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Abstract. This report summarizes our recent efforts to deliver real-time data extraction, preprocessing, artifact 

rejection, source reconstruction, multivariate dynamical system analysis (including spectral Granger causality) and 

3D visualization within the SIFT and BCILAB toolboxes. We report the application of such a pipeline to simulated 

data and real EEG data obtained from wearable high-density (32-64 channel) dry EEG systems. 

Keywords: Wearable EEG, Dry Sensors, Connectivity, Source Localization, Artifact Rejection, Visualization 
 

1. Introduction 

Dynamic cortico-cortical interactions are central to neuronal information processing. The ability to monitor 

these interactions in real-time may prove useful for BCI and other applications, providing information not obtainable 

from univariate measures, such as bandpower and evoked potentials. Wearable (mobile, unobtrusive) EEG systems 

likewise play an important role in BCI applications, affording data collection in a wider range of environments. 

However, reliable real-time modeling of neuronal source dynamics using data collected in mobile settings faces 

challenges, including mitigating artifacts and maintaining fast computation and good modeling performance with 

limited amount of data. Here we describe some of the wearable hardware and signal processing we are developing 

that attempt to address these challenges, contributing to the development of EEG as mobile brain imaging modality. 

2. Material and Methods 

Our data-processing pipeline is outlined in 

Fig. 1. The pipeline is implemented in Matlab 

within our SIFT and BCILAB toolboxes, which are 

publically available as EEGLAB plugins [Delorme, 

2011]. All elements of the pipeline can be 

controlled “on the fly” via a control panel GUI. 

2.1. Wearable EEG Hardware 

Cognionics has developed two new high-

density (32 and 64 channel) dry wearable EEG 

systems. Harness and electronics are integrated into 

a compact and lightweight form-factor. Signals are 

digitized with 24-bit ADCs at 300 samples/sec and 

transmitted via Bluetooth. The headsets support a 

novel, flexible dry electrode consisting of a set of 

angled 'legs' made from conductive plastic, which 

flatten on impact. Typical sensor impedances are 

between 100 kΩ-1 MΩ and high input impedance 

circuitry on the headset ensure minimal signal 

degradation. 

2.2. Preprocessing and Artifact Rejection 

EEG data is streamed into Matlab, and an efficient online pre-processing pipeline is applied using BCILAB. 

Preprocessing elements include (though are not limited to) re-referencing, rejection of corrupted data samples or 

channels with bad channel imputation and/or high, low, or band-pass filtering. Short-time high-amplitude artifacts in 

the continuous data may be removed online, using a sliding-window Principal Component Analysis, by statistically 

interpolating any high-variance signal components exceeding a threshold relative to the covariance of a calibration 

Figure 1. Real-time data processing pipeline. A Cognionics 64-

channel system is depicted above with flexible active dry 

electrodes. 
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measurement (here one minute of resting data). Each affected time point of EEG is then linearly reconstructed from 

the retained signal subspace based on the correlation structure of the calibration data. 

2.2. Source Reconstruction 

Following pre-processing, we estimate current source density (CSD) over a high-resolution cortical mesh. Our 

default forward model consists of a four-layer (skull, scalp, csf, and cortex) Boundary Element Method (BEM) 

model derived from the MNI “Colin 27” brain and computed using OpenMEEG [Gramfort, 2010]. For inverse 

modeling, we have currently implemented anatomically constrained LORETA with a Bayesian MAP update rule for 

hyperparameter estimation [Trujilo, 2004]. This approach is well suited for real-time adaptive estimation and 

automatically controls the level of regularization for each measurement vector. Additionally, we segment the source 

space into 90 regions of interest (ROIs) using Automated Anatomical Labeling [Tzourio-Mazoyer, 2002]. The user 

can compute spatially averaged, integrated or maximal CSD for any subset of these ROIs.  

2.3. Dynamical Systems Analysis 

Preprocessed channel or source time-series are forwarded to SIFT and an order-p sparse vector autoregressive 

(VAR[p]) model is fit to a short chunk of recent data (e.g. 0.5-2 sec). The VAR coefficients are estimated using 

Alternating Direction Method of Multipliers (ADMM) with a Group Lasso penalty [Boyd, 2011]. Model estimation 

is warm-started using the solution for the previous data chunk. The regularization parameter is initialized offline, by 

cross-validation on the calibration data, and adapted online using a simple heuristic based on two-point estimates of 

the gradients of the primal and dual norms. Model order is selected offline, by minimizing information criteria (e.g. 

AIC or BIC) on calibration data. Following model fitting and tests of stability and residual whiteness 

(autocorrelation function or Portmanteau), we obtain the spectral density matrix and any of the frequency-domain 

functional and effective connectivity measures implemented in SIFT. Graph-reductive metrics such as degree, flow, 

and asymmetry ratio can be applied to connectivity matrices. Finally, selected measures (power, connectivity, 

outflow, etc.) are visualized within an interactive 3D anatomical representation. These measures may also be 

forwarded to BCILAB as features for one of the 13 classification frameworks currently available. 

3. Results and Discussion 

We have tested our pipeline on simulations and 32- and 64-channel Cognionics data. 64-channel simulated EEG 

was generated by projecting a VAR system of five coupled oscillators through a realistic forward model. The system 

dynamics and connectivity graph were accurately reconstructed with a mean AUC of 0.97 ± 0.021. In real data, for a 

moderate number of ROIs (10-15), we obtain fast cLORETA convergence and good VAR model fit (stable with 

uncorrelated residuals, p < 0.05) exhibiting characteristic EEG 1/f spectral shape with prominent eyes-closed 

occipital alpha gain. On an Intel i7 4-core (2.3 GHz) laptop, preprocessing and source reconstruction typically takes 

50-80 ms, model fitting 50-70 ms, and visualization 200-300 ms. We are further validating the pipeline in cognitive 

tasks, and applying source connectivity information as features for cognitive state classification within BCILAB. 
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