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Abstract. Wavelet denoising has been successfully applied to Event-Related Potential (ERP) detection, but it usually
works using channels information independently. This paper presents an adaptive approach to denoise signals taking
into account the channels correlation in the wavelet domain. Moreover, we combine phase and amplitude information
to automatically select a time window which increases ERP detection. Results on the P300 speller show that our
algorithm has a better accuracy with respect to the VisuShrink wavelet technique and the XDAWN algorithm among
22 healthy subjects, and a better regularity than XDAWN.
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1. Introduction
The P300 oddball paradigm such as used in the speller by Farwell and Donchin is the most frequent paradigm used
in Brain-Computer Interfaces (BCI) especially for people with severe disabilities. But the signal-to-noise ratio is so
low that it is necessary to apply preprocessing techniques to improve the P300 detection. This paper presents a new
method to denoise EEG signals, which considers the shared information in the wavelet domain of all channels, based
on their phase angles correlation. Also, our algorithm selects an appropriate time window for each subject, extracting
the interval of interest to effectively discriminate between classes.

2. Material and Methods
2.1. Wavelet-based Semblance
The Wavelets Transform represents a signal x(t) in terms of scaled and shifted versions of a mother wavelet, ψ(t).
The wavelets coefficients are obtained through equation W x

ψ(a,b) =
〈
x(t)|ψa,b(t)

〉
, where a and b are the scale and

translation parameters respectively. Semblance analysis [Cooper, 2009] compare two signals x(t) and y(t), using Con-
tinuous Wavelet Transform (CWT) or the Discrete Wavelet Transform (DWT), based on phase correlations between its
wavelet decompositions W x

ψ and W y
ψ . The first step is to compute the cross-wavelet transform, W x,y

ψ =W x
ψW y∗

ψ , where
∗ denotes the complex conjugate. The cross-wavelet amplitude is given by A = |W x,y

ψ | and its local phase is defined as
θ = tan−1(ℑ(W x,y

ψ )/ℜ(W x,y
ψ )), where ℜ and ℑ correspond to the real and imaginary parts respectively. The semblance

measure S to compare two signals using θ , is defined as S = cosn(θ) where n is an odd integer greater than zero. Its
values range from −1 to 1, where S = 1 indicates that signals are correlated , S = 0 uncorrelated and S =−1 inversely
correlated. It is possible to combine the phase information S and the amplitude A as follows D = cosn(θ)|W x

ψW y∗
ψ |.

As an extension of the semblance, the Mean Resultant Length (MRL) [Cooper, 2009] compares N different signals
(ranging from 0 for uncorrelated signals to 1 for fully correlated signals) and it is compute for each time t and scale a
as:

MRL(t,a) =

√
(∑N

i=1 ℜ(W i,t,a
ψ ))2 +(∑N

i=1 ℑ(W i,t,a
ψ ))2

∑
N
i=1 |W

i,t,a
ψ |

(1)

2.2. Signal Denoising
The fundamental hypothesis of wavelet denoising is that wavelets are correlated with the informative signal and not
correlated with the noise, which globally means that small coefficients correspond to noise. Let xc(t) be the signal
recorded by the cth channel (or electrode) c ∈ {1, . . . ,C} at time t, t ∈ {1, . . . ,T}. The matrix of recorded EEG signals
can be defined as X ∈ ℜT xC. The MRL is computed using the DWT wavelet decomposition of all channels W xc

ψ ,
through Eq. 1. It is possible to establish a correlation threshold τd in order to set to zero all coefficients that are below
it. After this process we can reconstruct the signal using the filtered wavelet coefficients.
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2.3. Time-Window Selection
The P300 responses have a different latency for each person but are studied during a predefined time window after
the stimulus onset. We propose to automatically find an efficient time window by detecting where the discriminative
information lies to remove features which do not carry useful information. The denoised signal can be denoted by
x̃c(t), where c correspond to the channel and t to the instant when the signal started to be recorded. Each x̃c(t) has a
label to indicate to which class belongs. Let M be the set of all signals, M is composed by signals belonging to the
target class T (containing a P300 wave) and signals N which are non-targets, M = {T ,N }. The Grand Averages
GA for each class are computed as GAT = 1

