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Abstract

The main goal of this contribution is to determine the exmtaof an industrial robot, such that the
energy consumption becomes a minimum during the manipalafithe tool center point (TCP) from
a start position to a given end point within a predefined ti®ech tasks can be restated as optimiza-
tion problems where the functional to be minimized consistee endpoint error and a measure for
the energy. The gradient of this functional can be calculdg solving a linear differential equation,
called the adjoint system. On the one hand the minimum ofdkefanctional can be achieved by
the method of steepest descent where a proper step size bagaand or on the other hand by a
Quasi-Newton algorithm where the Hessian can be appretiaide theory is applied to a six-axis
robot and the identification leads to a reduction of 47% ofdlgmal energy.

Keywords: optimal control, multibody dynamics, adjoint system, matation, calculus of variation.
1. Introduction

In this contribution an approach to such inverse dynamioalblems is presented. It starts from an
optimal control formulation of the problem by introducingcast functional which has to be min-

imized subject to a system of differential equations (ci, J]). The gradient computation of the

cost functional is based on the so called adjoint method. tDetter convergence a Quasi-Newton
method is used instead of the simple gradient method. Térerghe Hessian matrix is approximated
by using the BFGS-algorithm.

The adjoint method is already used in a wide range of optitimzgroblems in engineering sciences.
Especially, in the field of multibody systems, the compuwotanf the gradient of the cost function is
often the bottleneck for computational efficiency and thpiat method serves as the most efficient
strategy in this case. The basic idea of the adjoint methdleisntroduction of additionahdjoint
variables determined by a set of adjoint differential emunst from which the gradient can be com-
puted straightforward. This main idea directly correspotalthe gradient technique for trajectory
optimization pioneered by Bryson and Ho [3].

Various authors have utilized the adjoint method in the isgitg analysis of multibody system, as
e.g., [4, 5]. Bottasso et al. [6] presented a combined ictia@proach of the adjoint method in
multibody dynamics for solving inverse dynamics and treggcoptimization problems, also similar
to the ideas presented in [7].
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For a signal energy optimal manipulation of the robot a costfional is introduced, which consists
of the quadratic input signals in every time step and of aated Scrap-function which defines the
end point deviation.

The identified movements were tested on a PUMA six axis robiith the measured control variables
the required energy was evaluated. Based on this test datasaderably energy reduction was
detected.

2. Problem definition

At first, let us consider a nonlinear dynamical system

q=v
T 1)
M(q)v = f(q,v,u,t),

whereq € R" is the vector of generalized coordinates and= R" is the vector of generalized
velocities. In addition M is then x n mass matrix angf € R™ the force vector. The vectat
indicates the control variables in an opened or enclosadmégC R™. By introducing the vector of
state variables™ = (¢" v") we may rewrite Equation (1) by

&= f(x,u,t) x(tg) = xo. 2

In general the force vectgf is a continuous vector field which depends on the stateontrolsu
and on time. In robotics, the position and velocity of the tool centemnp¢T CP) will be of particular
interest instead of the joint angles and angular velocititsnce, the system outpytc R’ is given
by

y=g(x).
In order to meet a predefined end point we have to satisfy thadsry condition

g(x(ty)) = 4. ©)
However, we substitute the boundary condition of Equat®)rbf the optimal control problem

& = f(x,u,t)
b : (4)
J:/ h(z,w,t) dt + S(t;, (L)) —> Min.

to

where the integral describes the energy consumption anBidtag-functions includes the end point
error. If the closed regioh is not empty the solution of theptimal controlproblem of Equation (4)
leads to an energy optimal manipulation of the dynamicalksyof Equation (2).

