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Abstract. BCI system development relies on data from healthy subjects, who unconsciously might utilize artifacts for
BCI control. As these systems are typically developed for people with severe motor disabilities, a high sensitivity level
of a BCI system for artifacts must be considered problematic. A robustness analysis of a state-of-the-art classification
approach for the automatic rejection of artifactual independent components reveals, that this method robustly performs
for a wide range of electrode setups, and that simple re-training ensures high rejection accuracy even for drastically
reduced electrode numbers.
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1. Introduction

The analysis of EEG signals is often impeded by muscular or external artifacts, especially for EEG with small data set
sizes. Consequently the reliability of single-trial analysis methods (as in BCI) and data visualizations for introspection
may suffer. A common counter-measure is to decompose the original EEG into independent source components (ICs)
and reconstruct it after dismissal of hand-selected artifactual ICs [Jung et al., 2000].

Avoiding this time-consuming process, recently proposed algorithms classify ICs into artifactual and non-artifactual
components. Demonstrating good performance on similar validation data, the question arises how well these methods
generalize to data acquired under novel experimental conditions. First studies suggest that generalization is possible
(e.g. [Viola et al., 2009; Winkler et al., 2011]), but a detailed assessment of robustness is lacking. Here, we take a step
forward by analyzing the generalization ability of an IC classification algorithm we recently proposed.

2. Material and Methods

2.1. Experimental setup, ICA unmixing and data split

The artifact classifier was set up using expert-labeled independent components gained from several conditions of a
reaction time study [Winkler et al., 2011]. EEG data from 121 approx. equidistant sensors was available for eight
healthy, right-handed male subjects. In total, 43 runs of 10 minutes duration were available, of which 28 from five
subjects were used as training sets, and 15 runs from three subjects as test sets. After high-noise channels were rejected
based on a variance criterion, they still had 104 electrodes in common. Prior to the IC computation via TDSEP [Ziehe
et al., 2004], a 2 Hz high pass filter was applied, and a dimensionality reduction to 30 PCA components was performed
in order to reduce artificial splits of sources. Two experts hand-labeled the 30 ICs per data set into artifactual and non-
artifactual components, resulting in 840 training- and 450 test ICs.

2.2. The artifact classifier

The artifact classifier was a linear classifier based on six features that were selected in a feature selection procedure
described in [Winkler et al., 2011]. The mean local skewness aims to detect outliers in the time series of an IC. Three
features describe a 1/ fit of the IC to the spectrum and its log band power in the & band (8—13 Hz). Contrary to these
first four features, the two remaining ones directly depend on the electrode setup, as they extract information about
the scalp pattern of an IC: (1) Range Within Pattern characterizes the difference between the minimal and maximal
activation in a pattern. (2) Current Density Norm is derived from the source localization of an IC, which is based on
its pattern. We considered 2142 locations arranged in a 1 cm grid and computed the source distribution with minimal
I-norm. This norm was used as a feature. The underlying idea is that noisy patterns and patterns originating outside
the brain represent more complicated sources, which are characterized by larger 1;-norms.
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2.3. Analyzing the classification performance for different electrode setups

Two different classification strategies were compared: One fixed IC-classifier was pre-trained on features of the full
104-channel data. Its performance was estimated on test data of setups varying from 16 to 104 channels (all ap-
prox. equidistant and covering the whole scalp). Alternatively, a re-training of the IC-classifier was performed for
each montage, on features computed on training patterns cut to the specific montage. The performance of the re-
trained classifiers again was tested on the full and the reduced setups.

3. Results
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Figure 1: Classification error estimated on the test sets for different channel setups for a fixed classifier (left plot) and a classifier

re-trained for each channel setup (right plot). The chance level performance is at 50 %.

For the 104 channel setup, a classifier using the full six features achieves a low error rate of 10.0 % only, which
outperforms the use of only four pattern-independent features (12.4 %). The fixed classifier generalizes robustly over
a large range of 104 to 48 electrodes in the test sets. The increased error of up to 30.6 % for the smallest set of 16
electrodes is associated with the bad performance of both single features which are based on the pattern (over 50 %).

For the re-training strategy, the error increase of the single Range Within Pattern feature was less pronounced
(from 15.1 % to 24.4 %), and the Current Density Norm feature even remained relatively stable. Using the re-trained
classifier, the overall error for 16 electrodes remained at 11.33 %, which is comparable to inter-expert disagreements.
For this reduced setup, the classifier weight of the Range in Pattern dropped, while the weight for Current Density
Norm remained stable.

4. Discussion

We have analyzed the generalization ability of an IC classification algorithm we recently proposed to different elec-
trode setups. For this analysis, two human experts judged the components based on patterns showing 104 electrodes,
while we restricted the electrodes that the classifier saw. We showed that classification was relatively robust to a
decrease from 104 to 48 electrodes - roughly half the number of electrodes - from training to testing. However, per-
formance dropped after more electrodes were removed. We demonstrated that recomputing the features and retraining
the classifier based on the specific electrode montage of the test set alleviates the problem.
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