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Abstract

Recovering the 3-D shape of the left heart chamber from bi-planar 2-D x-ray projection images is a
challenging task since only sparse and noisy data is available for reconstruction. In this work, a 3-D
statistical shape model (SSM) of the left ventricular (LV) anatomy is learned from high-resolution
CT data and utilized as a-priori information to solve the under-determined and ambiguous recon-
struction problem. A 2-D/3-D registration method fits the SSM to the x-ray images of the patient by
calculating simulated projections of the SSM and minimizing the difference between simulated and
given projections. The presented approach is evaluated using simulated and real patient data. For
patients where both projection images and CT data are available, the reconstructed LV is compared
to the true shape known from CT. Our results show a good correspondence between recovered and
true shapes. Using a SSM as anatomical a-priori information for reconstruction helps in limiting the
space of possible solutions and allows to generate statistically plausible shapes.

1. Introduction

Cardiac diseases are one of the most common causes of death in the industrialized world today. In
the case of acute myocardial infarction, for instance, interventional x-ray angiography is state-of-
the-art for both treatment and diagnosis. To evaluate the viability of myocardium after infarction, a
catheter is advanced into the left heart chamber (ventricle) and contrast agent is injected to opacify
the ventricular cavity during radiation. Bi-planar cine-angiographic equipment is used to acquire two
x-ray image sequences simultaneously from standard right anterior oblique (RAO) and left anterior
oblique (LAO) views, see Fig. 1.
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Figure 1. Biplane cine-angiographic x-ray equipment used in the catheter lab to acquire images for quantitative
left ventricle analysis.

The gold standard for quantitative left ventricle analysis in the catheter lab is based on the evaluation
of end-diastolic (ED) and end-systolic (ES) endocardial contour information gathered from these 2-
D projection images. The ED and the ES volume are calculated (by applying e.g. the Area-Length
method) and used to determine ejection fraction (EF), i.e. the volume that is squeezed out during
contraction. Contour information is further utilized by wall motion analysis methods (like e.g. the
Centerline method) to quantify myocardial viability. However, since 3-D information is lost due to
projection, volumetric diagnostic parameters, like EF, can only be approximated and wall motion
is only evaluable for LV surface areas with the boundary visible in the projection image. Novel
approaches aim at reconstructing the spatio-temporal shape of the LV to perform analysis in 3-D [10].

2. Related Work

In classical computed tomography (CT), hundreds of projections are acquired by a fast rotating x-ray
gantry. Analytical and algebraic reconstruction techniques exploit this dense information to yield
voxel values that vary within a continuous range. However, these techniques typically fail if merely
two (noisy) projections are available. C-arm CT is a relatively young and hybrid type of imaging
modality, where the C-arm is rotated during acquisition to increase the number of projections. Tech-
niques known from CT can then be utilized to address the reconstruction problem [8]. In the catheter
lab, however, the application of C-arm CT is challenged by the higher amount of x-ray dose and
bolus compared with conventional x-ray angiography (XA), and the slower rotational speed of the
C-arm compared with classical CT when imaging the rapidly moving heart. Whether C-arm CT will
substitute XA as a routine method in future remains to be seen [9].

Unlike classical (continuous) CT, discrete tomography focuses on reconstruction problems where
only a small number of projections – as small as two – are available and the object’s intensity levels
are limited, i.e. discrete, and known a-priori [3]. Using additional a-priori information is crucial
when trying to solve such under-determined and ambiguous problems, since this can reduce the space
of possible solutions and improve the ability to deal with noisy projection data. Some of the early
approaches published in the field of 3-D LV shape recovery from XA rely on the assumption that
ventricular cross-sections follow certain geometric priors (like connectedness, convexity, symmetry,
roundness, etc.), however, this is usually too restrictive in practice. In the work of Prause and Onnasch
[7], digitized post-mortem human LV casts are used as a-priori information. Other approaches often
do not incorporate anatomical a-priori information at all [5], [6].
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The novelty of our approach is that anatomical a-priori information is learned from high-resolution
CT data and modeled as a SSM, which is then fit to the angiograms by a 2-D/3-D registration method.
The application of SSMs for recovering shape from angiography has been successfully demonstrated
by other authors for hard-tissue objects like the pelvis [4] or the vertebrae [1], but not yet for non-rigid
contrast-enhanced soft-tissue objects like the LV. This paper is a refinement of our previous work [12].
For the sake of comprehensibility, parts of Sec. 3 and 4 are based thereon.

