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Abstract. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty
associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface
to account for non-stationarities that emerge over time. We introduce a new approach to brain-computer interfacing
that addresses these challenges using the framework of partially observable Markov decision processes (POMDPs).
POMDPs provide a principled way to handle uncertainty and achieve co-adaptation: (1) Bayesian inference is used to
compute posterior probability distributions (“beliefs”) over brain and environmental state, and (2) actions are selected
based on belief distributions so as to maximize total expected reward. By employing methods from reinforcement
learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behavior. We illustrate our
approach using a simple non-invasive BCI system which optimizes the speed-accuracy trade-off for subjects based on
the amount of uncertainty measured in their brain signals. Our results demonstrate that the POMDP-based BCI can
detect changes in user brain state and co-adaptively switch control strategies on-the-fly to maximize reward.
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1. Introduction

We propose a new approach to BCI design that combines Bayesian inference over brain states with an optimzing
control scheme for selecting actions. The resulting framework, which is based on POMDPs [Cassandra et al., 1994],
allows the BCI to handle uncertainty in decoding as well as to co-adapt with the user to converge to optimal task
strategies. The proposed approach generalizes to a wide variety of applications, including both invasive and non-
invasive BCIs for communication and robot control.

2. Methods

The POMDP framework allows us to model a decision process in which an agent acts in the world to affect outcomes,
which are rewarded based on a reward function. In this model, the agent views the world indirectly through an
observation function. We illustrate the use of this model for deciding when to collect more information from the brain
and when to stop and make a decision about the user’s intent, similar to [Park et al., 2011]. The relative weights of
the users’ preference for accuracy versus expediency are expressed through the reward function. We demonstrate the
framework using an EEG BCI based on steady state visually evoked potentials (SSVEPs).
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The reward function implicitly encodes the mapping between the various brain states we are tracking and control.
For instance, in a task involving only movement left and right, and an SSVEP-type BCI with 5 channels, the reward
function would tell our agent which action to take (moving left or right) given a particular brain state it may be in (the
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choice of SSVEP channel). Through reinforcement learning, we allow this control mapping to be non-stationary. In
our experiment, reinforcements are given implicitly since the task has a pre-defined failure mode. We note that this
signal could also be derived in a task-independent way using user perception of system failure [Giirel and Mehring,
2012]. This reinforcement process allows the user the freedom to search the space of possible brain states for those
that work best for them. The result is a BCI which adapts to the user’s behavior, who is also adapting to the BCI and
the present situation (see Fig. 1).

We train the POMDP’s observation model using labeled data. We collect the data through a training paradigm
where the subject focuses on each flashing LED in a random order (Fig. 2). The POMDP’s policy is then approximated
using apre-packaged method (see [Kurniawati et al., 2008]). We present results from two experiments. In the first,
the user provides us a data set using the same paradigm as our training data collection. In post-processing, we fix the
POMDP’s reward function and then run it in simulation to examine its trade-off between speed and accuracy.

In the second experiment, we present the user with a pair of targets. Their goal is to hit the green target. The user
is free to pick any mapping between one of the SSVEP frequencies and a target. The BCI automatically modifies the
reward function depending on the success of the users control in each trial (see Fig. 3).

3. Results

Overall, we saw the POMDP model gave users either an increase in accuracy, a decrease in decision time, or both,
for one fixed parameterization. We should note that in practice the reward function would be tuned to the particular
user’s needs. We found that varying the reward function (e. g., changing the penalty for waiting an additional time
step) allows one to trade off time spent collecting data with the expected accuracy of the decision.

An additional advantage of this model is that the BCI adjusts En
its behavior according to the expected usefulness of future obser- —
vations. If the observation function indicates a particularly noisy
brain signal, the BCI automatically accepts making decisions with
less confidence.
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4. Conclusion

Our results suggest that the POMDP framework is well-suited to handling uncertainty in BCI systems and provides
a principled approach to achieving co-adaptation between the brain and the BCI. Our results from an SSVEP BCI
demonstrate that this model offers the ability to choose the control scheme the user finds most intuitive in a given
situation. It also provides a balance between accuracy and speed in a principled manner.
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