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ABSTRACT: BCI Spellers for end-users utilize 

numerous different techniques, but many require that 

stimuli in different areas of the screen be foveated for 

best performance. Spatial independence, however, is of 

considerable value for patients suffering from locked-in 

syndrome, which significantly attenuates their capacity 

for voluntary movements. To this end, we have designed 

a 10-segment library of letter subsets, which 

combinatorially create the letters of the alphabet. 

Segments can thus be centrally presented, allowing 

letters to be cued in parallel while maintaining the spatial 

independence of RSVP-style spellers. A 68% segment-

classification accuracy yields a reasonably rapid speller, 

with several avenues for maximizing accuracy and 

information transfer rate. 

 

INTRODUCTION 

 

Neurodegenerative diseases have an increasingly 

significant impact on public health as life expectancies 

and treatment strategies improve. Locked-in syndrome 

(LIS) in particular – whether caused by injury or illness 

– poses significant challenges for patient and healthcare 

professionals. While the inability to communicate needs 

or discomforts can have a deleterious effect on one’s 

health, the lack of social interaction can also pose a 

significant issue. P300 BCI spellers are a popular 

technique for ameliorating these challenges.  In the 

original P300 system developed by Farwell and Donchin 

[1] the user observes a screen with a grid of symbols; 

individual rows and columns are flashed pseudo-

randomly and the user is told to count the times their 

target symbol flashes.  Due to the large size of the letter 

grid and the small size of the flashed letters, eye 

movements must be made to the vicinity of the desired 

letter.  

 

This can be a problem for late-stage ALS patients who – 

even if they have some residual voluntary eye movement 

capacity – are not always able to make voluntary gaze 

shifts to direct overt attention [2,3].  To address this issue, 

rapid serial visual presentation (RSVP) spellers have 

been developed, which serially present whole letters 

flashed in the center of the screen [4,5]. While alleviating 

the problem of eye movements, the lack of 

simultaneously flashed items results in less 

combinatorial efficiency and a lower information transfer 

rate for these systems [5]. In this paper we describe 

preliminary experiments to develop a hybrid system with 

the benefits of combinatorial efficiency as well as 

centrally presented stimuli.  As segments occur in many 

letters, we have the combinatorial advantage of one flash 

probing for many letters. 

 

MATERIALS AND METHODS 

 

Segment Library: Our stimuli or segment library was 

similar to the work of Minett et al. [6], wherein Chinese 

stroke-based text systems are used as the basis of a BCI. 

Since English letters are not composed of a series of 

ordinal strokes, a new system needed to be designed. 

Moreover, since our segments would by definition be 

arbitrary, it was important to design segments that are 

both simple to visualize, yet sufficiently distinct to allow 

easy comparison. To this end, we projected all 26 letters 

of the English alphabet onto a 7x5 grid of circular nodes, 

using a derivative of the scoreboard font. This allowed us 

to reduce the spatial complexity of characters into more 

general elements.  

 

Our speller used a 10-segment library (Fig. 1) of letter 

subsets as query stimuli. Each segment consisted of 2-5 

contiguous nodes on the 7x5 grid. The segments were 

assigned a specific color, which – along with their 

positions on the grid – was invariant. The color-segment 

mapping allowed participants to identify segments either 

through their colors or their relative spatial positions, 

minimizing the difficulty in making a correct 

discrimination. Not all nodes were contained within a 

segment; said independent nodes were colored white (see 

Fig 1). 

 

Relative to a given letter, segments could be classified as 

“targets” or “non-targets”, based on whether they are 

subsections of that letter (Figure 1). As most letters are 

made of a unique combination of segments, the responses 

to individual stimulations can be used to predict the target 

letter probabilistically via Bayesian inference. With our 

current library, O and D cannot be discriminated purely 

through segments, which could be a challenge in a 

standalone system. Language modeling and other 

techniques (see “Output-Letter Checks”, Discussion) can 

easily resolve this shortcoming. 

 

Experimental Paradigm: At the start of each block, the 

participant was assigned a random letter of the alphabet. 

For this initial test of the system, we excluded I, V, X, 

and  Y  from  the  list  of  potential  targets  due  to  their  
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Figure 1: The segment library consists of 10 unique, 

invariant letter subsets. Each letter can be spelled with 

its own combination of segments. Depending on the letter 

to be spelled, component segments are deemed ‘targets’, 

whereas all others are ‘non-targets’. 

