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Introduction: Recent replication failures in psychology [1] and the prevalence of low-powered studies in
neuroscience [2] have prompted calls for reform of statistical practices, with the current situation even being
characterized as a “statistical crisis” [3]. One commonly identified problem is the over-reliance on null
hypothesis significance testing (i.e. p-values), and a commonly proposed solution is to move towards parameter
estimation and towards Bayesian methods [4]. Although hierarchical Bayesian models of accuracy have already
been proposed for brain decoding studies [5], they have not been directly compared to their non-hierarchical
Bayesian versions. In this abstract we present a simulation study of Bayesian models of accuracy, and show that
hierarchical models improve subject-wise estimates of accuracy, compared to non-hierarchical models.

Material, Methods and Results: The hierarchical model of accuracy is shown in Fig. 1.A. In the
non-hierarchical model subject-wise accuracies ¥, are considered as directly observed, without sampling error,
and their values are set at y,/ T}; the non-hierarchical model is otherwise identical to the hierarchical model. The
simulated accuracies were obtained using the hierarchical model as a generative model. We simulated 2500
experiments, with the number of subjects per experiment uniformly sampled between 5 and 20, and the number
of trials per subject uniformly sampled between 20 and 200. The group-wise accuracy p, for each experiment
was uniformly sampled between 0.55 and 0.95 on the probability scale, and std. dev. o, was uniformly sampled
between 0.2 and 0.8 on the log-odds scale. The Bayesian inference was performed using Markov chain Monte
Carlo simulation. The errors in subject-wise accuracy estimates for the two models are shown in Fig. 1.B.
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Figure 1. (A) The hierarchical model of BCI accuracy in a group of users. (B) Root-mean-square (RMS) error in the subject-wise
accuracy estimates on the log-odds scale, depending on the type of the model and the number of trials for the subject.

Discussion: The subject-wise estimates of accuracy are improved using the hierarchical model, especially for
subjects with low number of trials, without the loss of accuracy at the group-level estimates (group-level results
omitted here for space). The reason for the improvement is the pooling of information across subjects.
Moreover, using the Bayesian hierarchical model, a full posterior distribution for subject-wise accuracies is
available, rather than just a point estimate such as sample accuracy used in the non-hierarchical model.

Significance: We demonstrate the effectiveness of the hierarchical Bayesian model of BCI accuracy, and show
it to be superior to the non-hierarchical model in estimating subject-wise accuracy. The improvement is
particularly evident when a low number of trials is available for a subject, which is a common situation in BCI
research.
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