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Abstract
Automated storing, retrieving, and delivering items is an important part of Industry 4.0 application.
For low-volume this task is done usually manual. In this paper we present an architecture and a
proof-of-concept implementation for order picking using the robot Baxter from Rethink Robotics. The
main contribution besides providing full functioning prototype is a dependable control architecture.

1. Introduction

Industry 4.0 is one of the keywords, when we talk about the next level of production. Industry 4.0
represents the 4th industrial revolution and promises improvement of productivity through automated,
self-organizing and self-optimizing processes. It addresses the needs of high-quality products which
are also highly customized but still ready for mass production.
This work contributes to the field of Industry 4.0 by developing an assistant robot for order picking.
Such robots share the environments with humans. In a typical warehouse system items can be stored
in larger transport boxes. The transport boxes again can be stored in shelves to save space. If a specific
item needs to be picked the transport box first needs to be pulled out of the shelf and then the item can
be picked and delivered. This procedure is called order picking. For items with a moderate frequency
this type of picking is usually done by hand which is a monotonic and time consuming task. In our
scenario we tend to automatize that task.
The system we propose is based on a 3-TIER architecture. The planning layer uses an artificial
intelligence (AI) planner to generate a list of skills the robot has to execute. The planner outputs a list
of skills, the robot needs to execute in order to achieve its goal. Skills are composed of skill primitives.
These primitives can perform perception, manipulation, grasping tasks or any combination of those.
Failures are already detected at the level of the primitives where local recoveries can be performed.
If these recoveries fail too, these errors are reported to the executive layer. This architecture ensures
the detection and recognition of failures. Together with appropriate steps for recovery dependable
execution is achieved. The proposed architecture was realized as a proof-of-concept implementation
using the two arm robot Baxter from Rethink Robotics. For details about the realized system we refer
the interested reader to [10].
The reminder of this paper is organized as follows. In the next sections we briefly discuss related
research and the target environment. In Section 4. the proposed system architecture is presented.
Due to the space constraints we focus on skill primitives. In the next section we briefly present an
evaluation focused on the skill primitives. In section 6. we draw some conclusions.
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2. Related Work

Numerous works exist about high-level planning for robot systems solving complex tasks using sets
of simpler system capabilities. This system capabilities are called skills. Dividing a complex task in
such skills has multiple benefits like flexibility, reuse of skills and good software portability.
Pederson et al. shows in [13] the division of a complex task a sequence of multiple subtasks (= skills).
Skills are described being the fundamental building blocks or the system capabilities. If a new com-
plex task should be executed, the system needs not being reprogrammed. It is sufficient to simply
reorder the skills. Similar to our approach, an execution monitor surveys the outcome of the skills.
In [12] skills are ported to different robotic platforms. Skills get further decomposed into skill prim-
itives. With this detailed decomposition the hardware level is abstracted from the skills itself. The
advantage of modularity and the abstraction of tasks is pointed out.
The authors in [14] introduce a 4-TIER architecture, with the same idea of abstraction for skills and
skill primitives as in the previous papers. The lowest layer ensures the hardware abstraction and so
the re-usability on different platforms. The next layer contains action and perception primitives. The
top layers handles the planning task. As the previous addressed work, this abstraction is used for
easing the human robot-interaction. All these papers show a clear distinction between tasks, skills
and primitives and focus on portability and easy execution of complex new tasks. But their focus is
on human-robot interaction. The human in the loop defines a new task through reordering skills. The
next works present a successful task planning utilizing artificial intelligence (AI) planner instead of
humans in the loop ordering skills. In [6] Huckaby defined skills with preconditions and effects in the
model space of the problem. The initial state and goal are stated in the process space. They proposed
PDDL [7] as planning language.
In [6] the focus lies on the high-level. It is assumed that skills and their primitives always succeed. In
[11] a system is proposed which transfers the high-level description from the AI planner to a behav-
ioral state machine. Failures in the primitive execution are detected by a vision system and recoveries
are performed.
Finally some works addressing the order picking problem are discussed. The authors in [9] present
a mobile bin picking system. Items are picked from a box standing on the ground and placed at a
delivery station. The high-level of this system is a finite state machine (FSM).
In [3] a software architecture and their implementation for grasping objects is presented. Some of
these concepts are used in our work too. The collision environment is a 3D occupancy grid excluding
robot parts. Known and recognized objects are represented as geometric primitives or as mesh mod-
els of the objects. In [1] the authors present a pick and place approach where they have to deal with
known and unknown objects, cluttered workspace and noisy sensor data.

