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ABSTRACT: Mental-Imagery based Brain-Computer In-
terfaces (MI-BCI) are neurotechnologies enabling users
to control applications using their brain activity alone.
Although promising, they are barely used outside labo-
ratories because they are poorly reliable, partly due to in-
appropriate training protocols. Indeed, it has been shown
that tense and non-autonomous users, that is to say those
who require the greatest social presence and emotional
support, struggle to use MI-BCI. Yet, the importance of
such support during MI-BCI training is neglected. There-
fore we designed and tested PEANUT, the first Learn-
ing Companion providing social presence and emotional
support dedicated to the improvement of MI-BCI user-
training. PEANUT was designed based on the litera-
ture, data analyses and user-studies. Promising results re-
vealed that participants accompanied by PEANUT found
the MI-BCI system significantly more usable.

INTRODUCTION

Brain-Computer Interfaces (BCI) are neurotechnologies
which enable users to control external applications us-
ing their brain-activity alone [22], often measured us-
ing ElectroEncephaloGraphy (EEG). In this paper, we
focus more specifically on Mental-Imagery based BCI
(MI-BCI) with which commands are sent using mental-
imagery tasks (imagining movements for instance). Be-
cause they enable users to control devices or applica-
tions without moving, MI-BCI are extremely promising
in various fields ranging from assistive technologies (e.g.
wheelchairs or neuroprosthetics) to video games [15].
Nevertheless, some important issues inherent to MI-BCI
make it so that these technologies are not reliable enough
for applications such as navigation and control, therefore
preventing them from being widely used outside labora-
tories. Among these issues, some are due to hardware
limitations (the electrodes are sensitive to noise) and oth-
ers to software issues (brain-signal processing algorithms
are still imperfect). Though, the issue we will focus on
here, which is rather little explored [13], concerns the
users themselves. Indeed, before being able to use an
MI-BCI, users have to learn how to produce brain pat-
terns that the computer will be capable of discriminating.
However, the literature [14] as well as experimental re-
sults [7] suggest that current MI-BCI training protocols

Figure 1: A participant taking part in a BCI training
process. Along the training PEANUT (on the left) pro-
vides the user with social presence and emotional support
adapted to his performance and progression.

are theoretically and practically inappropriate for acquir-
ing skills. Therefore, understanding and improving MI-
BCI skill-acquisition is essential to make BCI accessible.
Previous research results [8] suggest that users with spe-
cific personality profiles face difficulty when learning to
use an MI-BCI. More specifically, highly tense and non-
autonomous people (based on the “tension” and “self-
reliance” dimensions of the 16 PF5 psychometric ques-
tionnaire [2]) experience the greatest difficulties.
Indeed, the MI-BCI training process does lack aspects
of utmost importance for learning: social presence and
emotional support [9]. In “Distance Learning” applica-
tions (i.e., learning without a teacher or classmates, using
a computer for instance) [19], the absence of social pres-
ence and emotional support has been efficiently compen-
sated by the use of learning companions [16, 11]. Learn-
ing companions are virtual or physical characters that can
speak and have facial/bodily expressions. They provide
the learner with different kinds of interventions, such as
support or empathy, in order to overcome the lack of so-
cial interactions and emotional support. Despite their po-
tential to improve MI-BCI user-training, both in terms of
performance and user-experience, the use of a social pres-
ence and an emotional support as provided by a Learning
Companion has never been explored in this context.
Thus, the object of this work was to design, implement
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and validate the first learning companion dedicated to im-
proving MI-BCI user-training. We called this compan-
ion PEANUT for Personalised Emotional Agent for Neu-
rotechnology User-Training. PEANUT is a physical and
anthropomorphic character providing interventions to the
user in between two BCI trials. Such interventions con-
sist in pronouncing an encouraging sentence, and display-
ing corresponding facial expressions of emotions.
In the following sections, we will describe the different
steps which led to the companion’s appearance and in-
tervention design. Finally, we introduce the experiment
dedicated to validate PEANUT’s efficiency in improving
MI-BCI user-training before proposing a general discus-
sion and presenting future work.

DESIGNING PEANUT

Designing a learning companion requires to identify an
appropriate appearance and intervention content, due to
their impact on the user’s motivation, experience and
learning [1]. Thus, our design was based on the literature
and a couple of user-studies.

