
Controlling and Tracking an Unmanned Ground
Vehicle with Ackermanndrive

Eugen Kaltenegger1, Benjamin Binder1, Markus Bader2

Institute of Computer Aided Automation
Vienna University of Technology, Austria

Abstract
This work presents a tracking and control mechanism for an UGV (Unmanned Ground Vehicle) and
its integration into ROS (Robot Operating System). The overall goal of which this work is part, is
the creation of a fleet of ackermann robots to conduct studies in the field of autonomous driving. In
order to achieve this goal a 1:10 RC-race car model is equipped with an Arduino board to control
the vehicles actuators and a Raspberry Pi to host the ROS server. In addition, a physics simulation is
used to model this car for testing. The shown results support the used velocity motion model and the
applicability of the developed interface to control both platforms.

1. Introduction

During the last years, many studies have been conducted in the field of autonomous driving [6, 1] and
the automotive industries as well as companies like Google are showing great interest in this market.
Up to 2007, competitions like the DARPA Grand and Urban Challenge pushed research towards
autonomous cars with great success [4]. Nowadays, events like the Freescale Cup1, the Carolo-Cup2

and others are created to target young students by using RC-race car models which in terms of costs
are very attractive. With this in mind, the Institute of Computer Aided Automation at the Technical
University of Vienna is planning to create a fleet of autonomous ackermann robots to attract students
and to at one point take part in such a competition.
This paper describes the creation of the first of these vehicles and its simulation while also introducing
a common interface and a tracking system supporting them.
The robot is based on a RC-race car with an ackermann steering. The computation and controlling
of the robot is achieved through a Raspberry Pi and an Arduino Uno equipped with a motor-shield.
In addition the vehicle is simulated with Gazebo [8], an open source software for physical simulation
based on ODE (Open Dynamics Engine). To keep the vehicle and the simulation compatible, the same
interface is used, which is based upon the open source software ROS (Robot Operating System) [2].
The vehicle and the simulation are both using the same velocity motion model [4] which equals the
prediction step of a Kalman filter for motion tracking [4, 7]. The velocity motion model introduced
by Thrun is defined for differential drive robots, but given several changes, which will be further
explained, it can also be used for ackermann robots. Since they are commonly used in robotics and
provide enough information for an ackermann robots motion, differential drive commands are chosen
as input. A ROS node transforms the differential drive commands to ackermann commands, which
include a velocity and a steering angle. The robot and its simulation publish their estimated pose
and its uncertainty into ROS topics. This allows for easy comparison of the trajectory driven by the

1Freescale Cup: https://community.freescale.com/docs/DOC-1284 (25.04.2016)
2Carolo-Cup: https://wiki.ifr.ing.tu-bs.de/carolocup/ (25.04.2016)

Proceedings of the OAGM&ARW Joint Workshop 2016 DOI: 10.3217/978-3-85125-528-7-27

193



RC-race car, its simulation and the motion model.
This paper is structured as follows. At first, related research is introduced and the interface as well
as the adapted velocity motion model are described. Based on this knowledge, the robot and its
simulation are annotated and their basic structure is discussed. Additionally, the trajectories of the
two vehicles are compared and the reasons why the trajectories and the motion model deviate from
each other are explained. Finally, further improvements for the adapted motion model in use with the
robot and the simulation are introduced.

2. Related Work

Autonomous driving is currently a research topic of both major automobile manufacturers like Volvo,
Ford or Nissan and newcomers to the topic of automobiles like Google [6]. At the DARPA urban
challenge, universities like the Massachusetts Institute of Technology and the Stanford University
present their research accomplishments [3]. An example for research on autonomous vehicles with
ackermann drive using ROS is Marvin, the autonomous car by the University of Texas at Austin.
Members of the Marvin-Team ported the software of the autonomous car to ROS and shared it this
way. The ackermann group represents a community developing open source ROS packages for such
vehicles. For the project discussed within this paper, ROS is used because is allows to combine and
enhance such packages for navigation and odometry. Twist messages3 and ackermann messages4 are
used to control the robot, and odometry messages5 are used for tracking. The structure of ROS allows
to combine all these different messages contained in different packages into one interface.

3. Interface

The interface is created to ensure compatibility between the robots of the fleet and the simulation. For
that reason, the interface converts twist messages to ackermann messages. It also converts these ROS
messages into serial commands and vice versa for those vehicles unable to run ROS. The converting
structure of the interface is shown in Figure 1.
Twist messages are commonly used as motion commands because the six parameters they hold pro-
vide enough information to define motions in a three dimensional space. In the further, twist messages
holding only one linear velocity and one angular velocity are assumed, since they provide enough in-
formation for motions in a two dimensional space. Ackermann messages contain a velocity, a steering
angle and information about the acceleration and the jerk. The last two are not used for this project.
The velocity of the ackermann messages equals the linear velocity of the twist messages. The steering
angle of the ackermann messages can be calculated with the knowledge of the cars geometry. A curve
radius of an imaginary third front wheel is calculated by dividing the rotational velocity of the twist
message by the its linear velocity. With this radius, the knowledge of the wheelbase and the usage of
trigonometric functions, the steering angle ϕ can be calculated. Based on the motion commands the
car and its simulation receive, they return odometry messages containing the estimated pose and its
uncertainty. This information is calculated based on the motion model.