3. Target Environment and System

For the a proof-of-concept implementation of the proposed order picking system we use the robot
Baxter from Rethink Robotics (see Fig. 1a). It is a two-arm robot with internal sensors such as
cameras and proximity sensors in the wrists. In order to get a global overview of the environment
we added a RGBD camera on top. The environment Baxter operates in is shown in Figure 5b. It is a
mock-up of a typical manual storage.
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(a) Baxter with its inbuilt and additional mounted sen-
sor.

(b) Environment in which Baxter performs the order
picking task.

Figure 1: Robot Baxter and the environment it operates in.

4. Architecture

In Figure 2 the conceptional overview of the proposed 3-TIER architecture is shown. The 3 layers
for planning, executive and behavioral control are separated. The communication is clearly defined.
The top layer represents the planning layer. The planner uses the information of the domain and the
problem to generate a plan. The plan is a sequence of skills that have to be executed to reach a given
goal. The plan is forwarded to the next layer. The executive layer takes care of the execution of
each skill. It knows about the composition of the skill primitives. The primitives are located in the
behavioral layer. The advantage of this abstraction is its clear structure and its modularity. For further
reading about the 3-TIER architecture please see [8, p. 244–277].

Figure 2: Overview of proposed system’s architecture.

4.1. Planning Layer

The top layer of the 3-TIER architecture is the planning layer. The planning layer uses a domain and
problem description of the given environment and task. It is based on the Planning Domain Definition
Language (PDDL) modeling the system capabilities (further on called skills), the current state of the
environment and the goal state. The authors of [6] showed that PDDL is an appropriate choice for
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robotic tasks. The domain contains information about all the objects which can appear in the envi-
ronment. Further it knows about the skills the robot is able to perform. A skill is defined through its
name and the its parameters. A skill has a precondition and an effect. The precondition is the state the
environment needs to be in before the action can be performed. The effect of a skill is the description
of the environment after the skill is performed.
The problem describes the initial state s0 and the goal g, which are a set of propositions [4]. The goal
state sg is a state, that satisfies g. First object instances are defined, which occur in the environment
and their initial properties are stored. The planner takes the domain and the problem description and
generates a list of skills, which need to be performed to solve the given problem. We use the planner
SGPlan6 [5]. This list of skills is forwarded to the executive layer of the 3-TIER architecture.
For solving the order picking task, the following skills are required: moveBoxFromLevelToTray,
movBoxFromTrayToLevel and graspItem. Lets assume an environment containing transport boxes
BOX A, BOX C and a shelf with levels LEVEL 1, LEVEL 2 and the goal of picking one item from
BOX C placing it at the delivery box DBOX C and picking two items from BOX A placing it at deliv-
ery box DBOX A. The planner comes up with the following plan (see Listing 1).The name of the skill
is the first parameter, followed by the parameters the skill requires. So the first skill, which has to be
performed is moveBoxFromLevelToTray. The BOX C is moved from LEVEL 2 to the TRAY.

Listing 1: Output of planner for example domain and problem.
0 (MOVEBOXFROMLEVELTOTRAY BOX C LEVEL 2 TRAY)
1 (GRASPITEM BOX C DBOX C TRAY)
2 (MOVEBOXFROMTRAYTOLEVEL BOX C LEVEL 2 TRAY)
3 (MOVEBOXFROMLEVELTOTRAY BOX A LEVEL 1 TRAY)
4 (GRASPITEM BOX A DBOX A TRAY)
5 (GRASPITEM BOX A DBOX A TRAY)
6 (MOVEBOXFROMTRAYTOLEVEL BOX A LEVEL 1 TRAY)

4.2. Executive Layer

The executive layer receives a list of skills from the planner. The executive layer handles the execu-
tion of single skills. Each skill is composed of skill primitives, which are the fundamental building
blocks of each skill. The executive layer knows about this decomposition and ensures that primi-
tives are executed in right order to guarantee a successful skill execution. This decomposition of the
skills moveBoxFromLevelToTray, moveBoxFromTrayToLevel and graspItem is shown in Table 1. The
composition of skill primitives for each skill is intrinsic knowledge of this layer. Further it monitors
the outcome of each primitive. This layer has also the opportunity to perform recovery behaviors, if
primitives fail. If no recovery can be performed or the recovery fails, this failure is reported to the
planning layer. The decomposition of the moveBoxFromLevelToTray and its execution is shown in
Figure 3.

skills moveBoxToRack graspItem moveBoxToLevel

skill
primi-
tives

detectHandle detectItem detectHandle
graspHandle graspItem graspHandle
moveArmToSupportPose deliverItem moveArmToSupportPose
pullBox pullBox
moveBox moveBox
deliverBoxOnTray deliverBoxOnLevel

Table 1: Within this table the skill primitive composition of all skills are listed.
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Figure 3: Decomposition of skill moveBoxFromLevelToTray into its primitives and how executive layer
handles the execution.