Defining the physical appearance of PEANUT
First, we focused on the appearance of PEANUT. The lit-
erature guided our choice towards the use of a physical
companion, increasing social presence in comparison to
a virtual one [5]. Also, anthropomorphic features seem to
facilitate social interactions [3]. Moreover, for the com-
panion to be relevant, the combination of physical charac-
teristics, personality/abilities, functionalities and learning
function had to be consistent.
Since PEANUT’s functions are simple and it is unable
to interact with the user (PEANUT can talk, but cannot
receive input from the BCI user), we chose to propose
a cartoon-like character with anthropomorphic child-like
shapes. Thus, we used the voice of a child to record
PEANUT’s interventions (which also enabled us not to
associate PEANUT with a gender).
Regarding PEANUT’s face, we asked a designer to cre-
ate three styles of faces expressing each of these eight
emotions: Trust, Joy, Surprise, Admiration, Boredom,
Sadness, Anger and a Neutral expressions. We wanted
the faces to be cartoon-like, so that they fit the body and
complied with the recommendations from the literature.
Prior to the experiment, an online user-survey in which
96 people gave their opinion on the different faces design
expressing the different emotions was led. It enabled us
to select the style of face that would fit the most the re-
quirements from the literature. Interestingly, the results
indicated that the presence of eyebrows could influence
positively the expressiveness of a cartoon face.

Defining the Behaviour of PEANUT
Second, we concentrated on the content of PEANUT’s
interventions. One intervention corresponds to the asso-
ciation of a sentence and a facial expression. Sentences
were selected from the following five main categories,

elaborated through recommendations from the literature
[10, 23, 21, 6], with respect to subject’s MI-BCI perfor-
mance and progression, i.e. the context of intervention.

• Temporal interventions, related to the temporal
progress of the experiment [10] (ex. “I am happy
to meet you”, when starting the first session)

• Effort-related interventions, focusing on the fact
that learning is the goal, and intended to minimise
the importance of current performance while pro-
moting long-term learning [23]. (ex. “Your efforts
will be rewarded”)

• Empathetic interventions, which aim at letting
users know that their companion understands that
they are facing a difficult training process [21]. (ex.
“Don’t let difficulties discourage you”)

• Performance/results and progression associated in-
terventions, which were designed to motivate users
by focusing on the abilities they had already ac-
quired [6]. (ex. “You are doing a good job!”)

• Strategy-related interventions which aim at encour-
aging people to keep the same strategy when pro-
gression was positive or to change strategy when
it was negative/neutral. (ex. “You seem to have
found an efficient strategy”)

Then, we also explored different sentences’ characteris-
tics, e.g., exclamatory or declarative (ex. “You are doing
good!” or “You are doing good.”); and personal (second
person) or non-personal (third person) mode (ex. “You
are doing good!” or “These results are good!”). To
determine which characteristics the intervention should
have depending on the context (performance & progres-
sion), we led an online user survey with 104 persons.
The study consisted in an online questionnaire giving
users similar instructions and mental imagery tasks as the
ones given during actual BCI training. Simulated perfor-
mances (since the surveyed users were not actually us-
ing a BCI) were displayed and were evolving positively,
neutrally or negatively given the group the user was ran-
domly assigned to. After the situation was introduced,
two different intervention sentences were displayed on
screen Users were asked to rate each of them (on a Likert
scale ranging from 1 to 5) based on five criteria: appro-
priate, clear, evaluative, funny, motivating.
The results of these questionnaires revealed that users
facing a negative progression should only be provided
with declarative personal interventions and those facing a
neutral progression with either declarative or exclamatory
personal interventions. Results also revealed that partici-
pants showing a positive progression should be provided
with declarative non-personal sentences (when the goal
was to give clear information about the task) or exclama-
tory personal sentences (when the goal was to increase
motivation) (see also Figure 2). One should add that
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Figure 2: PEANUT’s rule tree. Depending on performance and progression (”-”=negative, ”=”=neutral”, ”+”=positive),
a set of rules is determined. Type of sentences: ”perso.” for personal, ”NoPerso.” for non-personal ; Mode of the sen-
tence: ”decl.” for declarative, ”excl.” for exclamatory. Interventions: ”GEff” for general effort, ”SEff” for support effort,
”GEmp” for general empathy, ”SK” for strategy keep, ”SC” for strategy change, ”RG” for results good, ”RVG” for results
very good, ”PG” for progress good, ”PVG” for progress very good. Moreover, ”∧” sign represents the logical operator
”and” while ”∨” sign represents the logical operator ”or”.

