substitutions in the IRS case to distinguish 

between the spectral signatures of the top and bottom segments.38 The results of both procedures 

agreed within experimental error to give an overall average alkyl chain tilt from the surface normal 

of 31 (4) and a chain twist around the long axis of 60(5)° (for a definition of those angles see 

Figure 1b). Note that the above values, which are very similar to those for the Cn SAMs on 

Au(111), are more descriptive of the bottom −(CH2)− segments which span between the substrate 

and the ester group. These segments exhibit high conformational ordering, which, within 

experimental error, is identical to that reported previously for the analogous alkyl chains in Cn 
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SAMs on Au(111).38 In contrast, the top segments of the mid-ester SAMs are somewhat more 

conformationally disordered,38 though they remain generally aligned in an extended, all-trans form 

with some gauche defects. The alignment of the top segment is also further perturbed by the 

presence of the ester group itself which can add an additional negative or positive tilt of ~9° to the 

top chain depending on the orientation of the ester group (Figure 1).38 In addition, the data in ref 

38 suggest that the COO group is roughly coplanar with the C−C−C plane of the bottom and top 

−(CH2)− segments (notwithstanding a certain degree of conformational disorder for the top 

segment).    

In the present study, similar IR data were obtained for the C10EC15, C15EC10, C20EC5, 

C10EC4EC5, and C10E*C10, monolayers. The spectra of the first four SAMs, which are 

characterized by a downward orientation of the negative end of the embedded dipole (see Figure 

1), are presented in Figure 2, along with the spectra of the previously studied monolayers, all of 

which have similar orientation of the embedded dipole (C5EC10, C10EC5, C10EC10, and 

C15EC5)38. The spectral shapes as well as peak intensities and positions for the new and previously 

studied SAMs closely match each other in both the low and high frequency regions of the spectra. 

This result indicates that the main structural aspects determined in ref 38 for the orientation and 

conformational ordering of the previously studied SAMs are also applicable to the new systems. 

For this reason, detailed spectral simulations were not performed for these monolayers.   

In particular, note that in the high frequency C−H stretching region (see Figures 2b and 2d), which 

is sensitive to the alkyl chain conformations and tilt angles, the similarity of the general peak 

envelope, relative intensity patterns, and the peak positions establish the close similarity of the 

eight SAM structures. As expected, the absolute intensities of the peaks for systems with a larger 

number of −CH2− groups are higher.    
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Figure 2. Overlaid IR spectra of the ester SAMs with the downward direction of the negative end 

of the dipole of the embedded ester group in the low (a and c) and high (b and d) frequency regions, 

including the data for the new SAMs (a and b) and the monolayers from the previous study (c and 

d).   

The low-frequency region (see Figures 2a and 2c) is more complicated due to the appearance of 

regularly spaced sharp peaks between ~1200 and 1400 cm-1, which are assigned to the CH2 twisting 

and wagging mode progression bands. These peaks are generally strongest for all-trans 

conformation segments when these segments are electronically coupled to a polar functional group, 

such as an ester. Consequently, in the given case, these progression bands dominantly arise from 

the bottom segments, which are more ordered than the top ones and have a better electronic 

coupling to the ester moiety.38 The number of peaks in a progression is a direct function of the 

number of connected –(CH2)– units in a segment so one cannot directly overlay the progression 

mode peak patterns for ester SAMs with different bottom segment lengths. Nevertheless, the 

overall spectral envelopes across the wavenumber scale are very similar for both already studied 

and newly discussed ester SAMs, particularly for the C–O and C=O stretching mode peaks (~1175 

and ~1740 cm-1, respectively), which further corroborates that the structures of the present SAMs 

are essentially equivalent to those in the previous study. In this regard note that the C10EC4EC5 
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diester with two ester units has nearly double size intensities for the C–O and C=O stretching 

modes, as expected. Further, note that the near superposition of the C=O stretching mode peaks 

for all the single ester SAMs indicates that the C=O moieties have very similar orientations relative 

to the substrate surface. 
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Figure 3.  Comparison of the high frequency region IR spectra for the C16, C10E*C10 and the 

C10EC10 ester SAMs. A vertical gray dashed line is drawn through the peaks of the antisymmetric 

CH stretching mode to illustrate the close positions of the peak frequencies.  

 

In the case of the C10E*C10 reverse ester SAM with the inverted orientation of the embedded 

ester group (an upward orientation of the negative end of the dipole; see Figure 1), further analysis 

is required. A direct comparison of the high-frequency C−H stretching region spectrum with those 

of the analogous C10EC10 SAM  from our previous study and a standard C16 SAM, are presented 

in Figure 3. The close correspondence of the peak frequency and intensity patterns establishes that 

the general conformational ordering and tilt angles of the alkyl chains are quite similar. In 

particular, note that the peak position of the CH antisymmetric (d−) mode at ~2918 cm-1, which is 

highly sensitive to alkyl chain conformational ordering, is virtually identical for all three SAMs 

(see dashed line in the figure). From this we conclude that the inverted orientation of the embedded 
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ester group does not have any significant effect on the overall alkyl chain orientation and ordering 

compared to the other SAMs in the present study.   

This latter point is established in more detail by a simulation-experiment comparison for the low 

frequency region spectrum, shown in Figure 4. The observation of a well-defined progression of 

coupled wag-twist modes in the experimental spectrum of the C10E*C10 SAM shows evidence 

for a conformationally ordered chain segment. Analysis of this pattern shows that the spacing of 

the modes is =33.3±3.3 which closely corresponds to a –(CH2)9– chain which has a predicted 

spacing of =32.6.38 This allows assignment of the progression modes to the top –(CH2)9– 

segment which was confirmed via DFT calculations of the normal modes of an isolated C10E*C10 

molecule. Based on this result and the earlier analysis of the CmECk SAMs, it appears that 

whichever chain segment is directly bonded to the carbonyl carbon of the ester group has the best 

electronic coupling of the CH2 wag-twist dipole transition moments to the C=O stretch mode to 

yield the observed series of progression bands.    
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Figure 4. Experimental IR spectrum of the C10E*C10 SAM (black solid line) as well as its best-

fit simulation (red dashed line). The sequence of sharp peaks running from just above 1200 to 

~1400 cm
-1

, corresponds to the wag-twist modes. The number of the peaks and their frequency 

spacings correspond exactly to a conformationally ordered top –(CH2)9– segment. The simulation 

gives a tilt of the top segment of 35° (±2º), from the surface normal. For details, see text.   