 

unique morphologies. The target letter was displayed for 

2.5 seconds, with the component segments colored 

appropriately.  This served to inform the subject of their 

target letter and target segments (shape and color).  

Afterwards, individual segments were presented serially, 

with a stimulus duration of 390 ms, and an inter-stimulus 

interval of 180 ms (total stimulus onset asynchrony 570 

seconds). 

 

The experiment consisted of an offline “training” phase, 

wherein data were collected to train a classifier, and an 

online “testing” phase, wherein the users’ responses were 

analyzed and fed back to the system in real time. During 

the training phase, target segments were presented 30% 

of the time, and a total of 30 segments were presented 

before a block ended. During the analysis of the testing 

phase, stimuli were flashed until a) a letter was identified 

by the segment model or b) a total of 30 segments had 

been presented. During the experiment, incorrect letter 

selections were not a block-stopping criterion, in order to 

acquire more data for pseudo-online analysis. 

 

Data Collection and Analysis: Data were collected from 

6 undergraduates (4 Female, 1 Left-handed, mean age 

19.5.) Stimulus presentation and timing were coordinated 

via the Simulation and Neuroscience Application 

Platform (SNAP, SCCN). The subjects’ EEG data were 

collected using a BrainAmp (BrainVision) 64-channel 

active electrode system. Data were 

collected at 5 kHz. The marker and data 

streams were synchronized via 

LabRecorder, a Lab Streaming Layer 

derivative. Offline data analysis was 

performed using EEGLAB v 13.6.5b[7]. 

Data were downsampled to 500 Hz. For 

the topographic plots, the Artifact 

Subspace reconstruction designed by 

Christian Kothe [8] (clean_rawdata, 

EEGLAB) was used to clean artifactual 

data, and data were bandpass filtered 

from .1 to 5 Hz using EEGLABs 

hamming window sinc FIR filter 

(implemented in pop_eegfiltnew, 

EEGLAB). For visualizing plotted 

traces (Figure 2), data were re-

referenced to the mastoids, and 

bandpass filtered from .1 to 10 Hz using 

the same filter. 

 

Classifier: To train the classifier, class 

means were specified using 5 windows 

(100ms length) from 300ms to 800ms 

post-stimulus. For training of the 

classifier, data were downsampled to 

100 Hz and bandpass filtered from .1 to 

5 Hz using BCILABs [9] built-in FFT filter. The FFT 

filter has a much shorter length; beneficial for online 

filtering of 100 Hz downsampled data. LDA with 

automated shrinkage determination [10] as implemented 

in BCILAB was used. Due to the 30% target rate, a 

random subset of the nontarget trials were used to train 

to the classifier, in order to avoid erroneous solutions 

derived from imbalanced training classes. While the 

exact number of target trials (and thus nontarget trials) 

used for training varied slightly between subjects, about 

320 trials for each class were used as training data. 

 

Segment Model: During the online phase, a probability 

vector keeps track of the probabilities given to each 

possible letter of the alphabet. At the beginning of a 

block, the system assumes a uniform probability over all 

letters. In an end-user’s speller application, this can be 

replaced with the probability mass function for initial 

letters in the language of the user; future letters can be 

initialized by a conditional probability function 

conditioned on the previous character. 

 

Given the responses and results of the trained classifier 

on the serially presented segments, the model updates the 

letter probabilities based on the classifier response.  In 

the case of a “target” decision by the classifier:  

 

P(l |"target", seg)=
P("target"|seg,l) × P(l)

P("target"| seg)
 

where P(“target”|seg,l) = target segment hit rate for 

letters (l) with segment seg in them and 

P(“target”|seg,l) = target segment false alarm rate  
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for letters (l) without segment seg in them, P(l) is the 

prior probability for letter l before receiving the 

response to the flashed segment seg. 

P("target"|seg) is the normalizing factor that keeps the 

total probabilities over all letters summed to 1. 

 

Likewise in the case of a “non-target” decision by the  

classifier: 

P(l|"nontarget",seg) =
P("nontarget"|seg,l) × P(l)

P("nontarget"|seg)
 

 

where P(“nontarget”|seg,l) = target miss rate  

for letters (l) with segment seg in them and 

P(“nontarget”|seg,l) = target correct rejection rate  
for letters (l) without segment seg in them.     

