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ABSTRACT: The aim of the study is to quantify 

individual changes in scalp connectivity patterns 

associated to the affected hand movement in stroke 

patients after a 1-month training based on BCI-

supported motor imagery to improve upper limb motor 

recovery. To perform the statistical evaluation between 

pre- and post-training conditions at the single subject 

level, a resampling approach was applied to EEG 

datasets acquired from 12 stroke patients during the 

execution of a motor task with the stroke affected hand 

before and after the rehabilitative intervention. 

Significant patterns of the network reinforced after the 

training were extracted and a significant correlation was 

found between indices related to the reinforced pattern 

and the clinical outcome indicated by clinical scales. 

 
INTRODUCTION 

 

In neuroscience, the concept of brain connectivity is 

crucial to understand how communication between 

cortical regions is organized or re-organized in presence 

of a brain injury or brain disease [1], [2]. Group analysis 

studies are commonly performed when the aim is to 

evaluate the relevant differences between experimental 

conditions and/or the consistency of a treatment effect 

and how the differences or effects might affect the 

functional brain network configuration. 

As such, this approach holds some limitations related to 

the unavoidable heterogeneity in the experimental group 

and further, specific effects that a given brain lesion has 

on neural networks (e.g. stroke) at the single patient 

level might be hidden. Thus, there is the need to provide 

measures that might account for individual pathological 

network configuration associated with different level of 

patient’s impairment. 

In this study, an approach based on the use of the 

resampling was applied to evaluate the brain network 

reorganization in each individual patient who underwent 

a rehabilitative training after stroke. Indeed typically a 

statistic comparison of two patient’s conditions cannot 

be performed as the amount of data collected in an EEG 

recording session (multi-trial EEG dataset) are entirely 

used to obtain an unique connectivity estimation. To 

overcome this limitation, in the present work we applied 

jackknife approach [3] to multi-trials EEG data, thus 

generating a distribution of datasets out of a single 

observation (ie, single patient). These datasets can be 

then subjected to connectivity estimation to obtain a 

distribution of the connectivity estimator in each of the 

patient experimental condition as described below. We 

used motor task-related EEG data recorded on subacute 

stroke patients in two recording sessions: one preceding 

and one following a rehabilitative intervention based on 

motor imagery with the support of Brain Computer 

Interfaces (BCI) [2]. The BCI training in [2] lasted one 

month, with 3 weekly session in which patients were 

asked to perform motor imagery of the stroke affected 

hand to control a specifically designed BCI system. 

Control features for BCI were selected from a screening 

session among electrodes from sensorimotor strip on the 

affected hemisphere only, at frequencies relevant for 

sensorimotor activation (mainly beta). The patterns 

underlying the attempted movement of the paralyzed 

hand obtained before and after the intervention from 

each stroke patients were compared, in order to describe 

the individual significant connectivity changes induced 

by the BCI-assisted training. Connectivity matrices 

were also analyzed by means of a graph theory 

approach, and a correlation analysis was performed to 

test the existence of a relationship between the 

organization of brain networks (graph-theory derived 

indices) and the functional outcome measures specific 

for the upper limb motor function. 

 

MATERALS AND METHODS 

 

     Partial Directed Coherence 

As a frequency-domain version of Granger causality 

[4], PDC reveals the existence, the direction and the 

strength of a functional relationship between any given 

pair of signals in a multivariate data set. 

In this study we used the squared formulation of 

PDC due to its higher accuracy and stability [5].  

     Resampling approach: Jackknife 

To achieve a distribution of connectivity estimations 

allowing a comparison between conditions, in this study 

we exploited a resampling approach. Given an EEG 

dataset characterized by a certain number of trials, 

Jackknife performs leave-N-out on trials, where N is a 

percentage of trials to be randomly excluded from the 
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estimation. Repeating the procedure for K replications, 

we can obtain K datasets to be subjected to connectivity 

estimation. Here, we set the parameters to the following 

values: K = 200 replications, percentage of excluded 

trials N = 50%. 

     Experimental design 

EEG signals were acquired from 12 subacute stroke 

patients (mean age, 62.1 ± 9.9 years; time from the 

event: 1.75 ± 1.21 months; 6 left/6 right affected 

hemisphere). All the patients underwent standard motor 

rehabilitation and a newly proposed add-on intervention 

based on a BCI-assisted upper limb motor imagery 

training [2]. Immediately before and after the training 

intervention, the patients were subjected to two 

screening sessions (PRE and POST) including clinical 

assessment and EEG recordings during the attempt of a 

simple movement (grasping) by the hand affected by the 

motor deficit. The clinical assessment included the 

evaluation of the upper limb function by means of Fugl-

Meyer Assessment (FMA, upper limb section). 

     Signal processing 

After data preprocessing (down-sampling at 100 Hz 

with anti-aliasing filter, band pass filtering (1-45 Hz), 

and artifact rejection), we obtained for each patient and 

each condition (PRE and POST) an EEG dataset 

consisting of approximately 60 artifact-free trials related 

to the motor task. Then we applied the jackknife 

method. Brain connectivity was estimated from 29 

channels by means of PDC. The achieved estimations 

were averaged within 5 frequency bands defined for 

each patient according to Individual Alpha Frequency 

[6]: theta [IAF-6;IAF-2], alpha [IAF-2;IAF+2], beta1 

[IAF+2;IAF+11], beta2 [IAF-11;IAF+20] and gamma 

[IAF+20;IAF+35]. 

Once the patterns distributions were obtained for each 

patient, condition and frequency band, we performed 

the statistical comparison between PRE and POST 

conditions. In particular, to evaluate the effects of the 

rehabilitative intervention, we focused on the pattern 

that was significantly reinforced for each patient in the 

POST with respect to the PRE session (POST vs PRE). 