A set of simulations was made starting with pure polycrystalline C10E*C10 ester to generate 

isotropic optical functions and the optical tensor spectra were then generated based on the 

geometry of the fully extended molecule as determined from DFT calculations. The simulations 
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were restricted to the progression mode region in order to keep the analysis simple since the 

geometry of the ester group is more difficult to interpret. In the simulations, the tilt angle of the 

conformationally ordered −(CH2)9− top segment chain was varied. Since the transition dipole 

moment of the wag-twist modes is aligned parallel to the chain axis, the tilt angle from the surface 

normal could be determined directly from the intensities. The resultant best-fit corresponds to a 

tilt angle of 35° (±2º).  The DFT calculations also indicate that the chain axes of the top and bottom 

alkyl segments of the C10E*C10 diverge by ~7° which translates to a bottom chain tilt of ~28° 

(±2°) which is in excellent agreement with the measured tilts of non-substituted AT SAMs and the 

ester-substituted monolayers described in ref 38. The chain twist angle around the long axis cannot 

be determined directly from this fit but, based on the similarity of the high frequency region IR 

spectrum of the C10E*C10 SAM with those of the C10EC10 monolayers and Cn SAMs on 

Au(111) (see Figure 4), the twist angle is estimated to be close to 55-60°.  

 

3.1.2.  AFM Analysis 

The similarity of the basic orientational parameters of the ester containing SAMs and the non-

substituted Cn systems suggests a uniform translational arrangement in both the standard (CmECk) 

and reverse ester layers. To verify this hypothesis, lateral force AFM measurements were 

performed, taking C10EC10 and C10E*C10 monolayers as representative examples. Typical 

images for these monolayers are shown in Figure 5. Both images confirm an ordered arrangement 

with the adsorbates in a (√3√3)R30° hexagonal lattice with the expected ~0.50 nm nearest 

neighbor spacing. This corresponds to a surface density of ~4.60 molecules/nm2. Such a lattice is 

typical of Cn SAMs on a Au(111) surface, where a c(42) modulation of the (√3√3)R30° 

structure has also been reported, resulting in a (2√33)rect surface unit cell.56-58 It is difficult to 

determine whether such a modulation occurs in the given case since AFM delivers images 

averaged over areas well exceeding that of a single molecule; our simulations, however, hint 

towards a herringbone arrangement as the most stable configuration favoring a (2√33)rect unit 

cell (vide infra).  

Independent of the specific structural details, the main conclusion is that both standard and reverse 

ester SAMs exhibit long-range structural order, with the monolayer structure (especially of the 

bottom alkyl chain segments) being quite close to that of non-substituted AT SAMs on the same 



16 

 

substrate. Significantly, the specific geometry of the CmECk molecules defines the orientation of 

the ester group and, consequently, the direction of the related dipole moment, which is strongly 

tilted with respect to the surface normal, as shown schematically in Figure 1a. Consequently, its 

projection on the z-axis (i.e., the surface normal), which defines the potential discontinuity within 

the SAM, depends strongly not only on the ester group orientation but on the exact adsorption 

geometry of the assembled monolayer. While the average adsorption geometries of the molecules 

are very similar, one cannot exclude minor variations in different, mid-ester functionalized films 

discussed in this study (vide infra).  

 

Figure 5.  Lateral force AFM topography images of the C10EC10 and C10E*C10 SAMs with 2D 

Fourier transforms shown in the insets. Both images clearly show a hexagonal pattern which 

corresponds to the standard (√3√3)R30° arrangement with a lattice spacing of ~0.50 nm.   

 

 

 

3.2.  Electrostatic Effects: Photoemission 

The C 1s XP and HRXP spectra of the Cn SAMs exhibit a single photoemission peak at a BE of 

284.85 - 285.0 eV associated with the alkyl backbone. This peak is accompanied by two weak 
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shoulders, which strongly overlap with the main peak and can only be recognized within a very 

detailed analysis.62,63 The BE increases somewhat with chain length (ca. 20 meV per C atom; see 

below).62 In contrast to these reference systems, the C 1s HRXP spectra of all the CmECk 

monolayers exhibit not one but two major features related to the alkyl chain, along with two 

weaker, but easily perceptible peaks assigned to the ether and carbonyl carbons. This pattern is 

shown in Figure 6, where a spectrum of the C20EC5 SAM serves as a representative example of 

the mid-chain ester substituted films of this study. Further examples, involving the CmEC5 (m = 

10, 15, and 20) and C10ECk series (k = 5, 10, and 15), are presented in the Supporting Information 

(Figures S3 and S4, respectively). Those spectra exhibit the same pattern as in Figure 6, with the 

relative intensities of the individual features correlating directly with the lengths of the bottom and 

top segments, defined by m and k. The two main contributions to the spectrum at 285.6 eV and 

284.75 eV are associated with photoemission peaks from the top and bottom −(CH2)− segments, 

respectively (see color coding in Figure 6).37,38 The difference between the BEs of these peaks is 

~0.8 eV and all the different embedded ester systems fall within a range of 0.2 eV of this value. 

This is shown in the overview summary diagram in Figure 7, presenting the C 1s BEs associated 

with the −CH2− chain or segments for all studied SAMs. This difference cannot be explained 

within the general concept of chemical shift since both segments are chemically identical. The 

reason for the difference is, as mentioned above, purely electrostatic, viz. a potential discontinuity 

inside the monolayer associated with the embedded dipolar ester groups as originally reported in 

ref 38 and discussed later in detail in ref 37.  