3. Gradient computation

To determine the gradient of the cost functional (4) we fidgt aero terms to it:

7= [ bt + 7 (w0 at Sl 20) ©)

to ~\~
=0Eq. (2)
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The Lagrange-multiplierp are denoted as adjoint variables and are arbitrary at tiis. gotegration
by parts of the ternf pz dt leads to

J = /tf (H+p'z)dt+S(ty,z(ty) —p'x zf, (6)

to 0

where theHamiltonian H (x, u, p,t) = h(x,u,t) + p' f(x,u,t) is introduced. In order to find a
minimum of the cost functional with respect tou we consider the variation of according to a
small changeéw which is given by

6J = /tf [(Hy +p") 0z + Hydu] dt + [Sa(ts z(ty)) — P (tf)] dz(ty) + p' (to)dz(ty). (7)

to

Due to the fact that no variation of the states at ¢, is allowed, the ternp(¢)dx (o) is zero. If the
adjoint variables are defined, such that

p' =—H, and p'(t;) = Syt z(ty)), (8)

the complex relations betweér: andjw need not to be computed and the variation/aiccording
to Equation (7) is reduced to

ty
5J = / Hyou dt. (9)
to

Equation (8) is a linear and time-variant system of diff¢éi@@requations which have to be solved
backwards in time starting at= ¢;. Hence, the largest possible increasé fis obtained, ifu(t)

is chosen in the direction off,|. For that reasori/,] may be considered as the gradient of the cost
functional J (u).

4. Numerical determination of the optimal control

Based on the adjoint gradient computation, outlined in tle®ipus section, we may now search for
a controlu which minimizes the objective functiondl First of all, the method of steepest descent
is described, where we always walk a certain distance aloagégative gradient until we end up
in a local minimum ofJ. Due to the costly line search step during every iteratioth 4ae slow
convergence the gradient method is extended to a QuasieNengthod. Therefore, we have to solve
the problem of findings such that the gradient becomes zero.

4.1. The Method of Steepest Descent

The method of steepest descent tries to find a minimum of dikmor, subsequently, of a functional
by walking always along the direction of its negative gratlid his concept has first been developed
to optimal control problems by H.J. Kelley [8] and A.E. Brys®].

The gradient is already derived from the adjoint system Wwiscshown in Section 3. Now we use
H and simply walk a short distance along the negative gradient By reason of numerics the
continuous functions are discretized. Hence, the costitumal reads

J(u) ~ J(uy,us, ..., uy) (10)
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whereu; = u(t;) andty, ..., ty is a sequence of consecutive time steps in the intétyals]. A
variation of the controls:; leads to a variation of the cost functional

N ~
- 0J
=1

On the other hand, the variatiegiv can be expressed by Equation (9) which, after discretisatio
results in

N
1=1
whereH,,; is the evaluation off,, att = ¢;. Hence, the gradient of the discretised functional may be
identified as )
oJ
8ui
in which At; = t; — t;_;. For walking in the direction of the negative gradient a $mamberx > 0
has to be chosen to get the increment

If x is sufficiently small, the updated contral + du; will always reduce the cost functiondl.
However, finding the numbeyt such that/ is reduced may require several simulations of the system
equations. For that purpose, the increments given by Emuétil) are considered as functions«of
After solving the equations of motion witla + ju as inputs also the objective functionbecomes,
ultimately, a function ofx. By means of a line search algorithm one may find a numbar a
predefined interval), Kma Which minimizes/.

= H,;At;

4.2. Application of a Quasi-Newton Method

Itis well known that the convergence of the gradient metisadther slow, especially near the optimal
solution. Hence, a Newton method provides an alternatipecgeh to find the minimum of the cost
functional J. The basic idea is the following one: 4 = (u],uJ,...,u})" is defined by a zero
gradient, i.e. by the equations

VJ =

. AT
o ],
ou,’  Touyn|

which can be solved fo&. by Newton’s method. However, the Hessighis required for that pur-
pose. To avoid the full computation &, which would be extremely time consuming, several quasi-
Newton methods have been developed. They all approximatéléssian by using the gradients
of successive Newton-iterations. For example, the Hessaarbe estimated efficiently by the well
known Broyden-Fletcher-Goldfarb-Shani{8FGS)-Algorithm (c.f. [10]). Even its inverse can be
efficiently obtained by applying th&herman-Morrison formuléc.f. [11]).

We compute an approximatiol?I_1 of the inverse of the Hessian from the BFGS-algorithm. Then,
an incremenbd« of the discretized control signal is given by

5’U,1
5’(1,2 ~ 1 ~

——H VJ (12)

5’U,N
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Figure 1. Schematics of the six-axis Figure 2. Image of the six-axis PUMA robot
PUMA robot

Note, that it is strongly recommended to use a quasi-Newtsthad which directly approximates the
inverse of the Hessian. Otherwise, if the original Hesssatomputed, a very large and dense matrix
must be inverted, since the number of componentswiight become large.

