A Prognostic Measure on EEG-based Motor Imagery Brain-Computer Interface for Stroke

Kai Keng Ang^{1*}, Cuntai Guan¹, Kok Soon Phua¹, Karen Sui Geok Chua², Effie Chew³

¹Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore; ²Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore; ³National University Health System, 1E Kent Ridge Road, Singapore.

*Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01, Connexis, Singapore 138632. E-mail: kkang@i2r.a-star.edu.sg

Introduction: Several clinical trials using Electroencephalograpy-based (EEG) Motor Imagery Brain-Computer Interface (MI-BCI) had yielded clinically significant motor improvements in stroke rehabilitation [1]. Recent results had revealed that the revised Brain Symmetry Index (rBSI) computed using EEG from 11 stroke patients who received MI-BCI intervention were negatively correlated with their motor improvements measured by Fugl Meyer Motor Assessment (FMMA) scores [2].

Material, Methods and Results: This paper investigates the correlation of rBSI with FMMA improvements on a larger population of 26 stroke patients that underwent BCI for stroke rehabilitation, which includes 9 patients of the 2nd trial [3] we conducted from 1 January 2011 to 1 January 2014, and 6 from the 3rd trial we conducted from 1 January 2011 to 31 June2013 [4], in addition to the 11 patients from the 1st trial [2] we conducted from 1 April 2007 to 30 October 2009.

The result of using the temporal parameter of 8-25 Hz on the time segment 0.5 to 2.5 relative to the instruction cue to perform motor imagery using all the channels of the EEG data collected from the therapy sessions yielded a significant negative correlation of r=-0.412 (p=0.036) between the revised Brain Symmetry Index (rBSI) computed from the EEG and the motor improvements measured by FMMA scores as shown in Figure 1.

Figure 1. Plot of rBSI using the temporal parameter of 8-25 Hz on all the channels of the EEG data collected from the therapy sessions of the 26 stroke patients (11 from the 1st trial, 9 from the 2nd trial, and 6 from the 3rd trial) against the FMMA score improvement

Discussion: The rBSI captures the asymmetry in spectral power between the two cerebral hemispheres, and the result indicates that the asymmetry in spectral power from 8-25 is related to the motor improvements of the 26 patients who underwent MI-BCI stroke rehabilitation.

Significance: The result suggests a promising direction to investigate further on the use of rBSI as a prognostic measure to predict the motor recovery of using MI-BCI in stroke rehabilitation.

References

[2] Ang KK, Chua KSG, Phua KS, Wang C, Chin ZY, et al. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci 46: 310-320, 2015.

[4] Ang KK, Guan C, Phua KS, Wang C, Zhou L, et al. Brain-Computer Interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng 7: 30, 2014.

^[1] Ang KK, Guan C. Brain-Computer Interface for Neurorehabilitation of Upper Limb After Stroke. Proc IEEE 103: 944-953, 2015.

^[3] Ang KK, Guan C, Phua KS, Wang C, Zhao L, et al. Facilitating effects of transcranial direct current stimulation on motor imagery Brain-Computer Interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil 96: S79-S87, 2015.