when an exclamatory sentence was used for the interven-
tion, the emotion displayed through PEANUT’s facial ex-
pressions was made more intense than for an equivalent
declarative sentence. We could then translate these vari-
ous results into rules, and more precisely into the the rule
tree presented in Figure 2. This rule tree enables the sys-
tem to select one specific rule (i.e., an intervention con-
tent - sentence & expression - and style) with respect to
the context (performance and progression).

In particular, we determined a bad, average and good
performance according to the 25th and 75th percentile
of each user performance at the first run. Similarly, we
determine a negative, neutral or positive progression ac-
cording to the 25th and 75th of the user progression
during the first session. Progression was estimated as the
slope of the regression line of the user performance over
the last 10 trials.

Implementation of PEANUT
Users’ EEG signals were first measured using a g.tec
gUSBAmp (g.tec, Austria) and processed online using
OpenViBE 0.19.0 [18]. OpenViBE provided users with
a visual feedback about the estimated mental task, and
computed users’ performances which were then transmit-
ted to a home-made software, the rule engine using the
Lab Streaming Layer (LSL) protocol. The rule engine
processed performance measures received from Open-
ViBE to compute progression measures and browsed
the Rule Tree described in Figure 2 in order to select
an appropriate intervention for PEANUT (sentence and
facial expression) with respect to the context. The se-

lected intervention was then transmitted to an Android
smartphone application by WiFi, which enunciated the
sentence and animated PEANUT’s facial expression.

VALIDATION OF THE EFFICIENCY OF PEANUT TO
IMPROVE BCI USER-TRAINING

Once the companion created, the next step consisted in
studying its efficiency to improve MI-BCI user-training
both in terms of performance and user-experience.

Participants
Our study included twenty MI-BCI-naive participants (10
women; aged 21.05±1.64), and was conducted in accor-
dance with the relevant guidelines for ethical research ac-
cording to the Declaration of Helsinki. This study was
approved by Inria’s ethics committee, the COERLE. All
participants signed an informed consent form at the be-
ginning of the experiment and received a compensation
of 50 euros.
Our experiment comprised 2 participant groups, which
determined the support they would receive throughout
the MI-BCI training sessions: no learning companion
(control group) or a learning companion adapted to their
MI-BCI performance & progression, i.e., PEANUT (ex-
perimental group). As the control group, we used the
results obtained from 10 subjects in a previous experi-
ment [8]. This experiment used the same protocol, but
without PEANUT. Among the 18 participants of this pre-
vious study, 10 were selected so that they matched, as far
as possible, the characteristics of the participants from
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the experimental group in terms of gender and initial MI-
BCI performance. Furthermore, tension and self-reliance
scores were comparable for the two groups.

