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ABSTRACT: P300-based spellers are one of the main
methods for electroencephalogram (EEG)-based brain-
computer interface, and the detection of the target event
with high accuracy is an important prerequisite. The
rapid serial visual presentation (RSVP) protocol is of
high interest because it can be used by patients who have
lost control over their eyes. In this study we wish to ex-
plore the suitability of recurrent neural networks (RNNs)
as a machine learning method for identifying the target
letter in RSVP data. We systematically compare RNN
with alternative methods such as linear discriminant anal-
ysis (LDA) and convolutional neural networks (CNN).
Our results indicate that RNN does not have any advan-
tages in single subject classfication. However, we show
that a network combining CNN and RNN is superiour
in transfer learning among subjects, and is significantly
more resilient to temporal noise than other methods.

INTRODUCTION

Neural networks have recently been shown to achieve
outstanding performance in several machine learning do-
mains such as image recognition [15] and voice recog-
nition [12]. Most of these breakthroughs have been
achieved with CNNs [16], but some promising results
have also been demonstrated by using RNNs for tasks
such as speech and handwriting recognition [11, 10], usu-
ally when using the long short-term memory (LSTM) ar-
chitecture [13]. CNNs are feed forward networks that
implement receptive fields. RNNs, on the other hand,
contain directed cycles and are thus able to “remember”
the previous activation state of the network, which makes
them especially suitable for learning sequences.
There have been some studies on using “deep neural net-
works” for P300 classification [5, 19]. The results re-
ported, despite some success, do not show the same dra-
matic progress achieved by ‘deep learning’ methods as
compared to the previous state of the art; while in ar-
eas such as image or voice recognition ‘deep’ neural net-
works have resulted in classification accuracy exceeding
other methods by far, this has not yet been the case with
EEG in general and P300 detection specifically. The
small number of samples typically available in neuro-
science (or BCI) is most likely one of the main reasons.

In addition, the high dimensionality of the EEG signal,
the low signal to noise (SNR) and the existence of out-
liers in the data, pose other difficulties when trying to use
neural networks for BCI tasks (see [18]). The main ques-
tion in this research is whether the RNN model, and par-
ticularly LSTM, can enhance the accuracy of P300-based
BCI systems and if so, under what conditions.

BACKGROUND

P300-based BCI systems can recognize a taregt stimu-
lus out of a set of stimuli, typically letters and numbers,
by examining the subject’s EEG data. The first system
that used the P300 effect was presented by [8] and since
then different versions of P300 based BCI systems were
suggested. One example of such a paradigm is the P300
rapid serial visual presentation (RSVP) speller. In this
paradigm letters are presented one after the other in a
random order, and the subject is asked to pay attention
only to one of the letters, reffered to as the target (e.g., by
counting them silently).
There are a lot of methods for identifying the target letter
for a BCI task. Blankertz et al. [4] suggest to select the
time interval with maximal separation between the tar-
get and non target samples, average their electro-potential
value and use shrinkage LDA to classify these features.
Using this method has a drawback due to the low com-
plexity of LDA model [6]. The winner of the BCI com-
petition III: dataset II used an ensemble of support vector
machines (SVM) [21], and other methods include hidden
Markov model, k-nearest neighbours, and more [6].
More recently, given the success of ‘deep’ neural net-
works [15], there have been several attempts to ap-
ply ‘deep learning’ for BCI related tasks. Cecotti and
Graser [5] were the first to use CNNs for a P300 speller.
In their work, they train an ensemble of CNN-based P300
classifiers to identify the existence of P300. Manor and
Geva [19] used CNN for the RSVP P300 classification
task and suggested a new spatio-temporal regularization
method, which have shown improvement in the perfor-
mance.
Unlike feed forward network models such as CNN and
multi-layer perceptron (MLP), the RNN architecture al-
lows directed cycles within the network, which enable
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the model to “memorize past events”. LSTM [13] is a
type of RNN, which includes a special node that can be
described as a differentiable memory cell. The specific
architecture of LSTM enables it to overcome some of the
weakness of simple RNNs [3].
There are several reasons why LSTM is a good candidate
for modelling the P300 pattern. First, RNN and LSTM
have shown success when modeling time series for tasks
such as handwriting and speech recognition [11, 10, 28].
Second, RNN is known to have the capability to approx-
imate dynamical systems [17], which makes it a natural
candidate for modelling the dynamics of EEG data. An-
other motivation is that RNN can be seen as a powerful
form of hidden Markov models (HMM), which have been
shown to classify EEG successfully [23, 20, 6]; RNNs
can be seen as HMMs with an exponentially large state
space and an extremely compact parametrization [24].
LSTM was already used for analysing EEG data for emo-
tion detection [22] and a phenomena called behavioral
microsleeps [7]. Bahshivan et al. [2] modeled inter-
subject EEG features for identifying cognitive load by
using convolutional LSTM. Their representation of the
input was a “video” comprised of topographic scalp maps
in three different band powers over time. One of the ma-
jor differences between their work and ours is that we use
the original signal without any feature extraction (such as
band power), and we focus specifically on P300 speller
data.