3. Methods

3.1. Statistical Shape Models

In order to build a 3-D SSM [2], a set of segmentations of the target shape is required. The contour
of each shape Si is described by n landmarks, i.e. points of correspondence that match between
shapes, and represented as a vector of coordinates: xi = (x1, ..., xn, y1, ..., yn, z1, ..., zn)i

T . All ns
shape vectors form a distribution in a 3n-dimensional space. This distribution is approximated by
x = x̄ + Φb, with x̄ = 1

ns

∑ns

i=1 xi being the mean shape vector and b being the shape parameter
vector. By varying b, new instances of the shape class are generated. Φ is obtained by performing
a principal component analysis (PCA) on the covariance matrix C = 1

ns−1
∑ns

i=1 (xi − x̄)(xi − x̄)T .
PCA yields the principal axes of this distribution; the eigenvalues give the variances of the data in the
direction of the axes (= eigenvectors). To reduce noise and dimensionality only those eigenvectors
with the largest t eigenvalues are used. t denotes the number of the most significant modes of variation
(MOV) and is chosen so that a fraction f of the total variation is retained,

∑t
j=1 λj ≥ f

∑
λj . Prior

to statistical analysis, location, scale and rotational effects must be removed from the training shapes
to obtain a compact model. Commonly, Procrustes analysis is applied to minimize D =

∑ |xi − x̄|2,
the sum of squared distances (SSD) of each shape to the mean.

3.2. Modeling of Anatomical A-Priori Information

A Siemens Somatom Sensation Cardiac 64 multi-slice CT is used to acquire 20 data sets at 65% of the
heart phase (R-R peaks) with an effective slice thickness of 0.5 mm and an average in-plane resolution
of 0.33 mm. The size of the image mask in the transversal plane is 512 × 512 pixels; the number of
slices varies between 220 and 310. The endocardial LV surface is manually segmented by experts
in cardiology. Contours are specified in each fifth axial slice by interactively setting control points
of a cardinal spline; intermediate contours are interpolated. The surface of an LV is represented as a
stack of contours. Details like the atrial concavity, the apex and the aortic valve region are retained
during segmentation to obtain an accurate model of the anatomy. Point correspondence among the
training shapes is established based on back-propagation of the landmarks on a mean shape [11].
After segmentation, landmark extraction and removing location, scale and rotational effects, the SSM
is built as outlined in Sec. 3.1. The first three MOV of the final model are illustrated in Fig. 2.

3.3. Left Ventricular Shape Recovery

In discrete tomography, a common strategy for solving the under-determined and ambiguous recon-
struction problem is to use numeric optimization [3]. As an exact solution will usually not be avail-
able, the projections of the recovered object need only be approximately equal to the given projection
data. In this work, a 2-D/3-D registration approach is followed to minimize the difference between the
given projections and the simulated projections derived from the SSM. To transform the SSM from
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Figure 2. First three modes of variation of the LV SSM.

model space to image space the following equation is used: y = R ((x̄+ Φb) s+ T ). Both shape
parameter vector b and the parameters for pose p = {R, s, T}, i.e. rotation matrix R, scale factor s
and translation vector T , have to be found so that the registration error is minimized. Unlike [4] and
[1], we derive R from Euler angles to reduce the dimensionality of the registration problem. Orienta-
tion in 3-D space is thus described using 3 angles, i.e. Rα,β,γ , instead of a 3 × 3 matrix. To generate
statistically plausible shapes [2], b is constrained by ±2

√
λi. In contrast to [4] and [1], we exploit

the training data to derive constraints for p. The training instances in model space are transformed
to image space and the range of the pose vector components is analyzed. Note that this can be re-
garded as additional a-priori information. To minimize our cost function, the Nelder-Mead algorithm
is applied. Experiments showed that optimizing pose and shape sequentially is more efficient than
optimizing both simultaneously.