 

P(l|seg) = P(l|"target",seg)when a target is detected and 

P(l|"nontarget",seg) when the classifier declares a non-

target.  These can be updated in parallel for all letters. 

Letter selection can be based on P(l|seg) exceeding a 

given threshold (e.g. 0.5) or P(l1|seg) being more than a 

threshold above P(l2|seg) where 𝑙1is deemed the most 

probable letter, and 𝑙2the second most probable.  For 

these experiments, we used this latter rule with threshold 

of .2.    

 

Note that for the purposes of these analyses (and the 

segment selection discussed below), we assume that the 

hit rates are the same for all segments that are present in 

the letters and the false alarm rate is also the same for all 

segments that are not present in the letters. For this work, 

we assumed a hit rate of 65% and a false alarm rate of 

35%.  This is very close to what was observed in the 

training data. 

 

Given the letter probabilities and the mapping of 

segments to letters as well as estimates of the false-alarm 

and miss rates, the expected information gain acquired by 

receiving the response to each flashed segment can be 

computed. Segments are chosen to maximize: 

Eseg(KL(P("targ"|seg)P(l|"targ",seg) + 

P("nontarg"|seg)P(l|"nontarg,seg),P(l)) 
 

That is, we maximize the expected Kullback-Leibler 

divergence between the expected letter probabilities after 

the response and the current letter probabilties.   

 

Table 1: Per-subject global segment accuracy (acc), as 

well as class confusion performance (T/F – True, False; 

P/N –  Positive, Negative) from the online testing phase. 

 
Figure 2: Grand average traces for the target (blue) and 

nontarget (red) classes, with the difference in black. 

Shaded regions reflect regions of significant difference 

between classes (p < .01, without correction). 

 

Note that in the case of ties, the segment with the lowest 

index was selected. This does not hold true, however, if  

said segment was presented within the last two trials. 

Instead, the segment with the next lowest index was 

chosen. 

 

Pseudo-Online Letter Selection: To probe the 21x25 

class letter selection accuracy (Table 2), we decided to 

merge each subject’s offline and online data, roughly 

doubling the number of blocks evaluated. As the 

experimental design between the offline and online phase 

is – to the participant – identical, this should be a 

reasonable approach. For training the pseudo-online 

classifier, we balanced the classes by splitting nontargets 

trials into two disjoint sets, and trained these sets 

separately, using all target-class trials. Using the same 

classifier, we split the data into 10 folds, using 2 folds of 

the data for testing. 

 

Classifier outputs were yielded for each trial, reflecting 

P(“target”|seg) vs P(“nontarget”|seg). As each nontarget 

trial was in the test set twice, and each target trial was in 

the test set four times, the classifier outputs for each 

given trial are averaged. Then, seperately for each block, 

classifier outputs are fed into the segment model to infer 

the expected target. Table 2 reflects selections made a) 

when P(l1|seg) more than .2 P(l2|seg) or b) at end of a 

block, where P(l1|seg) is selected as the model’s output. 

 

RESULTS 

 

 Offline analyses: Comparing responses from the target 

class (class 1) and the nontarget class (class 2), we see 

the expected significant difference in subject responses 

at Pz, averaged across all subjects (Figure 2). While the 

onset time of this stimulus is significantly longer than the 

300ms that lends its name, it is not an unreasonable onset 

latency for a visual task [11]. A distinct N2 can be seen 

for the time-locked stimulus, as well as for the prior and 

subsequent letter stimulations. The N2 appearing at a 

typical latency improves our confidence in our observed 

high-latency P3. Fig, 2 also hints at a potential issue for 

the current system. The offset latency of the positive-

 
acc TP TN FP FN 

S1 0.628 0.625 0.630 0.370 0.375 

S2 0.664 0.639 0.675 0.325 0.361 

S3 0.692 0.647 0.718 0.282 0.353 

S4 0.712 0.740 0.697 0.303 0.260 

S5 0.723 0.689 0.740 0.260 0.311 

S6 0.597 0.559 0.615 0.385 0.441 
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trending difference wave is – relative to 

stimulus onset – later than the onset of the 

following stimulus.  