MATERIALS AND METHODS

We compared the performance of LSTM based meth-
ods with other methods on a dataset from a RSVP P300
speller study [1]. We used average prediction across 10
trials to measure the P300 speller accuracy as applied
in [1].
The dataset includes 55 channels of EEG recordings from
11 subjects. Each subject is presented with 10 repetitions
of 60 to 70 sets of 30 different letters and symbols. In to-
tal there are approximately 20,000 samples for each sub-
ject where 1/30 of them are supposed to contain a P300
wave. While the original experiment contains 3 different
settings (interval of 116ms with/without colors and 83ms
with color), we used the experiment setting of 116ms in-
tervals with letters in different colors. For more detail,
see [1].
In addition to the filters applied in [1], all models that
we used share the same pre-processing stage of down-
sampling the input frequency from 200Hz to 25 Hz. The
result is that each learning sample is a matrix of 55 chan-
nels with 25 time samples each, or 55 ∗ 25 = 1375 fea-
tures. Each sample thus covers exactly 1 second around
the target event, at times [-200,800] ms.
The models evaluated in this experiment are:

• LDA - A common method used in P300 classifica-
tion for BCI [1, 4]. Here we used a simplified ver-

sion; unlike [1] we use all the timestamps as fea-
tures, and we are using a non-shrinkage version of
LDA.

• CNN (Fig.1a) – The CNN model we use is similar
to the one used in [5]. The first layer is composed
of 10 spatial filters, each of size 55 ∗ 1 – the num-
ber of channels. The second layer contains 13 dif-
ferent temporal filters with size of 1 ∗ 5. Each one
of the temporal filters processes 5 subsequent time
stamps without overlapping. The third and fourth
layers are simple fully connected layers followed
by a single cell with a sigmoid activation function
that emits a scalar.

• LSTM large/small (Fig.1b) – LSTM large/small
are both composed of single LSTM layers with 100
and 30 hidden cells in each, correspondingly. Both
models end with a single cell with a sigmoid acti-
vation layer that emits a scalar.

• LSTM-CNN large/small Fig.1c – The model has
CNN as a first layer (the spatial domain layer) and
LSTM as the second layer for the temporal domain.
The first convolutional layer is the same as in the
CNN model. Unlike the CNN model, the temporal
layer is an LSTM layer with 100/30 hidden cells.
The last layer contains a single cell with a sigmoid
activation layer that emits a scalar.

In order to examine the power of each method in mod-
elling the inter-subject and intra-subject variance we have
conducted the following experiments:

1. Training and testing on each subject’s data sepa-
rately in order to explore intra-subject generaliza-
tion.

2. Training and testing on all the different subjects
data combined in order to investigate the impact of
larger amounts of data.

3. Training on all subjects expect one. We conduct
this experiment in order to explore the performance
of a model that was trained off-line, on different
subjects, and then applied to a new subject, with or
without additional calibration, as a test of transfer
learning.

4. Testing different models when introducing tempo-
ral noise.

A highly desired property from BCI systems is tolerance
to a small degree of noise in the stimuli onset time, and
this is the objective of the fourth experiment. In order
to evaluate the resistance to such noise, we use a model
trained on the original stimuli onset (i.e, noise level =
0ms) and evaluate its performance on different stim-
uli onset: noise levels of -120ms,-80ms,-40ms, +40ms,
+80ms, and 120ms. We conducted this experiment using
10-fold cross validation in order to be able to get statis-
tically significant results. This last experiment was con-
ducted only on the CNN and LSTM-CNN models and
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(a) CNN model (b) LSTM model (c) CNN-LSTM model