3.3.1. Cost Function

Our cost function depends on the shape and the pose parameter vector and incorporates both contour
and densitometric information derived from the given projections Pi and the simulated projections
P ′i (b, p): ε(b, p) =

∑nP

i=1 (ωCεC(Pi, P
′
i (b, p)) + ωDεD(Pi, P

′
i (b, p))). Contour-related error εC is ob-

tained by equiangular sampling of the given and the simulated contour and by calculating the SSD for
the sampled points. As density-related error εD, the sum of squared difference metric is used. Total
error ε is defined as the weighted sum of εC and εD over all nP = 2 projections.
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3.3.2. Extraction of Contour and Densitometric Information

In the case of in-vivo angiograms, the endocardial contour is segmented by experts in cardiology prior
to reconstruction. Densitometric information is derived by means of digital subtraction angiography.
From the initial frames of an angiographic sequence showing no contrast agent, a mask is deduced.
Logarithmic subtraction of mask and current frame is performed due to the exponential attenuation of
x-rays. To reduce noise and the inhomogeneous saturation of contrast agent within the ventricle, two
frames before and after a frame are used for averaging. In the case of simulated angiograms, contour
information is extracted by border detection, whereas densitometric information is measured directly.

3.4. Simulation of Angiographic Projections

Both the presented reconstruction approach and the following evaluation strategy require the simula-
tion of projections. Our model of the bi-planar angiographic device calculates the exact position of
the x-ray sources and the image intensifier planes for the projections. For a given viewing direction,
shape and pose parameter vector, a simulated projection of the SSM in image space is obtained in
two steps. First, the polygonal model is converted into a 3-D binary image, V , whose values denote
the presence/absence of contrast agent. Then, a projection is derived using ray-casting. Since densit-
ometric information is expected to be linear for reconstruction, an exponential attenuation of x-rays
has not been incorporated into the simulation process.

4. Results

The presented methods are implemented and evaluated using Matlab and the Image Segmentation and
Registration Toolkit (ITK) C++ library. To quantify the difference between original and recovered
shape, two geometric and three volumetric similarity metrics are defined for comparing the polygonal
models and the binary image representations, respectively. An exemplary reconstruction result of the
performed leave-one-out experiments is illustrated in Fig. 3.

Figure 3. Reconstruction example showing original shape (bright) and recovered shape (dark).

4.1. Similarity Metrics

Similarity of two polygonal models S1 and S2 is measured based on a given distance metric d:
simd(S1, S2) = 1

2
( 1
n

∑n
i=1 d(pi, S2)+ 1

m

∑m
j=1 d(qj, S1)), pi=1,...,n ∈ S1, qj=1,...,m ∈ S2. Distance met-

ric dmin is defined as the Euclidean distance between point pi and its closest point on S2: dmin(pi, S2) =
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minqj∈S2 |pi− qj|. Distance metric dortho denotes the Euclidean distance between pi and the point ob-
tained by intersecting S2 with the surface normal at pi: dortho(pi, S2) = |pi − surfn(pi) ∩ S2|.

Let |V | denote the volume of a 3-D binary image V . Volume conformity is measured by calculating
the difference of volumes (DOV): simDOV = 1−abs(|Vorig|−|Vrec|)/|Vorig|. To assess shape confor-
mity, the volume of differences (VOD) metric is used: simV OD = 1 − | xor(Vorig, Vrec)|/|Vorig|. An
alternative metric for shape conformity, derived from kappa statistic, quantifies the overlap between
two binary masks: simκ = 2|V1 ∪ V2|/(|V1|+ |V2|).

4.2. Evaluation based on Simulated Data

Evaluation with simulated data is performed based on leave-one-out experiments. From the 20 seg-
mented CT data sets, all but one are used to learn a SSM. Simulated angiograms from RAO and LAO
view are calculated for the left-out data set as described in Sec. 3.4, and from these angiograms shape
is recovered by fitting the learned SSM. The recovered shape is compared with the segmented shape
of the left-out data set using the defined similarity metrics. This procedure is repeated for each data
set. The DOV metric in Tab. 1 shows that the original volume is approximated at high accuracy. This
is essential for assessing volume-based diagnostic parameters, like EF. Concerning shape conformity
we can see that a high overlap between the two shapes is achieved, although the V OD is still im-
provable. The distance metrics dmin and dortho are near the mean reconstruction error of 2.3 mm
[11].

