Microstructure characterisation of double glass-ceramic coatings on TIMETAL 834

T. Moskalewicz¹, F. Smeacetto², G. Cempura¹ and A. Czyrska-Filemonowicz¹

1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, PL-30-059 Kraków, Al. Mickiewicza 30, Poland

2. Politecnico di Torino, Materials Science and Chemical Engineering Department, Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

corresponding.tmoskale@agh.edu.pl Keywords: glass-ceramic coating, microstructure, titanium alloy

TIMETAL 834, a near- α titanium alloy, offers increased tensile strength and creep resistance up to 600°C together with improved fatigue strength [1]. This alloy is applied for fabrication of last stages compressor parts in modern gas turbines [2]. One of the major limitations of TIMETAL 834 alloy restricting its use at high temperatures is a poor oxidation resistance at temperature above 600°C. To improve it, a surface treatment is frequently applied. Glass-ceramic based coatings are very promising materials for protection of titanium alloys against oxidation at high temperature [3]. Their processing by a simple and low cost slurry method is an excellent method to manufacture reproducibly protective coatings with complex and homogenous chemical composition, uniform morphology and coating thickness [3,4].

The aim of the present work was to characterise a microstructure and phase composition of the double glass-ceramic coating produced on TIMETAL 834 alloy by slurry technique. The coating was characterised by SEM and TEM (SAED, EDS, STEM-EDS). TEM investigations were performed using JEM-2010 ARP on cross-section thin foils prepared by PIPS. The SAED patterns were interpreted with the JEMS software [5].

The coating consists of two layers with a different microstructure and phase composition: outer SiO₂-P₂O₅-B₂O₃-CaO-K₂O-Na₂O layer (about 140 μ m thick) and intermediate SiO₂-Al₂O₃-CaO-Na₂O one (about 215 μ m thick) (Figs 1a,b). Several crystalline phases were found in the outer layer: mainly SiO₂ (tetragonal primitive), Na₂Ca₃Si₆O₁₆ (triclinic primitive) and CaSiO₃ (triclinic primitive). Additionally an amorphous phase, containing mainly Si and O as well as some Ca and K, was identified. The fine particles (50-100 nm in size) of the Ca₅P₂Si₁O₁₂ (orthorhombic primitive) in SiO₂ grains were observed. Also some amorphous particles containing mainly Si and O (up to 100 nm) in amorphous phase were found. The CaSiO₃ grains in amorphous matrix are shown on Fig. 2a. The intermediate layer is composed of the crystalline phases: CaSiO₃ (monoclinic primitive), Na₂Ca₃Si₆O₁₆ (sporadically) and amorphous phase (containing mainly O, Si, Al and some Ca). The NaAlSiO₄ grains in amorphous matrix are shown on Fig. 2b. The microstructure of the asreceived alloy consists mainly of the α phase (hcp), a small amount of the β one (body-centred cubic, bcc) and precipitates of the Zr₅Si₄ phase (tetragonal primitive) [6].

The applied coating has a good adhesion to the substrate and significantly improves the oxidation resistance of the TIMETAL 834 alloy at 800°C. No weight change of the coated alloy was observed after oxidation during 200 hours at 800°C, in contrary to a significant weight change for the uncoated specimens.

- 1. M.J. Thomas et al., Mater. Characterisation 55 (2005) p388.
- 2. W. Kaysser, Surf. Eng. 17 (2001) p305.
- 3. T. Moskalewicz et al., Surf. Coat. Tech. in press, DOI: 10.1016/j.surfcoat.2009.02.016
- 4. F. Smeacetto et al., Carbon 47 (2009) p1511.
- 5. P. Stadelmann, (2004) JEMS Java Electron Microscopy Software, http://cimewww.epfl.ch.
- 6. T. Moskalewicz et al. J. Microscopy 223 (2006) p195.
- 7. Acknowledgments. This work was performed under bilateral co-operation agreement between the AGH University of Science and Technology and the Politecnico di Torino (MNiSW, no. 183/N-Włochy/2008/0).

Figure 1. Cross-section of an outer (a) and an intermediate (b) layer of double glass-ceramic coating on TIMETAL 834 substrate, SEM electron back scattered images.

Figure 2. Microstructure of the outer (a) and intermediate layer (b) of the double glassceramic coating on TIMETAL 834 as well as SAED patterns and their identification, TEM, cross-section thin foil.