Experimental Protocol
Before the first session, participants were asked to com-
plete a validated psychometric questionnaire, the 16 PF-
5 [2], that enabled us to compute their tension and self-
reliance scores. Each participant took part in 3 sessions,
on 3 different days. Each session lasted around 2 hours
and was organised as follows: EEG cap setup, five runs
during which participants had to learn to perform three
MI-tasks (around 60 min, including breaks between the
runs), removing the EEG cap and debriefing. The MI-
tasks (i.e., left-hand motor imagery, mental rotation and
mental subtraction) were chosen according to Friedrich et
al. [4], who showed that these tasks were associated with
the best performance on average across participants. Dur-
ing each run, participants had to perform 45 trials (15 tri-
als per task, presented in a random order), each trial last-
ing 8s. At t=0s, an arrow was displayed with a left hand
pictogram on the left (L-HAND task), the subtraction to
be performed at the top (SUBTRACTION task) and a 3D
shape on the right (ROTATION task). At t=2s, a ”beep”
announced the coming instruction and one second later,
at t=3s, a red arrow was displayed for 1.250s. The direc-
tion of the arrow informed the participant which task to
perform, e.g., an arrow pointing to the left meant the user
had to perform a L-HAND task. In order to stress this in-
formation, the pictogram representing the task to be per-
formed was also framed with a white square until the end
of the trial. Finally, at t=4.250s, a visual feedback was
provided in the shape of a blue bar, the length of which
varied according to the classifier output. Only positive
feedback was displayed, i.e., the feedback was provided
only when there was a match between the instruction and
the recognised task. The feedback lasted 4s and was up-
dated at 16Hz, using a 1s sliding window. During the first
run of the first session (i.e., the calibration run, see next
Section), no real feedback could be provided, since the
classifier has not been calibrated yet for this user. Thus,
in order to limit biases with the other runs, e.g., EEG
changes due to different visual processing between runs,
the user was provided with a sham feedback, i.e., a blue
bar randomly appearing and varying in length, irrespec-
tively of the user’s actual EEG (this feedback was based
on the data from a previous user), as in [4]. A gap lasting
between 3.500s and 4.500s separated each trial.
The experimental group was accompanied by PEANUT
during the training, from the second run of session 1 (af-
ter the calibration run). PEANUT intervened every 6 ± 2
trials (the exact trial during which PEANUT intervened
was randomly selected in that interval), during the inter-
trial interval. PEANUT’s interventions were adapted to
participants’ performance during the first session, and to
their performance and progression during the second and
third sessions.

EEG Recordings & Signal Processing
The EEG signals were recorded using 30 active scalp
electrodes (F3, Fz, F4, FT7,FC5, FC3, FCz, FC4, FC6,
FT8, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P5,
P3, P1, Pz, P2, P4, P6, PO7, PO8, 10-20 system), ref-
erenced to the left ear and grounded to AFz. EEG data
were sampled at 256 Hz.
In order to classify the 3 mental imagery tasks on which
our BCI is based, the following EEG signal processing
pipeline was used. First, EEG signals were band-pass
filtered in 8-30Hz, using a Butterworth filter of order 4.
Then EEG signals were spatially filtered using 3 sets of
Common Spatial Pattern (CSP) filters [17].
The CSP algorithm aims at finding spatial filters whose
resulting EEG band power is maximally different be-
tween two classes. To provide a participant-specific feed-
back, each set of CSP filters was optimised during a cal-
ibration run (i.e., the first run of the first session) to dis-
criminate EEG signals for a given class from those for
the other two classes. We optimised 2 pairs of spatial
filters for each class, corresponding to the 2 largest and
lowest eigen values of the CSP optimisation problem for
that class, thus leading to 12 CSP filters. The band power
of the spatially filtered EEG signals was then computed
by squaring the signals, averaging them over the last 1
second time window (with 15/16s overlap between con-
secutive time windows) and log-transforming the result.
These resulted in 12 band-power features that were fed
to a multi-class shrinkage Linear Discriminant Analysis
(sLDA) [12], built by combining three sLDA in a one-
versus-the-rest scheme. As for the CSP filters, the sLDA
were optimised on the EEG signals collected during the
calibration run, i.e., during the first run of the first ses-
sion. To reduce between session variability, the sLDA
classifiers’ biases were re-calculated after the first run of
sessions 2 and 3, based on the data from this first run, as
in [4]. The resulting classifier was then used online to
differentiate the 3 MI-tasks during the 3 sessions.
The sLDA classifier output (i.e., the distance of the fea-
ture vector from the LDA separating hyperplane) for the
mental imagery task to be performed was used as feed-
back provided to the user. In particular, if the required
mental task was performed correctly (i.e., correctly clas-
sified), a blue bar with a length proportional to the LDA
output and extending towards the required task picture
was displayed on screen and updated continuously.
This processing pipeline led to a total of 64 classification
outputs per trial (16 per second for 4 seconds). Open-
ViBE thus computed the user’s performance for this trial
as the rate of correct classification outputs among these
64 outputs, and sent it to the rule engine (which in turn
computed progression measures).