Apart from the ~0.8 eV offset, the C 1s BEs for the top and bottom −CH2− segments of the ester 

SAMs display a similar dependence on the total backbone length as the C 1s BE for the Cn 

monolayers with a slight increase in the binding energy with increasing backbone length. This 

dependence stems presumably from a combination of screening and ordering effects, as will be 

discussed in detail in Section 4.  
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Figure 6. Decomposition of the C 1s HRXP spectrum of the C20EC5 SAM, representative of the 

entire CmECk series. The individual component peaks associated with specific parts of the 

C20EC5 molecule are color-coded with the schematics of the molecule shown as an inset. Binding 

energies of the component peaks are given.  
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Figure 7. Graphical summary of the C 1s BE data for the peak associated with the alkyl chain in 

the Cn SAMs (black squares) as well as the component peaks related to the top and bottom 

−(CH2)− segments in the mid-ester functionalized AT SAMs: blue and red circles, respectively, 

for the CmECk and C10E*C10 SAMs, green and purple rhombus, respectively, for the 

C10EC4EC5 SAM, for the sake of visibility. The values are the averages over the entire data set 

(different samples and different photon energies for a particular system). The approximate BE 

shifts for the top segments in the C10EC10 and C10E*C10 SAMs with respect to the value for the 

Cn monolayers with a similar number of the carbon atoms in the molecular backbone are given 
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and marked by the vertical arrows. The names of the SAMs are given at the respective BEs. The 

dashed straight lines are guides to the eye.  

 

In addition to analyzing the BE shifts between the top and bottom segments, it is also useful to 

consider shifts relative to nominally equivalent AT SAMs not bearing any embedded dipolar 

groups, i.e., to the Cn series. This is particularly helpful for the reverse ester SAM, C10E*C10, 

presented also in the overview diagram in Figure 7 and addressed specifically in Figure 8, where 

the respective C 1s HRXP spectrum is shown along with the data for the C10EC10 and C16 films 

for the sake of comparison.  

 

 

Figure 8. C 1s HRXP spectra of the C16, C10EC10, and C10E*C10 SAMs. The spectra of the 

two latter films are decomposed into individual component peaks which are color-coded, viz. 

bottom −(CH2)− segment - red, top −(CH2)− segment - blue, ether carbon - green, and carbonyl 

carbon - yellow. The vertical dashed lines mark the BE positions of the component peaks as a 

guide to the eye.  

 

A careful analysis of this spectrum along with the entire set of the C 1s data of the involved 

systems, gives values of +0.6 and −0.4 eV for the shifts of the main peaks in the C 1s spectra of 
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the C10EC10 and C10E*C10 SAMs compared to the Cn monolayers with a similar number of the 

carbon atoms in the molecular chain (see Figure 7; note, this figure contains peak positions 

averaged over several measurement series, while Figure 8 represents a specific spectrum). The 

main peaks are exclusively (C10EC10; see above), respectively, predominantly (C10E*C10; see 

below) associated with the top segment of these SAMs. The different signs of the shifts for the top 

segment of the C10EC10 and C10E*C10 monolayers compared to the reference Cn films are fully 

consistent with inverting the potential step at the ester group. The observation that the BE shift for 

the ether carbon in C10E*C10 is somewhat smaller than the shift of the main peak and the finding 

that the shift for the carbonyl carbons is smallest also is in line with an inversion of the ester dipole. 

All mentioned experimental observations are also qualitatively reproduced in the simulations (see 

section 3.4). 

The above discussion relies on associating the main peak of the C10E*C10 SAM primarily with 

the C atoms in the top segment. In contrast to the spectra for regularly oriented esters, for 

C10E*C10, no separate peaks that can be clearly related to the bottom and top segments can be 

discerned; there is only one intense peak except for the comparably weak ether and carbonyl 

features. Thus, the main peak in the HRXPS spectrum of this monolayer should be representative 

of the entire −(CH2)− backbone, which means, consequently, that there is no perceptible C 1s BE 

shift between the component peaks associated with the top and bottom segments. The spectral 

weights of both components in the joint peak should mimic those for the C10EC10 SAM, with the 

clear dominance of the contribution of the top segment. The BE position of the joint peak, 

practically coincides with the position of the bottom segment feature in the spectrum of the 

C10EC10 monolayer, suggesting, thus, that the BE position of the bottom segment feature for the 

C10E*C10 and C10EC10 SAM is non-affected by the orientation of the embedded ester group. 

Interestingly, this position has a significant BE offset relative to the Cn SAMs, which is also true 

for the other CmECk monolayers of this study, as will be discussed in detail in Section 4. 

The overview diagram in Figure 7 also contains the results for the double ester SAM, C10EC4EC5. 

The C 1s HRXP spectrum for this system is presented in Figure 9 which, for the sake of 

comparison, also contains data for the C10EC10 and C15EC5 monolayers all three of which 

contain a total of 21 carbon atoms. The C10EC10 molecule has the same number of C atoms below 

and above the first ester group as C10EC4EC5, whereas the same is true for the C15EC5 
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compound relative to the second ester group. The spectrum of the C10EC4EC5 SAM is dominated 

by a broad, asymmetric feature related to the −CH2− segments and also contains distinct peaks 

associated with the ether and carbonyl carbons. These ester related peaks are more intense than the 

analogous peaks in the spectra of the C10EC10 and C15EC5 monolayers, which is understandable 

since the C10EC4EC5 SAM contains two ester groups instead of one. As to the major broad 

feature, its decomposition into individual component peaks can be performed only tentatively, 

since these peaks are indistinguishable in the overall spectral envelope. Following general logic 

and based on the data for the CmECk SAMs, three component peaks associated with the bottom, 

middle, and top −CH2− segments can be assumed to comprise the joint envelope, with the intensity 

relations derived from the spectra of the C10EC10 and C15EC5 monolayers. The resulting spectral 

decomposition is presented in Figure 9. While the BE shifts with respect to the component peak 

assigned to the middle segment can be considered as tentative only, the BE shift between the 

component peaks associated with the top and bottom −CH2− segments is presumably more 

relevant, since it is closely related to the overall spectral shape (it amounts to ~1.25 eV by the 

three-component-fit and ~0.9 eV when only fitting by two peaks, see Figure S5 in the Supporting 