The inverse of the Hessian after- 1 iterations is given by

T T T
Hl;-il-l _ (I _ p-llc_qk) H,:l (I _ ql_T_pk) + pf_pk (13)
q;. D q;. Dy q,. Py

wherel is the identity matrixp, is the gradient direction of the"-iteration andg,, is the change of
the gradient during the last iteration.

5. Application to the six-axis-robot

The presented method is used to minimize the signal enenmgguooption of the robot which is de-
picted in Figure 1. The reason why we have chosen this robbaisa lot of different parameters
are available which are necessary for the evaluation arification of the results. Afterwards, the
simulation results are verified at a real six-axis-robotalitis shown in Figure 2.

5.1. Problem definition

The system consists of three degrees of freeddmd, and d; which denote the relative rotation
angles of the joints. Due to the complicated structure ofdbeations of motion and the minor
influence on the energy consumption the three wrist joingsfixed. First of all the equations of
motion are derived and have the foim= f(x, u, t) with the initial conditionz(ty) = x, and where
u = [My, My, Ms]T contains the torques of the motors ang- [0y, 6, 65, 61, 0, 65]T is the vector of
states of the dynamical system. The system oujpst g(x) is a nonlinear function which depends
on the states and describes the coordinates of the toolrqmitey = [z(t), y(t), z(¢)]".

For the energy optimal manipulation of the robot from a spaint =, to a given end-poiny, ¥y
(c.f. Table 1) within a predefined tintg we define the cost functional in the form

ty
J :/ u'u dt +S(ts, x(ty)). (14)
to
signal-energy
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Table 1. Start and end position of the robot

| start position| final position| start velocity| final velocity |

61 0° —90° Orad/s Orad/s
0 0° —10° Orad/s Orad/s
05 0° 45° Orad/s Orad/s
zrep | —0.15320m | 0.81441m Om/s Om/s
yrep | 0.92112m | —0.15320m Om/s Om/s
zrep | 0.02032m 0.22233 m Om/s Om/s

which contains the quadratical signal energy to be minichiZéne scrap-functio’ of Equation (14)
describes the endpoint error and is specified by

S(z.t) = a {B y(@) - g + B—zq - @} } (15)

wherea and are proper weighting factors afgly contains the position and velocity of the endpoint
in coordinates of the system output.

5.2. Results

The identification process of the signal energy optimal malation was started with the standard
motion which is given from the robot controller. The reswltsre verified on a real six-axis robot at
the home institution. Hence, the data of the experiment haedimulation results are summarized in
Figure 3. On the vertical axis the signal energy consumpsi@otted over the time. It can be seen,
that the standard manipulation wastes a lot of energy atélenbing and at the end of the motion
due to the abrupt acceleration of the bodies. However, treatenergy optimal manipulation starts
with a smooth movement of the heavy bodies. Therefore, themad speed of the axis have to be
higher in comparison to the standard manipulation to reaerenhdpoint in the same period of time.
As a result the reduction of the signal energy after the adptition process is abod? % with respect
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Figure 3. Build-up of the mechanical energy consumption
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to the standard manipulation of the robot control.

In the upper part of Figure 4 the joint angles of the signatgyneptimal manipulation in comparison
to the standard manipulation of the robot are plotted oveetiObviously, the smooth characteristic
of the optimal solution, which corresponds to the dashesidem be seen. However, the standard ma-
nipulation, which corresponds to the solid line, shows themonly used standard motion calculated
by the robot controller. In the lower part of Figure 4 the toeg are depicted over the time. Here, the
smooth characteristic of the optimized solution can be stzarly.