C|T | ∑
C
i=1 ∑x̃∈T x̃i(t) and GAN = 1

C|N | ∑
C
i=1 ∑x̃∈N x̃i(t) where the operator

|.| denotes the cardinal number. After obtaining the Grand Averages, we compute the CWT W GAT
ψ and W GAN

ψ to finally
compute D. The original time window of 1s can be reduced to the interval [tlo, tup] applying a threshold τw, 0≤ τw ≤ 1
to the normalized average of D.

We called the combination of the signal denoising and the window selection using the wavelet-based semblance
the Denoise and Window Selection (DWS) algorithm.

3. Results
Firstly, we compared ours methods, DWS1 (using the same time window for all channels) and DWS2 (using different
time windows per channel) to the wavelet denoising technique called VisuShrink (Stein Unbiased Risk Estimator)
[Donoho and Johnstone, 1995] and the XDAWN algorithm [Rivet et al., 2009]. 10 channels (Fz, C3, Cz, C4, P3, Pz,
P4, PO7, PO8, Oz) for 22 healthy subjects were recorded at 256 sps using the g.tec gUSBamp EEG amplifier. An
eighth order Chebyshev bandpass filter, 0.1–60 Hz and a 60 Hz Notch were used (see akimpech.izt.uam.mx/p300db).
Two different sessions of approximately 16 letters each were used to train and test a Support Vector Machine (SVM),
which in single-trial corresponds to 5520 realizations for training and 5895 for testing with a time segment of 1s.

Algorithms DWS1 and DWS2 perform significatively better, showing that the conjoint channel information is use-
ful for P300 single-trial detection (see Table 1). Finally, we compare DWS1 and DWS2 in Table 2. Our algorithms
reduce the window selection roughly to [20, 850] ms. DWS2 used a smaller time window.

Method mean std min max paired t-test
with DWS1

None 48.23 15.55 18.10 76.19 1%
XDAWN 51.03 15.80 24.44 80.00 1%

Filter [0.1-20] Hz 53.60 14.14 28.25 79.52 1%
VisuShrink 54.80 13.90 33.02 78.57 5%

DWS1 55.83 13.49 34.29 80.95 -
DWS2 55.41 13.88 33.97 81.90 5%

Table 1: Results using Coiflet at level 3, τd = 0.999 and τw = 0.9. The
average and the standard deviation of the letter percentage accuracy over all
subjects and the minimum and maximum accuracy obtained among subjects
are reported. The last column reports the significance level of a paired t-test.

DWS1 DWS2

tlo (ms)
min 1 1

mean 20 23
max 98 305

tup (ms)
min 488 277

mean 848 820
max 1000 1000

Table 2: Results obtained by DWS1 and DWS2 on
the time-window selection. tlo and tup are respec-
tively the lower and the higher bounds in millisec-
onds found over all subjects and channels.

4. Discussion
In this paper, we introduce a new method based on the wavelet-based semblance to exploit the correlated information
among channels. This technique removes noise and establishes automatically an appropriate time window adapted
to each subject. We empirically demonstrate using the P300 speller application that our method is useful to remove
undesirable component of the signals, improving the letter accuracy compare to the other methods and showing more
stability than XDAWN. Further studies are needed to automatically select the thresholds.

References
Cooper, G. (2009). Wavelet-based semblance filtering. Comput & Geosci, 35(10):1988–1991.

Donoho, D. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc, 90:1200–1224.

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xdawn algorithm to enhance evoked potentials: Application to brain computer interface.
IEEE Trans Biomed Eng, 56(8):2035–2043.

Published by Graz University of Technology Publishing House, sponsored by medical engineering GmbH Article ID: 150

akimpech.izt.uam.mx/p300db

	Introduction
	Material and Methods
	Wavelet-based Semblance
	Signal Denoising
	Time-Window Selection

	Results
	Discussion

