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Abstract. We propose an EEG classification algorithm for the mental task BCI paradigm that uses Echo State Net-
works (ESN). In this approach, ESN are used to model the dynamics of EEG during each of several mental tasks.
Classification is performed by applying several of these models and assigning the class label associated with the ESN
that produces the lowest forecasting error. Experiments performed on 14 subjects using a portable EEG system achieve
information transfer rates as high as 15 bits-per-minute with four tasks and 21 bits-per-minute for two tasks.
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1. Introduction

The mental task paradigm for operating brain-computer interfaces (BCI) allows a user to issue instructions to the
system by performing one of several predetermined mental tasks [Keirn and Aunon, 1990]. For example, a user might
silently sing a song to move a cursor to the left or visualize a geometric figure to move it to the right. This approach
does not require external stimuli and may yield discriminable signals with high degrees of freedom. When combined
with user practice and machine learning, we believe that this approach may yield fluid, second-nature control.

In previous work, we proposed a generative EEG classification algorithm for use with the mental task paradigm
that uses Recurrent Artificial Neural Networks [Forney and Anderson, 2011; Forney, 2011]. Here, we extend this
work to use a fast and powerful recurrent network architecture known as Echo State Networks (ESN) [Jaeger, 2003].
We then explore the performance of this system on data recorded in a controlled laboratory environment as well as in
home environments with users that have severe motor impairments.

2. Modeling and Forecasting EEG Signals

First, we show that ESN are capable of accurately modeling EEG signals. This is done by training an ESN to forecast
an EEG signal a single step ahead in time given only the current signal value as input. When applied to an 8-channel
EEG signal with a sampling frequency of 256 Hz and a bandwidth of 4-100 Hz, this technique achieves a root-mean
squared error as low as 7 % of the signal range.

@ o
EEG
—— ESN

Signal

-3

[ T I T 1
6 7 8 9 10

Time (s)

Figure 1: A trace illustrating an ESN transitioning from forecasting to an iterated model at the 8-second mark.

To further support our claim that ESN are able to capture the dynamics of EEG, we also explore iterated models.
In this approach, a feedback loop is placed from the outputs to the inputs of a trained ESN so that it autonomously pro-
duces artificial signals. In Fig. 1, we see the transition from forecasting, before the 8-second mark, to an autonomous
signal, after the 8-second mark. These autonomous signals have rich dynamics that are not clearly periodic. A spectral
analysis confirms that they contain transient frequencies generally matching those in the underlying EEG.
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3. C(lassification of Mental Tasks

Next, we use the models described in the previous section to construct a generative classifier. This is done by training
a separate ESN to forecast sample EEG recorded during each mental task. We then have an ESN associated with each
mental task that can be viewed as an expert at modeling the corresponding EEG. Previously unseen EEG is labeled by
applying each ESN and selecting the class label associated with the model that produced the lowest forecasting error.

Table 1: Subjects without impairments in our lab. Table 2: Subjects with impairments in their homes.
2-Tasks 4-Tasks 2-Tasks 4-Tasks
Subject CA (%) IT (bpm) CA (%) IT (bpm) Subject CA (%) IT (bpm) CA (%) IT (bpm)

01 85.00 11.70 62.50 13.54 10 40.00 0.00 27.50 0.07
02 80.00 8.34 42.50 3.15 11 70.00 3.56 55.00 8.82
03 90.00 15.93 55.00 8.82 12 50.00 0.00 15.00 0.00
04 95.00 21.41 65.00 15.34 13 87.50 13.69 56.25 9.54
05 65.00 1.98 45.00 4.06 14 60.00 0.87 37.50 1.65
06 95.00 21.41 62.50 13.54

07 70.00 3.56 40.00 2.34 Mean 61.50 3.63 38.25 4.02

08 95.00 21.41 62.50 13.54
09 75.00 5.66 53.13 7.79

Mean 83.33 12.38 54.24 9.12

Finally, we evaluate our classifier on EEG recorded from 14 subjects using g.tec’s portable g. MOBILab+/g. GAM-
MAsys with eight active electrodes. Nine subjects had no disabilities and recording took place in a laboratory. Five
subjects had severe motor impairments and recording took place in their homes. Following cues on a computer screen,
each subject performed four mental tasks: silently count backward from 100 by 3s, imagine left hand clenching,
visualize a rotating cube and silently sing a song. Five repetitions lasting 10 seconds were recorded for each task
totaling 200 seconds of EEG per subject. The data was split 60/40 into training and test partitions and all parameters
were tuned using cross-validation over the training partition. We first classify all four mental tasks and then only
the two tasks with the best validation performance. Class labels are assigned at two-second intervals. We measure
classification accuracy (CA) in percent correct as well as information transfer rate (IT) in bits-per-minute (bpm).

In Table 1 and Table 2 we summarize the final test results of these experiments. Many subjects outperform the
random CA of 50 % for two tasks or 25 % for four tasks. Performance varies greatly, however, with some subjects
achieving IT as high as 21.41 bpm and others achieving an IT of zero. A comparison of mean classification accuracy
using t-tests with pooled variance also suggests significantly higher performance among subjects without disabilities
in the laboratory than among those with disabilities in their homes (p;.a35k = 0.017, p4.ask = 0.047).

4. Discussion

We have introduced a BCI that uses ESN to classify EEG in the mental tasks paradigm. Using this approach, we have
observed information transfer rates that are competitive with the state-of-the-art. However, the modest classification
accuracies obtained suggest that further refinements may be necessary for interactive use.
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