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Predicting Changes in Neural Tuning During BCI Learning 
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Abstract. The tuning of cortical neurons changes as subjects learn to control Brain-Computer Interfaces (BCIs). We 

hypothesized that these changes may be predicted from patterns of neural activity recorded during natural 

movements prior to learning. We analysed neural tuning as monkeys learned BCIs with arbitrary mappings between 

firing rates and cursor position, and compared two learning models to predict tuning changes: uniform vs. 

constrained. We found that the constrained model explained more of the observed variation, with learning restricted 

to only a small number of naturalistic dimensions within the neural space. 
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1. Introduction 

BCIs are redundant motor tasks with more control signals (neurons) than output dimensions (cursor axes), so 

different strategies at the neural level could drive improvements in performance [Jackson and Fetz, 2012]. Often the 

strategy that emerges with training appears sub-optimal (e.g. neurons become tuned for directions different from 

their true action on the cursor) suggesting learning is constrained to a limited subset of dimensions within the neural 

space. Here we examine whether these constraints reflect activity patterns observed during natural movement. 

2. Material and Methods 

Spiking activity was recorded from primary motor (M1) and ventral premotor (PMv) cortices of two rhesus 

macaques (monkey D: N = 20 neurons, monkey R: N = 12) performing 2D wrist- and 1D brain-controlled cursor 

tasks over multiple sessions. During brain control, neurons were assigned to up, down and off ensembles according 

to an arbitrary mapping (Map1 or Map2) represented by a vector in the neural space (m). Instantaneous cursor 

position (y) was determined from neuronal firing rates (νi, normalized by their range during wrist control) according 

to: 

   ∑      
 
           where mi = {-1, 0, +1} for down, off and up neurons respectively (1) 

 

Monkeys had to move the cursor to targets appearing at random in high and low locations on the screen. 

Performance was quantified as the separation between average cursor trajectories following the appearance of high 

and low targets ( ̅      ̅   ), which in turn depended on the tuning of each neuron (Ti). Therefore, improvement 

across consecutive sessions can be expressed as a vector product: 
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where the change in tuning across consecutive sessions is also represented by a vector in the neural space (ΔT). To 

maximize improvement, ΔT should be aligned with the current map vector m (i.e. up neurons should become tuned 

for high targets, down neurons should become tuned for low targets) which we call ‘uniform learning’. However, if 

learning is constrained, tuning changes will be biased to particular dimensions of the neural space. To estimate these 

dimensions we calculated the principal components (PCs) of low-pass filtered (<5 Hz) firing rate profiles observed 

during natural movements (wrist control performed prior to the first session of brain control). The ‘constrained 

learning’ model assumes that the tuning change along each naturalistic PC should decrease exponentially with 

increasing component number: 

Uniform learning:           Constrained learning:             
    ⁄

 (3) 

 

where ΔT’n and m’n are the projections of ΔT and m respectively along the n
th

 PC. To assess significance, the ability 

of naturalistic PCs to predict tuning changes of individual neurons was compared against 10000 Monte Carlo 

simulations of the same constrained model based on random rotations of the neural space. 
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Figure 1. (A) Training over multiple sessions produces map-specific improvements in abstract BCI performance. (B) Changes 

in tuning of individual neurons are poorly predicted by their action on the cursor alone. (C) Average tuning changes 

are biased towards lower principal components of naturalistic activity patterns. (D) Constrained learning model 

improves prediction of tuning changes for individual neurons. 

3. Results 

For both monkeys, BMI performance increased progressively over consecutive training sessions with Map1 and 

Map2 (Fig. 1A). After switching from Map1Map2 and Map2Map1, performance returned to baseline before 

rising again. Map-specific learning resulted from changes in the tuning of individual neurons, but these were only 

weakly related to the action of neurons on the cursor (uniform learning model; monkey D: R = 0.15; monkey R: 

R = 0.12; Fig. 1B). However, when tuning changes were rotated into the naturalistic PC space, map-specific learning 

was greater along the lower components, with the first PC in both animals accounting for the largest tuning change 

(Fig. 1C). Therefore we fit a model in which tuning changes along each PC decreased exponentially with increasing 

component number (Eq. 3), resulting in robust improvements to the prediction of individual tuning changes 

(constrained learning model; monkey D: R: R = 0.26; monkey R = 0.18; Fig. 1D). Since this new model included an 

additional free parameter, the decay constant Nc, we compared the predictions based on naturalistic PCs against the 

same model applied to random rotations of the neural space. The model performed significantly better when 

constrained to naturalistic PCs versus random rotations (monkey D: P = 0.008; monkey R: P = 0.04).  

4. Discussion 

Successful BCI performance requires searching for control solutions within a high-dimensional neural space. 

Constrained learning likely arises from biased exploration along particular dimensions of the space. These 

dimensions may reflect neural ‘priors’ appropriate for natural behaviors that are co-opted for BCI control. We have 

shown that principal component analysis of activity patterns recorded during natural movement provides one 

method to estimate constraints on learning and thereby predict subsequent tuning changes. This or more 

sophisticated techniques may in future allow decoders to be tailored to constraints on cortical activity such that 

learning over multiple sessions progresses along dimensions that are optimal for BCI control. 
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