Information for the respective decomposition). The value of 1.25 eV for the three-peak-

decomposition is somewhat higher than the maximum shift for the CmECk films (~1.05 eV) but 

noticeably smaller than double the average shift in these films (i.e., ~1.6 eV). This suggests a 

distinct but somewhat limited effect of the double embedded ester. An interesting finding in this 

context is that the particularly clearly resolved feature associated with the carbonyl carbon, which 

mostly originates from excitations of the top ester group, is hardly shifted compared to the 

C10EC10 and C15EC5 SAMs. This result suggests that the electrostatic shift caused by the bottom 

ester group is comparably weak and, concomitantly, the main “electrostatic effect” in this SAM 

arises from the top ester moiety.  
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Figure 9. C 1s HRXP spectra of the C10EC10, C10EC4EC5, and C15EC5 SAMs. The spectra are 

decomposed into individual component peaks that are color-coded, viz. the bottom alkyl segment 

- red, the middle alkyl segment (for C10EC4EC5 only) - purple, top alkyl segment - blue, ether 

carbon - green, and carbonyl carbon - yellow. The vertical dashed lines mark the BE positions of 

the component peaks as a guide to the eye.  

 

3.3.  Electrostatic Effects: Work Function  

The embedding of the dipolar ester group into the alkyl backbone also affects the work function 

of the SAM-covered Au surface, as shown in Figure 10. That figure contains work function 

changes, , relative to a C16 reference SAM, which have been measured by UPS cutoff (for all 

systems) and by KP-AFM (for the most relevant monolayers). In passing we note that the work 

function change induced by the C16 SAM relative to a clean Au substrate amounts to −0.85 eV. 

Also we note that the agreement between the UPS and AFM derived values is good, considering 

intrinsic differences between these two techniques and the fact that the experiments were 

independently performed on equivalent, albeit different samples (i.e., silicon versus mica 

substrates, respectively). This suggests that the samples were homogeneous and not affected in a 

perceptible way by the character of the substrate within the given choice.     
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Figure 10.  Summary of SAM-induced work function changes relative to a C16 reference SAM. 

Black circles are the values for the Cn SAMs; all other data points are labelled with the names of 

the respective ester functionalized monolayers. Left panel: data obtained by the UPS 

measurements. The slopes of the two main linear correlations are shown by arrows. Right panel: 

data obtained for selected SAMs by the KP-AFM measurements.    

 

The work function of the Cn SAMs decreases with increasing length of the molecular backbone, 

which in the past has been explained by a progressive change in the polarizability of the alkyl 

matrix39,64 though it may also be related to improving orientational and conformational order as 

the chain length increases, as is typical of Cn monolayers.57 A similar general trend is observed 

for the ester-substituted SAMs. In addition, there is a noticeable shift in  between the Cn and 

CmECk SAMs, which amounts to −0.20 to −0.35 eV. This shift is similar, albeit slightly smaller, 

than the shift in core-level BEs between the Cn and CmECk films (see Figure 7). An exception is 

the C15EC5 monolayer for which no shift is observed.  

Similar to the results of the HRXPS experiments (Figure 7), the reversal of the ester direction leads 

to a reversal of the sign of : −0.40 eV for C10EC10 and +0.65 eV for the C10E*C10 SAM 

relative to the average value for the C20 and C22 monolayers. This is again fully consistent with 

the reversal of a potential step inside the SAM that is associated with the vertical component of 

the ester dipoles. The absolute magnitude of the shift is somewhat larger for the reverse ester SAM, 

opposite to the observation for the core-level shifts (Figure 7). This difference could be at least in 
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part caused by differences in average core-hole screening between the top-segments of the ester 

containing SAMs and the equally long Cn systems (see Discussion section) 

As for the double ester system, the averaged  value for the C10EC4EC5 SAM is comparable to 

that of the C10EC10 monolayer (same total number of C atoms). This result indicates that the 

effect of the additional embedded ester group on the work function of the entire system is weak. 

According to the HRXPS data, such a weak effect can potentially be associated with only a minor 

role played by the bottom ester group, while the top ester provides the major contribution to .  

 

3.4. Calculated Work Function Modifications and Core-Level Shifts  

3.4.1. Shift in the Electrostatic Energy and Work Function Change 

The calculated work function changes for C10EC10 and C10E*C10 SAMs amount to −0.62 eV 

and +0.88 eV, respectively (relative to a herringbone-type C16 SAM; notably, in the simulations 

we do not observe a pronounced chain-length dependence of the work function of the reference 

SAMs). These values portray exactly the same trend as the experimental results; only the 

calculated magnitudes of the  values are larger than those observed in the experiments. This 

discrepancy is consistent with what has been observed for oligophenylene-based SAMs containing 

pyrimidine groups at varying orientations.28 There the differences were attributed, at least in part, 

to imperfections in the SAM structure (like the occurrence of grain boundaries). For the embedded 

ester SAMs, an additional factor is that the calculated tilt-angle of the molecules is ~ 10° larger 

than the experimental one, which results in a larger component of the dipole moment perpendicular 

to the surface (Figure 1a). 
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Figure 11. (a) DFT-calculated plane-averaged electrostatic energy of a C16 reference SAM, a 

C10EC10 ester SAM, and a C10E*C10 reverse ester SAM. The energy is given relative to the 

Fermi energy. The amplitude of the potential variation differs for the three systems in the SAM 

region, which is a consequence of not exactly equivalent C atom positions owing to somewhat 

different calculated twist angles (note: there are four nominally non-equivalent molecules in the 

unit cell). (b) Calculated C1s core level energies for the C16, C10EC10 and C10E*C10 SAMs. 

