Various superstructures formed by tin-vacancy ordering in K₈Sn₄₄□₂ and Rb₈Sn₄₄□₂ clathrates

Wilder Carrillo-Cabrera, Michael Baitinger, Burçu Uslu and Yuri Grin

Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany

carrillo@cpfs.mpg.de

Keywords: electron diffraction, vacancy ordering, superstructures, clathrate-I, K₈Sn₄₄

The K₈Sn₄₄ \square_2 and Rb₈Sn₄₄ \square_2 clathrates are Zintl phases stabilized by creating tin vacancies (\square) in the covalent clathrate-I framework [1]. Recently, Rb₈Sn₄₄ \square_2 [2] and Ba₈Ge₄₃ \square_3 [3] were reported with partial and full vacancy ordering. Both show the same cubic $2a_1 \times 2a_1 \times 2a_1$ superstructure (space group $Ia\overline{3}d$), with the vacancies building up a spiral substructure along {100} (similar to that in Fig. 1c).

In contrast to earlier work on K₈Sn₄₄ \Box_2 (Pearson symbol *cP52*, $a_1 = 12.03$ Å, space group $Pm\overline{3}n$) [1, 4], in our X-ray powder diffraction (XRPD) patterns splitting of the reflections is observed at high 2θ values, indicating a non-cubic unit cell. In addition, weak reflections between the main ones revealed the formation of a superstructure. By studying the samples on a Tecnai 10 electron microscope (equipped with CCD camera TemCam-F224HD from TVIPS), selected area electron diffraction SAED patterns show the existence of three different superstructures. The first one is a tetragonal $2a_1 \times 2a_1 \times 2a_1$ superstructure (SAED) patterns in Figs. 1a, 1b) observed in a sample annealed at 350 °C (quenched in water). A suitable crystal structure model (a = 24.063(2) Å, c = 24.007(2) Å, $I\overline{4}2d$ space group, Pearson symbol *tI*416) was derived from the structure of Ba₈Ge₄₃ \square_3 . In this superstructure (see Figs. 1c, 1d), 1.5 of 2 vacancies per formula unit are fully ordered. The pairwise ordering of the majority of the vacancies in the basal plain (Fig. 1d) explains the shortening of the caxis. The second superstructure has an orthorhombic $4a_1 \times 2a_1 \times 2a_1$ unit cell (oC832, SAED patterns in Figs. 2a, 2b) and was found in a furnace cooled sample (after annealing at 350 °C). The third one is a tetragonal $4a_1 \times 4a_1 \times 2a_1$ superstructure (*tI*1664; see Figs. 2c, 2d) found in a sample annealed at 200 °C (quenched in water).

TEM study of a Rb₈Sn₄₄ \Box_2 sample annealed at 400 °C (water quenched) revealed a giant orthorhombic $8a_1 \times 2\sqrt{2}a_1 \times 2\sqrt{2}a_1$ superstructure (*oC3328*; see Fig. 3). Other superstructures related to the *oC832* and *tI*1664 variants in K₈Sn₄₄ \Box_2 were also observed in this Rb₈Sn₄₄ \Box_2 sample. No obvious splitting of the reflections in the high 2θ region of Rb₈Sn₄₄ \Box_2 XRPD patterns was observed. Thus, it is expected that in the Rb₈Sn₄₄ \Box_2 superstructures the distribution of the tin vacancies is more homogeneous (no vacancy pair structure) than in the K₈Sn₄₄ \Box_2 superstructure variants. Within the same space group, there are at least two different modes for vacancy arrangement.

- 1. J.T. Zhao, J.D. Corbett, Inorg. Chem. 1994, **33**, 5721
- 2. F. Dubois, T.F. Fässler, J. Amer. Chem. Soc. 2005, **127**, 3265.
- 3. W. Carrillo-Cabrera, S. Budnyk, Yu. Prots, Yu, Grin, Z. Anorg. Allg. Chem. 2004, 630, 2267.
- 4. J. Gallmeier, H. Schäffer, A. Weiss, Z. Naturforschung 1969, **24b**, 665.

Figure 1. (a) [100] and (b) [110] SAED patterns of the *I*-centered tetragonal $2a_1 \times 2a_1 \times 2a_1$ superstructure (*tI*416) of K₈Sn₄₄ \square_2 . (c), (d) Fragments of the $2a_1 \times 2a_1 \times 2a_1$ structure showing the arrangement of the tin \square vacancies (spiral substructure along *a* axis in (c)). At short-range level, pairs of vacancies are formed on the basal plane (gray arrows in (d)).

Figure 2. (a) [001] and (b) [011] SAED patterns of the orthorhombic $4a_1 \times 2a_1 \times 2a_1$ superstructure (*oC*832) of K₈Sn₄₄ \Box_2 . (c) [001] and (d) [101] SAED patterns of the *I*-centered tetragonal $4a_1 \times 4a_1 \times 2a_1$ superstructure (*tI*1664) of K₈Sn₄₄ \Box_2 .

Figure 3. (a) [001] SAED pattern of the orthorhombic $8a_1 \times 2\sqrt{2}a_1 \times 2\sqrt{2}a_1$ superstructure (*oC*3328) of Rb₈Sn₄₄ \Box_2 . (b) Tilted [001] SAED pattern (~6° about the *a** axis), showing the different Laue zones, (uvw)_n* layers for n = -2, -1, 0, 1, 2, 3, 4.