Variables & Factors
We studied the impact of the group (no companion, com-
panion) on participants’ MI-BCI performance, with re-
spect to the session and participant’s profile (tension and
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self-reliance scores). MI-BCI performance was assessed
in term of mean classification accuracy (mean perfor-
mance measured over all the windows of the feedback
periods from all the different runs). We also evaluated
the impact of the group on MI-BCI usability, with re-
spect to MI-BCI performance. MI-BCI usability was
assessed using a questionnaire focusing on 4 dimensions:
learnability/memorability (LM), efficiency/effectiveness
(EE), safety and satisfaction.

Results

First of all, statistical tests (t-tests) revealed no significant
differences between the two groups in terms of tension,
autonomy or initial cross validation performances on the
calibration. This ensures the two groups are comparable.
Therefore, we analysed each group’s MI-BCI perfor-
mance in term of mean classification accuracy, for this
3-class BCI (thus with a chance level of 33%). The group
with no companion obtained 51.65% ± 3.78 and the
group with the companion obtained 50.85%± 7.94 mean
classification accuracy. An ANOVA did not find any sig-
nificant difference between the mean performance of the
two groups [F(2,18)=-0.29, p=0.777] though their vari-
ance is significantly different [F(2,18)=4.737, p=0.043]
(see Figure 3).

Figure 3: Mean classification accuracy per users group.

The subtantial difference of variability between the two
groups might suggest that PEANUT had a beneficial ef-
fect on some participants and a detrimental effect on
some others. However, this is only an hypothesis, and
the number of participants included in the study does not
allow us to identify the characteristics of those benefiting
(or not) from PEANUT.
Finally, we analysed the influence of the group on us-
ability scores. We performed four one-way ANCO-
VAs (one per dimension) with the Group as factor,
the usability score for the target dimension as depen-
dent variable and the mean classification accuracy as
co-variable, since better classification accuracy is likely
to lead to better perceived efficiancy, irrespectively of
the condition. Results revealed a main effect of the
group on the learnability/memorability (LM) dimension

[D(1,18)=6.073; p≤0.05, η2=0.263]: participants who
were provided with a companion considered the system’s
learnability/memorability to be higher than those with no
companion (see Figure 4).

Figure 4: LM scores with respect to users’ group.

DISCUSSION & CONCLUSION

In this paper, we introduced PEANUT, the first learn-
ing companion dedicated to MI-BCI user-training. The
strength of this companion is its design: a combina-
tion of recommendations from the literature and of user-
studies. PEANUT was validated in a relatively large MI-
BCI study (20 participants, 3 sessions per participant),
with two conditions: one control group with no learning
companion and one experimental group with a learning
companion whose behaviour was adapted to users’ per-
formance and progress. The higher variance in terms of
performance in the group with PEANUT might suggest
that PEANUT had a beneficial influence on some par-
ticipants’ performance but a detrimental one on others,
although this hypothesis remains to be formally tested.
This is in accordance with some previous studies indicat-
ing a differential effect of learning companion depend-
ing on sex and previous knowledge [1]. Nonetheless, this
study also revealed that using PEANUT has a significant
impact on user-experience. Indeed, participants who used
PEANUT found it was easier to learn and memorise how
to use the MI-BCI system than participants who had no
learning companion. This confirmed that carefully de-
signing PEANUT based on literature from educational
psychology and user-centered design methods substan-
tially benefited MI-BCI training user-experience.
In the future, PEANUT’s behavior could be improved by
adapting its interventions to the user’s profile and state
(frustration, overload, joy, boredom, etc.). We also plan
to have PEANUT providing cognitive support, i.e., help
to guide users towards the acquisition of specific skills.
In order to be able to provide such support in an appro-
priate way, we first have to define a cognitive model of
MI-BCI user-training, i.e., a model describing the fac-
tors impacting MI-BCI performance. Such a cognitive
support, also known as explanatory feedback, is recom-
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mended by the educational psychology literature to en-
sure efficient training [20]. It would also be interesting
to define more refined performance metrics and user state
measures in order to provide more specific/adapted inter-
ventions, possibly further improving the support.
Overall, we are working towards providing a better cog-
nitive and emotional feedback to MI-BCI users thanks
to the use of learning companions. We hope that such
companions could become broadly used tools for MI-BCI
user-training in order to push BCI performance and us-
ability much further. In this view, we designed and imple-
mented PEANUT for a low cost, using only open-source
and free software. We hope this work will contribute to
make MI-BCI more widely accessible technologies.
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