The zero on the x-axis in both plots refers to the average positions of the atoms in the topmost Au 

layer. The rigid shift between the simulated core-level energies and the experimental BEs is a 

consequence of the initial state method of calculating core level energies and does not impact the 

present comparison.  

 

The change in the vacuum energy above the SAM is clearly visible when plotting the electrostatic 

energy averaged over a plane parallel to the surface of the substrate (see green arrow in the top-

right corner of Figure 11a). This plot also reveals the origin of the work function change: while 

the average electrostatic energy between the Au substrate and the ester group is similar for all 

SAMs, there is a distinct downwards and upwards shift above the ester group, respectively, for the 
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C10EC10 and C10E*C10 monolayers. In this context it should be mentioned that the oscillations 

of the plane-averaged electrostatic energy are a consequence of the pronounced minima at the 

positions of the nuclei. Their contributions to the averaged electrostatic energy sensitively depend 

on the specific nuclear positions. This can, for example, be seen, when comparing the data for the 

C16 reference SAM and the ester-containing monolayers, where the different z-positions of the 

nuclei are caused by small variations of the chain twist angles (note that in the calculations each 

unit cell contains four nominally non-equivalent molecules in a herringbone arrangement). As a 

consequence, the magnitude of the oscillations provides only limited insight. This becomes 

apparent, when comparing the data for the C16 SAM in Figure 11a with those for the same 

monolayer with all chains arranged in parallel (see the Supporting Information). 

 

3.4.2. Core-Level Excitations  

As discussed in detail in ref 37, the computational approach employed here is able to accurately 

reproduce the main experimental trends for the HRXP spectra of SAMs in general and the CmECk 

monolayers in particular. Thus, the calculated core-level energies of a C10EC10, a C10E*C10, 

and a C16 SAM are plotted in Figure 11b. This plot confirms the assignments of all experimentally 

observed XPS peaks (vide supra), in particular the association of the two features at 285.5 eV and 

284.6 eV with the top and bottom alkyl segments of the C10EC10 SAM. The rigid shift between 

the simulated and measured core-level energies is a consequence of the initial state method and is 

not relevant for the present comparison. The BE difference between the top and bottom segments 

is a direct consequence of collective electrostatic effects arising from the parallel arrangement of 

the z-components of the dipole moments associated with the ester groups.39,40,65 This situation 

results in a step in the electrostatic potential, which shifts the energy of the electronic states 

above/below that dipole layer relative to each other. Chemically induced shifts of the C 1s core 

levels of the ether and carbonyl carbons are superimposed and are also reproduced correctly. 

In the modeled, defect-free C10EC5, C5EC10, and C10EC10 SAMs, the shifts between the C 1s 

core levels for the top and bottom segments are similar and amount to 0.79 eV for C10EC5 and 

C10EC10 and 0.85 eV for C5EC10. These values were obtained by averaging over all C atoms of 

the respective segments considering changes in the energetic positions of the core-levels due to 

screening by the metal substrate and weighing the contributions of each core-level considering the 

damping of the respective signal (for details see the Supporting Information). The calculated shifts 
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are quantitatively consistent with the average shifts found experimentally (see Figure 7). The 

difference between the SAMs containing 5 and 10 carbon atoms in the bottom segment arises in 

part from differences in core-hole screening for bottom-segment excitations. Additional 

differences arise from somewhat differing bond-dipoles due to the distinct local bonding 

geometries associated with odd or even numbers of m and k in the CmECk SAMs, as will be 

discussed below. The impact of electrostatic screening on the overall shift is non-negligible, as, 

when switching off the mirror-charge screening in the simulations, the BE difference drops to 0.57 

eV for the C5EC10 SAM and to 0.62 eV for C10EC5 monolayer. 

When comparing the core-level energies of a regular ester SAM (C10EC10) with a reverse ester 

one (C10E*C10), we see the main trends of the experiments reproduced in the simulations (Figure 

11b): There is a pronounced shift between the top-segment related features of the two SAMs, the 

overall magnitude of the shift is reduced for the ether carbons, and it is smallest for the carbonyl 

carbons. The reason for the decreasing shifts is that the corresponding carbons are positioned 

differently relative to the center of the dipole-induced drop in the electrostatic energy. The overall 

magnitude of the shift of the XPS peaks/core-level energies for the top segment between C10EC10 

and C10E*C10 are larger in the simulations (~1.50 eV) than in experiments (average value of ~1.0 

eV), which is quantitatively consistent with what has been observed for the work function changes 

(vide supra). 

What the simulations presented so far cannot answer directly, are some conundrums mentioned 

when discussing the experimental spectra: why are the core-level BEs in the C16 reference SAMs 

profoundly shifted relative to those of the bottom segments of the ester-containing monolayers? 

Referring to Figure 8, why there is no perceptible shift in the BE position of the C 1s peak 

associated with the top segments of the C10E*C10 SAM as compared to the bottom segments one? 

Why does the C15EC5 SAM yield a work function similar to the non-substituted AT SAMs? In 

the following Section, based on carefully designed test calculations, we hypothesize that these 

aspects are at least in part related to structural imperfections within the films. 

 

 

3.4.3. Impact of Possible Structural Imperfections 
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A particularly relevant imperfection arises from chains in which the twist angle is changed by 180°, 

as shown in the inset of Figure 12. In such a configuration the molecules do not need more space 

or significantly disturb their neighbors. Thus, the twisting is expected to not significantly affect 

the main structural properties of the SAM, like the measured tilt and the orientation of the plane 

of the carbon atoms, i.e., it might go unnoticed even for films characterized as thoroughly as the 

present ones.  

  

Figure 12. DFT-calculated C 1s core level energies for the C10EC5 SAMs in the regular (green) 

and twisted (brown) configurations. The zero on the x-axis in both plots refers to the average 

positions of the atoms in the topmost Au layer.  