3Twist Messages: http://wiki.ros.org/geometry msgs (25.04.2016)
4Ackermann Messages: http://wiki.ros.org/ackermann msgs (25.04.2016)
5Odometry Messages: http://wiki.ros.org/nav msgs (25.04.2016)

194



Twist Messages

Odometry Messages
Interface

Odometry Messages

Ackermann Messages

Serial Ackerman Messages

Serial Odometry Messages

Real Car

Simulated Car

Figure 1: The interaction of the different messages of the interface.

4. Motion Model

Simple problems like wheel slips, bumps, and inaccuracies within the robot effect the robots mo-
tion [4, 7]. The tracking system for this project is based on the velocity motion model which consid-
ers these errors. Although the velocity motion model introduced by Thrun [4] is conceived for robots
able to turn around their own axis, its simple structure allows its customization for ackermann drive
robots. Based on the motion commands, the velocity motion model calculates the robots estimated
pose and a matrix in which its uncertainty is contained. This is equal to the prediction step of a
Kalman filter [4, 7].
Further, the motion model is applied to a flat space represented by x and y and the parameter θ which
stands for the robots orientation as shown in Figure 2.

w
he
el
ba
se

ϕ

R

pWr

v

θW

yW

xWpW0

track

kingpin

ϕR

ϕL

Figure 2: The geometry of the ackermann robot in the two dimensional space.

195



By adding the change of x, y and θ in one time step to the previous pose, the robots pose at any given
time can be calculated recursively.

xt (xt−1,u) =




xt = xt−1 + v · cos (θt−1) · ∆t
yt = yt−1 + v · sin (θt−1) · ∆t

θt = θt−1 + v·tan(ϕ)
wwheelbase

· ∆t


 (1)

The change of the pose is represented by the jacobian matrix G (xt−1, u), which is the derivative of
the pose xt−1 with respect to the pose xt−1.

G =
∂xt (xt−1,u)

∂xt−1

=




1 0 −v · sin (θt−1) · ∆t
0 1 v · cos (θt−1) · ∆t
0 0 1


 (2)

The jacobian matrix V (xt, u) is the derivative of the pose xt−1 with respect to the motion command
u. This equals the change of the motion.

V =
∂xt (xt−1,u)

∂u
=




cos (θt−1) · ∆t 0
sin (θt−1) · ∆t 0

tan(θt−1)·∆t
wwheelbase

v·∆t
wwheelbase·cos2(θt−1)


 (3)

The error matrix M (u, α) considers the effect of motion errors, while the parameter α considers their
severity.

M =

(
α1v

2 + α2ϕ
2 0

0 α3v
2 + α4ϕ

2

)
(4)

The covariance matrix Pt contains the uncertainty of the pose.

Pt = G · Pt−1 ·GT + V ·M · V T (5)

The first term of calculation 5 represents the pose prediction and the second term the uncertainty in
the accuracy of the motion. The covariance can be visualized by plotting the ellipse defined by the
eigen-vectors and the eigen-values of this matrix. Without any correction, the covariance ellipse will
grow whenever the robot moves. The growth rate of this ellipse is defined by α which depends on the
robot and its environment.

(a) (b)

Figure 3: The (a) real robot and its (b) simulation.

196



5. Real Car

A Tamiya RC-race car in the scale 1:10 is used as base frame for the ackermann robot, see Figure 3a.
The vehicle is powered by a BLDC (Brushless Direct Current) motor, and a servo motor is used for
steering. Since the position can be derived from internal hall sensors within the BLDC motor there is
no need for additional encoders.
An Arduino Uno microcontroller is used because of its real time capability and its special hardware for
such low level actors and sensors. Serial messages from the interface are the means of communication
between the Arduino Uno and the Raspberry Pi. In this project, Raspbian is the operating system for
the Raspberry Pi because it is based on Debian, which supports ROS. A W-LAN stick is installed on
the Raspberry Pi to grant access from other workstations.
The Sensor Level CPU which is represented by the Arduino Uno is responsible for controlling the
car, reading sensors and presenting the data in a useful way. A motion controller [5] is implemented
for the BLDC motor. Three signals similar to sinus waves generated with pulse width modulation on
the Arduino Uno are applied to the motor. The calculation of the pose and its covariance also takes
place on the Arduino Uno based on the velocity motion model mentioned before. The calculation
frequency is about 100Hz which results in an update rate of 0.01s. The controlling structure of the
vehicle is shown in Figure 4.

RaspberryPi

ROS

Arduino Uno

Controller BLDC

Steering
ServoSerial

USB

Figure 4: The control hierarchy from ROS to the cars actuators.