 

The per-subject topographic plots show an 

interesting trend. Excluding subject 4, all 

show a positive-amplitude posterior signal, 

reflecting a higher class 1 response amplitude 

consistent with a P300. The low amplitude of 

signal shown in Subject 6’s (S6) plots may 

explain the poor classification results (Table 

1). S4 shows a significantly different response 

pattern, relative to all other subjects. While 

some very posterior, positive-trending 

activity can be noticed in windows 2-4, its 

spatial pattern is distinct, with no immediately 

apparent dipole. 

 

Online analyses: As seen from Table 1 the 

true negative rate was equal to or greater than 

true positive rate for most subjects. The one 

exception – S4 – also possessed a unique 

spatial pattern in their [target - nontarget] 

class responses (Fig. 3). S6 also has a 

somewhat unique topography; the differences 

between the class means appear attenuated in 

this subject. This could explain the uniquely 

poor classification results for S6. 

 

Of the actual online blocks using the threshold 

method, 61.4% ended with the segment model 

outputting a potential letter. Of those output letters, 

31.7% matched the blocks target. Letter   selection   

accuracies   could   be   improved   by increasing the 

threshold for selection of an “output letter”. Implemented 

along with more segment presentations per target, correct 

target accuracy could increase dramatically.  

 

Pseudo-Online Results: As can be seen from Table 2, the 

incorrectly selected output-letters tend to share common 

characteristics. Sums along the columns – especially 

relative to diagonals – reflect high false selection rates 

for a given letter. Of the 261 letters selected output by the 

model, 88 (33.7%) matched the target letter for their 

given block.  

 

We can see from this array (Table 2) that dense-segment 

letters – particularly B, E, G, and R – suffer from poor 

selection accuracies. Erroneous outputs tend to share 

many shape characteristics with the true target, however, 

and each of said letters shares at least 2 segments. Longer 

trials or a more conservative threshold could lead to 

increases in ITR, even at the cost of increasing time. 

 

DISCUSSION 

 

Spatially independent spellers pay a non-trivial cost as  

they restrict themselves to specific regions of the visual 

field [3,5]. In many cases this cost must be assessed, as 

directing overt attention towards a target is not feasible 

Figure 3: Per-subject topographic plots for the offline 

phase. Each row of plots is a scrolling average (100 ms 

window, 100 ms step between plots) extending from 300 

ms to 800 ms. Due to the planar depiction of the 3-D 

electrode locations, electrodes further down the head 

extend beyond the head model. 

 

for all end-use scenarios [2]. Moreover, BCIs that require 

accurate eye movements must compete with eye trackers 

that overcome many of an EEG BCI’s shortcomings. Our 

system was designed with patients suffering from LIS in 

mind. A high information transfer rate despite the spatial 

independence is nevertheless important, especially when 

designing a channel of communication. 

 

The classifier’s discrimination of subject responses 

benefits from the distinct class-specific posterior 

potential, which we believe to be a P300. In this case of 

S5, however, no significant posterior response is elicited. 

Despite this, the online accuracy of the subject is slightly 

above the rest of the participant cohort’s average. It is 

possible that the anterior negativity present in the second 

and third windows nevertheless allows the classes to be 

discriminated. Alternatively, the ocular activity in the 

prefrontal channels, or other artefactual    sources    may 

be responsible. The 5 Hz lowpass attenuates most of the 

muscle activity, but it is also possible that unconscious 

reflexes elicited in some class-specific manner could be 

driving classification. These peripheral signals should be 

more salient in the topographic plots, however, so we 
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find this unlikely. Increasing 

single-segment classification 

is an obvious goal moving 

forward. A Markov Chain, 

coding previous trial class as 

state could be fruitful, as the 

duration of the subjects’ 

responses to targets are longer 

than the SOA. This would be 

especially useful if stimulus 

rates grow faster than 2 Hz; 

with a 300 ms SOA, the onsets 

of the preceding P3 (here, 

latency 500 seconds) and the 

subsequent N200 would 

overlap. 

 

Output-Letter Checks: Letter selection accuracies could 

be improved by increasing the threshold for selection of 

an “output letter”. We have previously tested output letter 

feedback via full letter presentations. These presentations 

can either be timed identically to the segment stimuli, or 

the output-letter checks can be flashed with longer 

preceding and anteceding inter-stimulus intervals. 