 

In spite of the structural consequences of the twist-defect being only minor; the reorientation of 

the ester group drastically impacts the electronic properties of the SAM. This is evidenced by BE 

differences and work function changes for various chain imperfections (see the Supporting 

Information). For example, the C 1s BEs of the C10EC5 SAM shown in Figure 12 demonstrate 

the two main effects of the twisting imperfections: (i) There is no longer a significant shift in the 

core-level energies between the top and bottom segments, as the orientation of the ester dipole in 

the twisted SAM is essentially horizontal; (ii) the modified bonding geometry in the region of the 

thiolate group changes the dipole jump at the interface with the Au substrate (i.e., the sulfur-gold 

bond dipole), which results in a rigid shift of all core levels. The magnitude of the two effects 

varies between different SAMs. For example, while the rigid potential shift at the SAM/Au 

interface (measured as the difference in core level energies between the bottom segment and a C16 
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SAM) in the twisted configuration of C10EC5 amounts to +0.35 eV, it is only +0.22 eV for 

C10E*C10 and becomes negligibly small for C5EC10.  

It is also noteworthy that for the latter SAM, due to the odd number of C atoms in the bottom 

segment, a chain configuration at the thiolate equivalent to that shown in Figure 1 would result in 

an essentially horizontal dipole moment of the ester group, which would eliminate the potential 

step. Thus, to provide an appreciable potential step in C5EC10, the local bonding geometry in the 

vicinity of the thiolate must correspond to that of the “twisted” rather than the “regular” 

configuration (see the sketch for C10EC5 in Figure 12).   

The possible occurrence of twist-defects severely complicates the situation. For example, a change 

of the dipole in the thiolate region (µthio) rigidly shifts the core-level energies of both the top as 

well as the bottom segments and it also impacts the work function modification. Still, it does not 

directly impact the core-level shift between the top and bottom segments. Conversely, the latter 

quantity and the work function modification are impacted by the orientation of the ester-dipole, 

which, however, has no consequences for the core-level binding energies of the bottom segment 

(recall that the all BEs are all referenced to the gold substrate which is located under the dipole 

layer as is the bottom segment). It should also be noted that beyond twisted chains, reconstructions 

of the Au(111) surface can also impact µthio, especially, as they do not necessarily need to be the 

same for non-substituted ATs and substituted analogues.40,66 Finally, a very significant point to 

keep in mind is that core-level shifts are mostly impacted by “the local electrostatic environment” 

of the carbon atom from which the electron is excited, while work function changes “average” 

over much larger areas. As a consequence, for films with scattered defects or defective regions, 

both quantities react differently depending on whether imperfectly aligned chains are phase 

separated or distributed homogeneously within the film.29 

An important issue in this context is, under which circumstances regular and twisted configurations 

are stabilized. To address that, we performed molecular dynamics simulations on extended test 

systems (comprising unit cells containing 288 molecules), where we observe a bimodal 

distribution of the ester dipoles corresponding to the aforementioned regular and twisted 

arrangements. In those simulations,67 we found a preferentially regular arrangement for C10EC5 

SAMs, a non-negligible contribution of twisted chains for C10EC10 and even a dominance of 

twisted chains for C5EC10 (owing to the odd number of the carbon atoms in the bottom segment, 
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as discussed above). Interestingly, those twisted structures are randomly distributed amongst 

properly aligned chains rather than precipitating into separate phases.67 These results do not 

necessarily reflect the experimental reality owing to the use of empirical force-fields parameterized 

for systems other than thiolate SAMs (see the Supporting Information). Still, they at least hint 

towards the possible existence of twisted phases. In fact, for C5EC10, even the DFT-based 

simulations indicate that the twisted phase is more stable than the regular one by 0.075 eV per 

molecule. 

In the experiments, there is no definite indication for a massive occurrence of molecules in a 

twisted configuration in any of the studied SAMs. This conclusion is evidenced by the similar 

intensity values of the C=O stretching mode peaks in Figure 2a,c since the horizontal orientation 

of the ester group would shut off the appearance of this mode, thus providing intensity patterns not 

consistent with those in the figure. Nevertheless, it is intriguing that the molecules with an odd 

number of carbon atoms in the bottom segment consistently have a lower C 1s binding energy for 

the upper segment than those with an even number of carbons. Chain twisting might also play a 

role for the vanishing  for the C15EC5 monolayer compared to an equivalently long Cn SAM.  

 

4.  Discussion 

All mid-chain ester functionalized CmECk SAMs studied here exhibit pronounced electrostatic 

effects arising from the collective superposition of the fields associated with the embedded dipole 

group. This is in agreement with previous studies on some of these systems37,38 as well as on 

analogous thioaromatic monolayers with embedded pyrimidine groups.28,29 The electrostatic 

effects are manifested in two ways: as a BE shift of the C 1s peaks associated with the bottom and 

top −CH2− segments of the molecular backbone and as a change in the work function of the entire 

system. The former implies that the general concept of a mere chemical shift of XPS features 

explains only part of the effects encountered in ordered polar assemblies. Rather, electrostatically 

induced shifts of the energy landscape also need to be considered on an equal footing.37 This 

behavior is in some sense reminiscent of the role of the Madelung potential for XPS spectra of 

ionic crystals.68-70 

Correspondingly, the C 1s core-level energies in the regions above and below the dipoles differ 

relative to one another in the experiments for most of the CmECk SAMs by ~0.8 eV (see Figure 
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7). This result is fully consistent with all our DFT calculations on extended interfaces and also 

correlates nicely with a simple theoretical estimate based on the orientation of the ester groups in 

the SAMs and their dipole moment.38 A minor variation in the differences in BEs (0.2 eV) can 

be tentatively explained by the occurrence of structural imperfections. Since the dipole associated 

with the embedded ester group is strongly tilted with respect to the surface normal, even small 

structural changes can result in a noticeable change of its component perpendicular to the surface. 