0 +g--{= = min. signal energy OJH;\’:‘— - min. signal energy 50
\— standard rob. manip. 0N — standard rob. manip.
e T 0
P To T S S 2
<L 20
10
i|[- = min. signal energy
0r<---- 3 — standard rob. manip.
u u u u u u u u u i i i
0 02 04 06 038 1 0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
Time t [s] Time t [s] Time t [s]
3 T 0.4
- - min. signal energy 3 - - min. signal energy - - min. signal energy
2 Jl— standard rob. manip. ,3 ,,,,, — standard rob. manip. 0.3 14} ---1— standard rob. manip.

My [Nm]
M; [Nm]

Figure 4. Trajectory of the states and torques in the axis

6. Conclusions and outlook

To reach a desired endpoint within a predefined time, the itlefirof a Scrap-function is required
only. In addition, various requests to the system behawaore considered in the integral part of the
cost functional, such as the signal energy of an indusulabt.

This paper should reveal that the trajectory with minimghsil energy does not lead automatically
to the mechanical energy optimal manipulation of the robla@vertheless, in practice such quadratic
input terms are often used because this leads to less sttegsocomponents. In simply terms you can
say that the electrical parts are protected against ovienigeend the operation life span is increased
additionally if the torques remain small and smooth ovemtfagipulations.

For the results in Section 5.2. we neglected the three degifdecedom of the wrist and fixed them
to keep the equations of motion and the necessary matricgdesi However, if we consider this
joint angles in the system equations it is possible to reaptedefined endpoint in different ways.
This means that more than one final configuration of the rokistewhich meet the end point in the
coordinates of the tool center point.
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Furthermore, the proposed identification can be done dujegation. Instead of the forward simu-
lation the measures of the previous manipulation can betossave the adjoint system and calculate
the gradient. Hence, the defined cost functional, and thexdhe signal energy, decreases during
the manipulation of the robot. A big advantage is that it ismecessary to exchange any part of the
robot, only an update of the robot control is required.

Acknowledgment

This project was supported by the program "Regionale Wettblesfahigkeit @ 2010-2013”, which
is financed by the European Regional Development Fund angbirernment of Upper Austria.

References

[1]  S. Reichl, W. Steiner. The Optimal Control Approach toraynical Inverse Problemdournal
of Dynamic Systems, Measurement, and Conval 134, Is. 2, 2012

[2] K. Nachbagauer, S. Oberpeilsteiner, K. Sherif, W. Steiifthe Use of the Adjoint Method for
Solving Typical Optimization Problems in Multibody Dynarsi Journal of Computational
and Nonlinear Dynamic014

[3] Bryson, A., Ho, Y.: Applied Optimal Control. HemispheM/ashington, DC (1975)

[4] Eberhard, P.: Adjoint Variable Method for SensitivitynAlysis of Multibody Systems Inter-
preted as a Continuous, Hybrid Form of Automatic Differaiiin. In: Proc. of the 2nd Int.
Workshop on Computational Differentiation, Santa Fe.d&telphia, pp. 319-328 (1996)

[5] Haug, E., Wehage, R., Mani, N.: Design Sensitivity Arsyof Large-Scaled Constrained
Dynamic Mechanical Systems. Journal of Mechanisms, Trassoms, and Automation in
Design1062), 156—-162 (1984)

[6] Bottasso, C., Croce, A., Ghezzi, L., Faure, P.: On theiamh of Inverse Dynamics and Tra-
jectory Optimization Problems for Multibody Systems. Miodidy System Dynamic&1(1),
1-22 (2004)

[7] Bertolazzi, E., Biral, F., Lio, M.D.: Symbolic-Numerindirect Method for Solving Optimal
Control Problems for Large Multibody Systems. Multibodysg&m Dynamicd3, 233-252
(2005)

[8] H.J. Kelley. Method of Gradients, Optimization techniques with applaas to aerospace
systemdViathematics in Science and Engineering, Elsevier Scietf%?

[9] A.E. Bryson. Optimal Programming Problems with IneqyaConstraints II: Solution by
Steepest-AscerlAA Journal (1964), 25-34.

[10] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, C.A. Saggsal. Numerical Optimization - The-
oretical and Practical AspectsSpringer Berlin Heidelberg, 2006

[11] Jack Sherman and Winifred J. Morrison. Adjustment ofraverse matrix corresponding to a
change in one element of a given matrdan. Math. Statist21(1):124-127, 03 1950.

224