Preliminary tests on small numbers of trials suggest that   

 

Table 2: This confusion matrix reflects all output-letters 

selected by the segment model. The rows correspond to 

target stimulus, and the columns correspond to classifier 

output. ‘Blocks’ reflects the number of time a given letter 

was a target. Shaded version in Fig. 4. 

Figure 4: Visualization of the confusion matrix shown in 

table 2. Rows represent the target letter for a given block, 

whereas columns represent the letter output by the 

segment model. Thus, (1,1)/ (A,A) is the sum of all A’s 

output by the segment model while A was the target. 

 

both yield responses distinct from the segments. This is 

not surprising, as while the segments are subsets of 

letters, the complete letter arrays are – by design – 

relatively complex images [11]. 

 

Consequently, a second independently-trained classifier 

will be the most appropriate implementation. It is 

possible that responses to these flashed “test letters” 

would be more like an error-related response than a P300 
 

A B C E F G H I J K L M N O P Q R S T U V W X Y Z Blocks 

A 6 1 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 12 

B 2 2 1 0 2 0 0 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 14 

C 0 0 5 3 1 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 13 

E 1 1 3 6 1 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 3 20 

F 0 0 0 5 4 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 12 

G 1 3 0 1 1 0 1 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 1 0 2 14 

H 2 0 0 0 0 0 4 0 0 0 1 1 0 1 1 0 0 0 1 2 0 0 1 0 0 14 

J 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 6 

K 0 0 0 0 2 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 9 

L 0 0 2 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 9 

M 2 0 0 0 0 0 0 0 0 1 1 4 4 0 0 1 0 0 0 0 1 0 0 1 0 15 

N 0 0 1 0 0 0 2 0 0 0 0 1 7 0 0 0 0 0 0 0 0 4 0 0 0 15 

O 0 1 2 0 0 0 0 0 1 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 1 15 

P 1 0 1 0 3 0 0 0 0 0 0 1 1 4 5 0 1 0 0 0 1 1 0 0 0 19 

Q 0 0 1 0 1 0 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0 1 1 0 0 13 

R 0 0 1 0 0 0 0 0 0 2 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 7 

S 0 0 1 0 0 2 0 1 1 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 10 

T 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 8 0 0 0 0 0 0 12 

U 0 0 0 0 0 0 0 0 5 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 9 

W 0 0 1 0 0 0 1 0 1 0 0 0 4 1 0 2 0 0 0 1 0 2 1 0 0 14 

Z 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 5 9 
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response. 

 

Furthermore, given the letter selection frequency in the 

30-trial online blocks, a larger maximum trial cap is an 

obvious change going forward. As the discrimination 

difficulty and input fatigue make the task somewhat 

strenuous, brief breaks may be necessary as blocks 

lengthen. Current, trials last no longer than 20 seconds, 

and responses may grow increasingly non-stationary due 

to fatigue if that duration significantly increases. 

 

One advantage of the segment speller is that errors tend 

to be to visually similar letters (letters with similar 

subsets of segments) as opposed to neighboring letters in 

the grid for standard P300 grid and hexagonal spellers.   

This means that perfect selection of letters may not be 

necessary for typed words to be readable, as replacing 

letters by visually similar ones can still be quite legible. 

 

An important question to consider is whether the 

combinatorial advantage of using segments justifies the 

increase in task difficulty. The complexity of the oddball 

task increases significantly when moving from letters to 

segments, and the chances of misidentification also 

increase. Moreover, task difficulty has been shown to 

attenuate P3 amplitude [12], especially that of the more 

frontal P3a [13]. It is possible that the high latency, 

posterior distribution of our responses is a consequence 

of this difficult categorization task. Consequently, future 

experiments could compare responses to an easier 

oddball task, to help contextualize the data. 

 

CONCLUSION 

 

The online classification of target vs nontarget segments 

proved possible for all subjects, with an average segment 

accuracy of 68%. The segment model – designed to 

probabilistically infer the target letter based on segment 

classification – outputs a target 61.4% of the time. Of 

these output targets, the correct letter was selected 31.7% 

of the time. As only 30 segments could be queried per 

target letter, we expect a longer selection block paired 

with a higher threshold should significantly improve final 

letter accuracy and rate. 
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