Moreover, as discussed in section 3.4.3, in our simulations we observed a low-energy 

conformation with essentially horizontal dipole orientations. 

Another relevant aspect is that screening-induced shifts of BEs depend on the position of the core-

hole relative to the metal substrate and the SAM/ambient interface. The impact of core-hole 

screening by the metal can be estimated from the simple mirror-charge model described in the 

Supporting Information. Within this model (considering the finite escape depth of the 

photoelectrons but neglecting the impact of the finite thickness of the SAMs), screening effects 

decrease the averaged BE of the top segment of C10EC5 by 0.10 eV and of C10EC10 by 0.08 eV. 

The effect is naturally much stronger for the bottom segments and amounts to 0.26 eV in both 

cases; i.e., the core-hole screening contributes ~0.17 eV (C10EC5) and ~0.18 eV (C10EC10) to 

the splitting between the peaks associated with the top and bottom segments. Also for the reference 

SAMs, where the net screening is intermediate, a decrease in the screening efficiency with 

increasing chain length can be expected, which is at least one of the factors causing the measured 

BE shifts as a function of chain length shown in Figure 7. A particularly strong impact of the 

screening asymmetry on BEs can be expected for systems with short bottom segments, such as 

C5EC10. Indeed, there, the screening-induced shift of the average bottom segments related BE is 

0.38 eV. This shift results in an even larger contribution of screening to the BE difference between 

the top and bottom segments.  

As mentioned in Section 3.2, in addition to analyzing the shifts in BEs between the top and bottom 

segments, it is also useful to consider shifts relative to nominally equivalent non-substituted AT 

SAMs (i.e., the Cn series). Surprisingly, there is a rigid shift of ~0.4 eV in the BEs of the 

chemically essentially identical bottom segments of the CmECk SAMs and the equally long Cn 

SAMs (with n=m+k). To analyze the origin of that shift, it is instructive to replot the data as a 

function of the number of bottom segment C atoms (done in Figure 13) rather than as a function 
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of the total molecular length (Figure 7). The motivation for that is that the length of the bottom 

segment is what primarily determines the impact of core-hole screening on the peak position (vide 

supra). Comparing the data in Figure 7 with those in Figure 13 one sees that the shift is, indeed, 

reduced to ~0.25 eV, i.e., more than a third of the shift in the peak positions can be associated with 

substrate-related screening differences. The reason for the remaining BE lowering in the ester-

containing SAMs is not yet understood. We hypothesize that it might be a consequence of 

differences in the bonding- and thiolate-related dipoles at the metal/SAM interface. These could 

be caused by differences in bonding geometries, substrate reconstructions, or structural 

imperfections in general (see Section 3.4.3).  
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Figure 13. Graphical summary of the C 1s BE data for the peak associated with the alkyl chain in 

the Cn SAMs (black squares) as well as the component peak related to the bottom 

−(CH2)− segment in the mid-ester functionalized AT SAMs (red circles; only C10EC10 and 

C10EC4EC5 are marked by purple up and down triangles for the sake of visibility). The values 

are the averages over the entire data set (different samples and different photon energies for each 

system). The C 1s BE values are arranged in accordance with the length of the bottom segment. 

The approximate energy difference between the average values for the Cn and CmECk SAMs is 

indicated by the vertical arrow. The names of the SAMs are given at the respective BEs. The brown 

dashed straight lines are guides to the eye.  

The use of the Cn SAMs as a reference also results in a smaller value of the electrostatic shift 

associated with the top segment in the ester SAMs, viz. +(0.3-0.55) eV. These values are in good 

agreement with the work function changes induced by the CmECk SAMs measured again relative 
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to Cn reference samples of equivalent lengths (between −0.2 eV and −0.35 eV; see Figure 10). 

Notably larger shifts of up to −0.6 eV are obtained when compared to a single reference SAM 

(namely C16, as it is done in Figure 10). The reason for that difference is that the work function 

change induced by the CmECk SAMs follows a roughly linear evolution with the total number of 

C atoms (Figure 10). This mimics the behavior of the Cn films with a slope of −17.5 meV per C 

atom in the backbone.  

An interesting observation regarding the variation between the different systems beyond the 

aforementioned effects is that the CmECk SAMs with an odd number of carbon atoms in the 

bottom segment display smaller shifts in the BEs of the top segments (see Figure 7) and they also 

induce smaller work function changes (Figure 10). An explanation for that could be that these 

SAMs are more prone to SAM imperfections comprising twisted configurations with essentially 

horizontally oriented ester dipoles (see Section 3.4.3). What is still somewhat puzzling is the 

observation that  for the C15EC5 SAM is close to zero relative to C20, although the 

experimentally accessible structural parameters of that film are similar to those of the other 

samples. A higher concentration of twisted conformations in C15EC5 is a viable scenario, 

supported by the comparably small shift in BEs between the top and bottom segments. Still that 

shift amounts to 0.61 eV, which appears too large to be merely-screening induced.  

At this point, it should also be mentioned that the average orientation of the terminal methyl groups 

(carrying a non-vanishing dipole moment71) could affect work function changes, but would have 

only a minor impact on BE shifts. Changes in the orientation of the –CH3 segments are either 

simply a consequence of differences in chain length (so called odd-even effects) or can be caused 

by different degrees of the conformational and orientational disorder in the top segments of the 

SAMs. To address the role of the odd-even effects, we calculated work function changes of non-

substituted AT SAMs of varying chain lengths. There, we did indeed observe systematic variations, 

but their magnitude was comparably small, amounting to only 0.05 eV for work function 

differences between chains containing odd, respectively even numbers of C atoms. 