Figure 1: Schematic diagrams of the neural networks evaluated. FC stands for fully connected layers.

used data from all subjects (as in experiment 2 described
above).
For all the experiments, the different models were trained
using the RMSProp [26] optimizer: first for 30 epochs
with a learning rate of 0.001 and then continued training
for additional 30 epochs with a learning rate of 0.00001.
RMSProp [26] is a stochastic gradient descent (SGD)
method. Unlike simple SGD, the method adapts a dif-
ferent learning rate for each parameter separately by ap-
plying a moving average across the magnitude of the past
gradients, and then re-scaling the learning by this past
gradient. We decided to use RMSProp since it is said to
be robust and fast [27, 14, 25].

RESULTS

Tab. 1 summarizes the results of the different experi-
ments; all results are based on an average of 10 consec-
utive trials to detect the target letter, as in [1]. The re-
sults for training and testing on the same subject indicate
that LSTM is inferior (82%), and even the LSTM-CNN
combined model performs less than the the simple LDA
method (86 and 93% in the LSTM-CNN models and 96%
using LDA) . A possible advantage for LSTM only be-
comes apparent with larger amounts of data – when train-
ing and testing on all the subjects together (Tab. 1). The
large LSTM model performs poorly – 77%; we suspect
that this is due to the large number of trainable parame-
ters – 62501 (“over-fitting”); this is why we introduced
CNN as a first layer and reduced the number of hidden
LSTM cells.
Tab. 2 summarizes the results per single subject. There
is a significant difference among subjects, across the dif-
ferent models. For example subject fat results in higher
accuracy than icn regardless of the tested model. Even-
tually, the best network method - using training on other
subjects and recalibration with a combined CNN-LSTM
large model, is able to boost the results of the worse sub-
ject to 86%.

Tab. 3 is aimed at estimating learning across subjects – it
provides the detailed results when training the models on
all subjects except one, and then testing on that subject.
In the second stage, we continue training the model on the
rest 3/4 of the test subject’s data using a smaller learn-
ing rate (0.0001 using RMSProp) for 30 epochs – this
is presented in columns CNN and LSTM-CNN all except
one fine tune . The results indicate that the LDA accuracy
is much poorer than those of the CNN and LSTM-CNN
models (65% as opposed to 84%); i.e., the neural net-
works are superior under these conditions of inter-subject
variability. When we allow calibrating the model for each
subject, we achieve an average accuracy of 97% for both
CNN and LSTM-CNN; there is no standard method for
similarly re-calibrating an LDA algorithm, so we do not
have an equivalent comparison.

Resistance to temporal noise is displayed in Tab. 4. In
this test we also see that LDA accuracy drops signifi-
cantly. Both CNN and the combined LSTM-CNN seems
to overcome such noise; the LSTM-CNN model results
in 4% or 5% when adding or removing 40ms to the origi-
nal stimuli onset, and a t-test indicates that this difference
is statistically significant (p < 0.05).

A possible explanation can be seen when looking at the
two models’ saliency map (Fig. 2). In order to investigate
the “attention”, or the sensitivity of the LSTM model, and
compare it to the CNN model, we used a technique sug-
gested by [9] and draw the absolute gradient of the neural
network with respect to the input.

If f(x1, ..., xn) is a differentiable, scalar-valued function,
its gradient is the vector whose components are the n par-
tial derivatives of f , which is a vector-valued function.
In our case of f(x|θ) is the neural network with fixed
weights θ and input x. The partial derivatives of f(x|θ)
with respect to x can be interpreted as “how changing
each value of x will change the prediction score”. This
gradient should not be confused with the gradient used
for training, where the goal is to optimize the model pa-
rameters θ when x is fixed.
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Table 1: Average accuracy across all experiments; x marks experiments that were not performed.

model
number of
parameter

accuracy
per subjects

accuracy
all subjects all but one all but one

after fine tuning

LDA 1375 0.96 0.79 0.65 x
LSTM large 62501 0.82 0.77 x x
LSTM small 10351 0.86 0.9 x x
CNN 7924 0.98 0.92 0.84 0.97
LSTM-CNN

large 49041 0.93 0.9 x x

LSTM-CNN
small 5511 0.89 0.93 0.84 0.97

Table 2: Average accuracy per subject comparing all models.

