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Introduction: While motor output is a major focus for rehabilitative BCIs, examining the
possibilities of other modalities may also be useful for basic neuroscience research. Here, we
examine online classification of visual perception and attention, using Support Vector Machines
(SVM) trained on EEG data from earlier visual presentation trials.

Material, Methods and Results: EEG data was recorded from 8 participants in a visual presentation
environment, as in [1]. Lab Steaming Layer [2] — similar to BCILAB — was used to capture data
from a Biosemi ActiveTwo with 32-70 active recording electrodes at low latency. Data was
processed in real time, with minimal filtering, and very noisy channels identified and rejected.
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In further tests, we attempted to classify  Attention i A ' ‘
not only currently-observed object classif er chart -

. . . throughout trial e sy
identity, but also which of two on-screen ' ‘
objects the subject was focussing their
attention on. While classification
accuracy dropped greatly in response to
this harder task, we could still identify attention targets at 0.73 AUC, whereas the attentional
distractor was identified at 0.58 AUC. Through an extended online trial feedback experiment, as in
[3], we could examine persistence and conscious control of this target-attention-specific classifier
activity. With this, we find tentative evidence that subjects can consciously control the activity of a
minority of ICs by choosing to attend to specific visual objects.

Fig 1 - trial structure and training label
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