As far as the “double ester” SAM, C10EC4EC5, is concerned, one might expect that this layer 

would induce shifts in work function and BE differences that are roughly twice as large as for 

SAMs consisting of molecules containing only a single ester group. This is, however, not what we 

observe. Rather, the value of  for that SAM is comparable to that for the similarly long C10EC10 
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SAM. Moreover, even though a unambiguous decomposition of the HRXP spectrum of 

C10EC4EC5 is not possible (see Figure 9 and Figure S5 in the Supporting Information), the BE 

difference between the C 1s peaks associated with the bottom and top −CH2− segments (limited 

by the spectral envelope) is relatively close to that of the C10EC10 SAM. All these aspects point 

towards a reduced electrostatic impact of at least one of the two embedded dipoles (very likely the 

bottom one as gauged from the very small shift of the carbonyl carbon related peak (vide supra). 

This stems presumably from its specific orientation. A potentially higher degree of disorder in the 

C10EC4EC5 system could well be a consequence of the fact that in a double ester SAM we deal 

with the molecules with two kinks along their backbones. This implies that the average tilt angles 

of the individual segments have to increasingly deviate from the ideal values of Cn and CmECk 

SAMs. 

While the C10EC4EC5 SAMs do not exhibit their full ideal potential contributions from both ester 

dipoles, the "reverse ester", C10E*C10, film displays very significant and interesting properties. 

With respect to the Cn reference, the reversal of the direction of the embedded dipole results in an 

average BE shift of the top segment of ca. −0.4 eV, in contrast to the value of +0.6 eV for the 

C10EC10 monolayer. Such an inversion of the BE shift is consistent with the reversal of the 

vertical direction of the ester-dipole. It also matches the observed shifts of the BEs of the ether and 

carbonyl carbons (Figure 8). Still, it should also be mentioned that we do not fully understand, 

why the position of the maximum in the XP spectrum of C10E*C10 associated with the top 

segment is so close to that associated with bottom segment of C10EC10.  

Finally, from a practical point of view, it is important to point out that all work function changes 

discussed above are not accompanied by a significant change in molecular orientation and SAM 

structure, as follows from the IRS (Figures 2-4), NEXAFS spectroscopy,38 and AFM (Figure 5) 

data. Moreover, the dipole control is fully decoupled from the interfacial chemistry, which makes 

such SAMs very useful tools for the molecular engineering of interfaces, an aspect we recently 

also exploited for embedded-dipole based aromatic monolayers.28  

5.  Conclusions and Prospects 

We have shown that AT SAMs containing embedded dipolar ester groups are highly attractive 

materials for modifying the properties of metal substrates. They form well-defined and highly 

ordered layers and enable modifying the substrate work function in a range of 0.6 eV compared 
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to a non-substituted analogue. The sign of the work function change depends on the orientation of 

the embedded ester group and, most importantly, the change is achieved without affecting the 

SAM-ambient interface. Incorporating two ester groups into the backbone did not increase the 

overall effect noticeably for a test system of this study but is still probably possible at a favorable 

orientation of both these groups.  

A thorough investigation of nine embedded ester systems also provides insight into the electronic 

structure within the SAMs: combining high-resolution XPS data with state-of-the-art slab-type 

band-structure calculations, we find a step in the electrostatic energy at the position of the 

embedded ester groups, which is caused by the collective interaction of the molecular dipoles. This 

effect shifts the core-level energies of otherwise chemically equivalent carbon atoms that are below 

and above the esters relative to each other. Moreover, a shift of the C 1s BEs of both the top as 

well as the bottom segments of the SAM relative to non-substituted ATs of equivalent length is 

also observed. Our results suggest that the magnitude of the work function change as well as the 

core-level shifts weakly increase (approximately linearly) with chain length, which we tentatively 

associate with an increased ordering of the longer chains. As far as the XPS data are concerned, 

decreasing average core-hole screening for longer chains also plays a role.  

As evidenced by comparing the various systems, the magnitude of the core-level and work function 

shifts sensitively depends on the details of the film structure, which is not surprising considering 

the strongly inclined orientation of the ester dipoles relative to the surface normal. The simulations 

also imply that the occurrence of alkanethioleate chains, whose twist angle is modified by 180° is 

not an unlikely scenario. While those chains are not expected to affect the structural order of the 

layers significantly and are difficult to trace spectroscopically, the twisting results in a near-

horizontal alignment of the ester dipoles. The concurrent change of the bonding geometry at the 

thiolate group also modifies the respective bond dipole. In other systems with chemical 

functionality built into the molecular backbone, we have previously found significant effects due 

to networks of molecules interacting underneath the SAM surface.72 Overall, the investigated 

systems display a variety of interesting properties, whose detailed analysis is intricate and requires 

the combination of a variety of complementary techniques. A particular experimental tool, which 

can be relevant for these systems, is second harmonic generation spectroscopy, that can provide 

information on the orientation of the terminal methylene groups in the ester SAMs, important in 

context of the work function. 
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■ Associated Content 

Supporting Information. Details of the surface potential measurements; additional HRXPS data; 

additional details on the band-structure calculations; additional details on molecular dynamics 

modeling; plane averaged electrostatic energies – geometry dependence of energy-oscillations; 

and summary of calculated core-level shifts and work function changes. This information is 

available free of charge via the Internet at http://pubs.acs.org. 
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Table 1:  SAM Precursor Molecules of This Study and Their Abbreviations 

Compound Abbreviation 

SH(CH2)11CH3 C12 

SH(CH2)15CH3 C16 

SH(CH2)17CH3 C18 

SH(CH2)19CH3 C20 

SH(CH2)21CH3 C22 

SH(CH2)5COO(CH2)9CH3 C5EC10 

SH(CH2)10COO(CH2)4CH3 C10EC5  

SH(CH2)10COO(CH2)9CH3 C10EC10  

SH(CH2)10COO(CH2)14CH3 C10EC15  

SH(CH2)15COO(CH2)4CH3 C15EC5  

SH(CH2)15COO(CH2)9CH3 C15EC10  

SH(CH2)20COO(CH2)4CH3 C20EC5 

SH(CH2)10OOC(CH2)9CH3 C10E*C10 (reverse ester) 

SH(CH2)10COO(CH2)4COO(CH2)4CH3 C10EC4EC5 (double ester) 
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