subject LDA LSTM large LSTM-CNN large CNN LSTM small LSTM-CNN small

fat 1.00 0.98 0.98 0.98 1.00 0.95
gcb 0.91 0.82 0.88 0.92 0.74 0.75
gcc 1.00 0.84 0.92 1.00 0.92 0.97
gcd 0.97 0.80 0.90 1.00 0.76 0.93
gcf 1.00 0.92 0.94 0.95 0.97 0.95
gcg 0.94 0.74 0.96 0.96 0.80 0.87
gch 0.97 0.93 0.96 0.97 0.97 0.96
iay 0.94 0.62 0.92 0.98 0.75 0.86
icn 0.94 0.62 0.86 0.98 0.77 0.77
icr 0.93 0.97 0.98 0.98 0.98 0.98
pia 0.97 0.82 0.94 1.00 0.77 0.81
mean 0.96 0.82 0.93 0.98 0.86 0.89

In the case of P300 prediction, x is a matrix of C × T
(C - number of channels, T - number of time steps)
and f(x|θ) is the neural network where θ is the model’s
weights after training. The gradient ∇f(x|θ) (see Eq.1)
is a matrix with the same size as the input x, where the
amplitude of each cell reflects its impact on the function
value. Cells with high absolute value can be interpreted
as the cells that have a significant influence on the predic-
tion function.

∇f (x|θ) =


∂f(x|θ)
∂x(c1,t1)

... ∂f(x|θ)
∂x(c1,tT )

... ... ...
∂f(x|θ)
∂x(cC ,t1)

... ∂f(x|θ)
∂x(cC ,tT )

 (1)

The results displayed in Fig.2a and Fig. 2b show the av-
erage absolute gradient across all the target samples of a
single cross validation test data: the warm colors corre-
spond to high gradient values, indicating that the model
is more sensitive to change in these input features. We
can see the sensitivity of the CNN model spreads across
the recording relatively evenly as opposed to the LSTM-
CNN which is focused around the 250ms and 450ms
time-stamps.

Table 4: Accuracy when introducing temporal noise. The
best results are boldfaced when the differences are statis-
tically significant.

Noise CNN LSTM CNN LDA

-120 0.058 0.044 0.016
-80 0.275 0.299 0.016
-40 0.825 0.864 0.565
40 0.848 0.896 0.608
80 0.335 0.390 0.260
120 0.042 0.042 0.059

DISCUSSION

In this work we examined using LSTM neural networks
for the task of the BCI task of P300 speller. Despite
its temporal nature, no version of LSTM investigated in
this work has shown a significant advantage compared
to the CNN model suggested by [5]. LSTM results im-
proved with large amounts of data from multiple sub-
jects, and superior results are obntained with a combined
CNN-LSTM model; moreover, we have shown that this
combined model is significantly more robust to tempo-
ral noise in the stimuli onset. We also show that the
sensitivity of the LSTM based model is much more fo-
cused on the area between 250ms to 450ms than CNN
based model, which is in line with our expectation from
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Table 3: Accuracy when training and testing on different subjects.

subject
LDA

all except one
CNN

all except one

CNN
all except one

fine tune

SMALL LSTM-CNN
all except one

SMALL LSTM-CNN
all except one

fine tune

fat 0.94 1.00 1.00 0.98 1.00
gcb 0.43 0.83 0.91 0.86 0.92
gcc 0.79 0.98 0.98 0.95 0.97
gcd 0.66 0.80 0.99 0.83 0.97
gcf 0.68 0.89 0.98 0.79 0.98
gcg 0.52 0.81 0.94 0.77 0.90
gch 0.87 0.97 0.97 0.97 0.99
iay 0.48 0.69 0.98 0.67 0.97
icn 0.44 0.58 0.92 0.61 0.95
icr 0.63 0.81 1.00 0.89 1.00
pia 0.77 0.87 0.96 0.91 0.97
mean 0.65 0.84 0.97 0.84 0.97

(a) CNN (b) LSTM-CNN

Figure 2: Average gradient in target samples, comparing CNN and LSTM-CNN.

the P300 ERP. To conclude – in the dataset we have ex-
plored a simple algorithm such as LDA performed ex-
tremely well when trained and tested on the same sub-
ject, but additional experiments involving cross-subject
training and temporal noise expose the possible advan-
tages of ’deep’ networks, and especially the LSTM-CNN
combined method.
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