4.3. Behavioral Control Layer

This layer holds all skill primitives. The primitives are platform-dependent and have to be re-
programmed for specific robot platforms. The upper layers are immediately portable to other plat-
forms. The primitives have a defined interface but their implementation is different for different
platforms. Skill primitives can perform perception, manipulation, grasping tasks or any combination
of those. Local recoveries are performed in this layer. If a recovery is impossible skill primitives
report their error. A skill primitive can be used by different skills.
Figure 4 depict for instance the primitive of looking for items once the box is on the tray. For the
box detection the point cloud of the top RGBD camera and the PCL implementation [16] of FPFH
features [15] (initial detection) and ICP (fine alignment) are used. The control of the arms are realized
using the MoveIt! framework [2]. Items are detected using the RGB cameras in the wrist. Figure 5a
shows the inspection of a box while Figure 5a depict the internal representation of the situation.

5.4 Behavioral control

Shelf
Tray

Box

Baxter

movement

Figure 5.22: After the box is turned the box’s handle is released and the grasping arm
moves away from the handle.

Figure 5.23: In this figure the different blocks of the detect item skill primitive are shown.
First it detects the transport box, then it moves the arm over the box and
detects the item using the hand camera. If the skill succeeds the item pose PPG
and the box pose BPG ares returned.

67

Figure 4: Detect Item primitive. PPG represents the global item pose. BPG represents the global box
pose.

5. Results

The major result of this work is a working prototype implementation of the proposed order picking
system based on the robot Baxter and standard software packages such as ROS or MoveIt!. But we
are interested in particular in the dependability of the system. Therefore, we performed a detailed
evaluation of the individual skill primitives.
For the evaluation we executed individual skill primitives multiple times (around 50 trials each) in
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5 System Overview
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Figure 5.25: This figure shows the inspection points in more detail.

(a)Baxter inspecting the box with it’s
endeffector camera.

(b)Baxter inspecting the Box visualized in
RViz. The white point cloud indicates
the detected box. The orange voxels vi-
sualize the collision scene.

Figure 5.26: This figure shows Baxter inspecting the box in reality as well as visualized in
RViz.
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(a) Baxter inspecting the box with it’s end-effector
camera.
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Figure 5.25: This figure shows the inspection points in more detail.

(a)Baxter inspecting the box with it’s
endeffector camera.
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Figure 5.26: This figure shows Baxter inspecting the box in reality as well as visualized in
RViz.
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(b) Baxter inspecting the box visualized in RViz. White points
indicate the detected box. Orange voxels represents the colli-
sion scene.

Figure 5: Realization of the primitive Item Detection.

given setups. Details about the evaluations can be found in [10]. In Figure 6 the results of the
individual skill primitives are shown. The green bar indicates the successful execution rate, the gray
bar marks the failure executions which are detected by the system and the red bar shows the failures
which are not detected by the system. Even if the success rate of some primitive is not overwhelming,
the system detects the failure and reacts to it. The recognition of failures is one fundamental ability
of reliable systems. As soon as the errors are detected, the robot can react to it autonomously.
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6. Conclusion

In this paper an autonomous order picking system was presented. In order to keep the system modular
and portable a 3-TIER architecture was developed. The planning layer utilized an AI planner, which
uses a PDDL description of the planning problem. The planner received the description of system
skills, as well as start and goal state and provided a list of planned skills. Each skill is composed
of skill primitives. These skill primitives are needed to address manipulation of the box, grasping
items and perceptual tasks. The decomposition of skills into primitives enriched with monitoring
and recovering capabilities contribute to the dependability of the system. The proposed system was
implemented as a prototype using the robot Baxter and standard robotics software libraries.
Using this prototype implementation the concept of the skill primitives was evaluated. Although
most primitives worked quite well, the evaluation pointed out some problems of this proof-of-concept
system. Within most primitives, the major problem was that the execution of planned trajectories
was aborted because Baxter was not able to execute them precisely enough. However these errors
were detected by our system and reported to the high-level controller. For future work a more reliable
execution of arm motions by Baxter needs to be addressed.
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