Sim. Metric Mean Std. Min. Max.
dmin (mm) 2.61 0.65 1.65 3.53
dortho (mm) 2.49 0.77 1.38 3.72
DOV (%) 94.56 3.55 87.35 98.73
VOD (%) 78.17 5.30 68.88 84.91
κ (%) 87.12 2.53 82.54 90.18

Table 1. Evaluation of LV shape recovery from simulated angiograms.

4.3. Evaluation based on Real Patient Data

For three patients, a corresponding CT image is available for the RAO/LAO in-vivo angiograms.
Note that this allows an accurate evaluation of our approach since the true 3-D LV shape is exactly
known from CT. Evaluation based on the three in-vivo angiograms is performed as follows: 1) a SSM
is learned from 19 of the 20 data sets, with the CT data set corresponding to the angiograms being
excluded, 2) the model is fit to interpolated angiographic RAO/LAO frames of a single cardiac cycle
showing the LV at 65% of the heart phase, and 3) the recovered shape is compared with the true 3-D
shape of the excluded CT data set using the defined similarity metrics. The angiograms are acquired
using a Siemens Bicor and a Siemens AXIOM Artis dBC system, capturing images of 512 × 512
pixels and 8-bit gray level depth at a frame-rate of 25 fps. For temporal registration with CT data in
step 2, the ECG information accompanying the angiograms is utilized. The results for three in-vivo
angiograms are given in Tab. 2. Our experiments indicate that values similar to the evaluation with
simulated data are achieved, although the number of data sets is relatively small. The best shape
conformity is achieved for example #2. For example #3, the reconstruction yields suboptimal results.
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Sim. Metric #1 #2 #3 Mean Std.
dmin (mm) 2.43 2.32 2.95 2.57 0.34
dortho (mm) 2.36 2.05 3.36 2.59 0.68
DOV (%) 98.01 92.87 82.11 91.00 8.11
VOD (%) 74.72 80.13 68.12 74.32 6.01
κ (%) 87.49 90.41 79.75 85.88 5.51

Table 2. Evaluation of LV shape recovery from three in-vivo angiograms.

5. Discussion and Conclusion

In this work, a new method for recovering the LV from contrast-enhanced bi-planar cine-angiographic
x-ray images has been proposed. The novelty of our approach is that a-priori information about the
LV anatomy is learned from high-resolution CT images, modeled as a SSM and utilized for recon-
struction. A 2-D/3-D registration technique is applied to fit the SSM to angiographic projections.

When only two (noisy) projections are available, the reconstruction problem usually becomes under-
determined and ambiguous. In such cases, the incorporation of a-priori information plays an important
role, since this can limit the space of possible solutions and improve the ability to deal with noisy
data. In contrast to [7], anatomical a-priori information is derived from data of in-vivo instead of
post-mortem subjects; other approaches often do not utilize this kind of information at all. Although
only one bi-planar acquisition is used for reconstruction, our approach is generally not limited by the
number of projections. However, since additional acquisitions increase the amount of radiation and
bolus, this number is usually kept to a minimum.

Using a SSM for reconstruction allows to generate statistically plausible and patient specific shapes.
Unlike other 3-D LV SSMs often found in literature, anatomical areas like the apex, the atrial con-
cavity and the aortic valve region are preserved in our model. This is necessary to generate complete
contour and densitometric information; otherwise, additional errors are introduced in the reconstruc-
tion process. Further note that these areas typically overlap with the ventricular cavity in projection
images and are therefore hard to recover without prior knowledge.

Evaluation with both simulated data and real patient data shows promising results. The LV volume
is recovered at high accuracy. This is important for assessing volumetric diagnosis parameters, like
EF. Concerning shape conformity, the overlap between original and recovered volume is high, though
there is still place for minor improvements. Future work will focus on improving the model fitting
process and on evaluating our approach with more in-vivo angiograms.
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