Since the steering appears to be the primary source of uncertainty, two improvements are considered.
The first is to replace the unsteady steering with a more stable one. The second is to upgrade the car
with an encoder for the steering.

6. Simulated Car

Validation of systems and algorithms is an important task in mobile robotics. Thus, Gazebo is used
for visualisation and physical simulation of the robot. The simulation contains the parts which are
vital for the robots motion. They are imported to Gazebo with a URDF (Unified Robot Description
Format) file, see Figure 3b. In the first attempt to simulate the ackermann drive robot, a link was
created for each part of the steering and they were connected with joints. The parent-child structure
of joints in URDF makes it impossible to create such a closed loop, so a workaround was needed. To
get an ackermann steering like behavior, a ROS plug-in is used to control the kingpins, see Figure 2.
The plug-in calculates the angles for both front wheels and adjusts the kingpins accordingly. For
these calculations, the knowledge of the wheelbase and the track is required. The curve radius of the
imaginary third front wheel has to be calculated. It has to be considered that the radii of the left and
the right front wheel differ by a half track width from the previously calculated radius. Based on this,
the steering angles ϕL and ϕR can be calculated, using the trigonometric functions.

197



To avoid unintended movements of the kingpin joints, the Gazebos real time update has to be 2000Hz
and the maximum step size 0.0005s.
The following three improvements would increase the accuracy of the simulation. Firstly, detailed
measurements should be taken to replace the wheels approximated friction parameter. Secondly,
damping should be added to the vehicle. Finally, the front wheels should be powered and equipped
with a differential.

7. Results

Two tests are carried out to quantify the accuracy of the real and the simulated robots motion. For
the first test, a semicircle with the maximum steering angle and a velocity of 0.1m/s was driven. The
low speed used during the test allows for errors stemming from wheel slipping and centrifugal force
to be ignored. The motion model represents the motion commands in this test, so it can be used as a
reference. The radius of the semicircle driven by the real car is 5cm bigger than the reference. This
is caused by the unsteady steering of the RC-race car. The simulated car drives a trajectory differing
from a circle. During the whole test, the positions of the real and the simulated car are covered by the
covariance ellipse. In Figure 5a the test results are shown.
For the second test, a straight line was driven with a velocity of 0.1m/s, based on the motion models
response. The real car stops 4.5cm before the reference, because of inaccuracies in the measurement
of the wheel size. The simulated car stops 1.8cm behind the reference. The reason for this deviation
is that unlike Gazebo, the motion model does not regard the kinetic energy of the vehicle. Again, the
covariance ellipse covers the position of the real and the simulated vehicle. The test results are shown
in Figure 5b.
To increase the accuracy of the motion model, two improvements can be made. Firstly, the number
of updates can be increased to downsize the time steps. Secondly, the kinetic energy of the vehicle
should be considered by the velocity motion model.

Motion Model
Real Car
Simulates Car
Covariance

(a)

Motion Model
Real Car
Simulates Car
Covariance

(b)

Figure 5: Comparison of trajectory and visualisation of the (a) rotational and (b) the straight behavior
of the covariance ellipse.

198



8. Conclusion

This paper presents the creation of an ackermann robot, its simulation and their common interface.
Furthermore, the implementation of a velocity motion model for these vehicles was explained. For
future work, the created software will be allocated to the robotics community. Adding sensors like
an IMU (Internal Measurement Unit) to the vehicle to increase the accuracy of the motion tracking is
planned. Therefore, the interface needs to be extended to handle the new data input. This platform
will be expanded by adding self localisation, thus sensor input is required. Based on the knowledge
gained with the robot, further vehicles will be built.

References

[1] S. A. Beiker. Einführungsszenarien für höhergradig automatisierte Straßenfahrzeuge. In Au-
tonomes Fahren, pages 197–217, 2015.

[2] M. Quigley et al. Ros: an open-source robot operating system. In IRCA Workshop on Open
Source Software, 2009.

[3] S. Thrun et al. Stanley: The robot that won the darpa grand challenge. Journal of Robotic Systems
- Special Issue on the DARPA Grand Challenge, 23(9):661–692, 2006.

[4] S. Thrun W. Burgard D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2005.

[5] A. Kiruthika R. Agasthiya T. Ramesh. Speed control of a sensored brushless dc motor using flc.
International Journal of Engineering Research & Technology (IJERT), 3(4):1–4, 2014.

[6] P. Ross. Robot, you can drive my car. IEEE Spectrum, 51(6):60–90, 2014.

[7] R. Siegwart I. R. Nourbakhsh D. Scaramuzza. Introduction to Autonomous Mobile Robots. MIT
Press, 2011.

[8] P. Castillo-Pizarro T. V. Arredondo M. Torres-Torriti. Introductory survey to open-source mobile
robot simulation software. In Robotics Symposium and Intelligent Robotic Meeting (LARS), 2010
Latin American, pages 150–155, 2010.

199