To perform this comparison, we used a nonparametric 

test: the values in the POST pattern above the thresholds 

related to the percentile of 97.5% of the PRE 

distribution, were considered significantly reinforced. 

The PRE vs POST comparison (inverse condition) was 

also tested as control. 

To summarize the properties of the reinforced networks 

we computed some binary graph indices able to 

evaluate the network organization [7]. 

- Characteristic Path Length 
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where Li is the average distance between node 𝑖 and all 

other nodes and dij is the distance between node i and 

node j. 

- Clustering Coefficient 

The binary directed version of Clustering Coefficient is 

defined as follows: 
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where ti represents the number of triangles involving 

node i, ki
in and ki

out are the number of incoming and 

outcoming edges of nodes i respectively and gij is the 

entry ij of adjacency matrix. 

- Smallworldness 

A network G is defined as small-world network if LG > 

Lrand and CG >> Crand where LG and CG represent the 

characteristic path length and the clustering coefficient 

of a generic graph and Lrand and Crand represent the 

correspondent quantities for a random graph. On the 

basis of this definition, small-worldness can be defined 

as follows: 
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A network is said to be a small world network if S>1. 

 

    Correlation analysis 

As a last step of the analysis, we performed Pearson’s 

correlation (significance level 0.05) between the above 

defined neurophysiological indices extracted from the 

reinforced networks and the functional scale (FMA).  

For the clinical measure, to account for the high inter-

subject variability in terms of degree of the impairment, 

and for the consequent different level of recovery, we 

computed the parameter "effectiveness" [8], defined as 

follows: 

100*
max PRE

PREPOST
FMA

FMAScore

FMAFMA
Eff




  

(4) 

where Scoremax is the maximum score that can be 

reached in FMA scale.  

 

RESULTS 

 

Fig. 1 shows the connectivity pattern reinforced at the 

end of the rehabilitative training obtained for a 

representative patient with a stroke in the left 

hemisphere: the pattern in the motor-related frequency 

band (beta1) shows a higher involvement of channels 

over the motor areas of the affected (left) hemisphere 

during the attempt to move the right hand. 

Results of the Pearson correlation computed between 

graph measures extracted from the connectivity pattern 

and the clinical indices across the 12 stroke patients are 

reported in Table I and in Fig. 2. Such results show that 

the properties of the functional network reinforced after 

the training are significantly correlated with the clinical 

outcome selectively in beta1 band. 
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Figure 1: Reinforced connectivity pattern obtained in 

beta1 band (typical of sensory-motor rhythms) for a 

representative patient with lesion in the left hemisphere. 

The scalp is seen from the above, with the nose pointing 

to the upper part of the page. The effective connections 

between scalp electrodes (29 channels: Fp1, Fpz, Fp2, 

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, 

C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, 

Oz, O2) are represented by arrows whose color and 

diameter code for the corresponding PDC values. 

 

 

Table 1: Results of the Pearson correlation computed 

between graph indices extracted from the reinforced 

pattern of motor task and the clinical recovery 

(effectiveness of Fugl-Meyer Assessment). 

Significances are highlighted in bold. 

 
 

 

In particular, the direct correlation between these 

neurophysiological measures and the clinical indices 

informs that the patients with higher clinical recovery 

show a better organization of the reinforced network 

related to the motor function (high clustering, low path 

length, high smallworldness). The PRE vs POST 

comparison performed as control returned no significant 

results. 

 

 
Figure 2: a) Scatter plot obtained between Path Length 

and the clinical recovery (effectiveness of Fugl-Meyer 

Assessment) in beta1 band; b) scatter plot obtained 

between Clustering and the clinical recovery measure in 

beta1 band. 

 

 

DISCUSSION  

 

In the present work, we performed a statistical 

evaluation of the individual brain network 

reorganization following a rehabilitative training in a 

population of subacute stroke patients. To perform the 

single-patient statistical comparison between the two 

conditions (pre- and post- intervention), jackknife was 

applied to multi-trial EEG datasets. The comparison 

between the 2 distribution of data set relative to PRE 

and POST sessions (POST vs PRE) revealed that the 

properties of the brain networks associated to attempted 

movements were reinforced as a function of the 

functional improvement (FMA effectiveness) observed 

after the BCI-assisted rehabilitation training. 

The correlation between normalized indices of the 

network properties (clustering, path length, 

smallworldness) and the normalized index of the 

functional recovery (FMA effectiveness) suggests that 

patients with higher level of functional motor recovery 

show a better organization of the reinforced network 

such as high clustering, low path length, high 

smallworldness. Consistently, such correlation was 

specific for motor-related frequency band (beta 1) while 
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no similar results were achieved for any other frequency 

band (Table I).  

To assess the clinical recovery, we computed the 

effectiveness parameter, one of the most used 

rehabilitation impact indices [8]. One limit in applying 

such effectiveness parameter resides in the possible 

underestimation of clinical improvement in moderate 

versus severe stroke.  

Although these are encouraging findings, the small 

patients sample (n=12) and the high variability within 

the group limits their interpretation. Future studies 

including a larger patient sample subjected to a 

stratification according to the clinical impairment at 

baseline, are thus needed. 

In a previous study, [2], we showed that BCI-supported 

motor imagery training can significantly improve the 

upper limb motor outcome in a population of subacute 

stroke patients. 

The current study represents a first step forward as it 

addressed i) the need of single patient estimation of 

connectivity networks to better isolate efficacy of 

treatment with respect to the high inter-individual 

variability in stroke population and ii) the estimation of 

task –related reorganizational scalp connectivity 

patterns changes (with respect to the resting state 

network), thus targeting the main outcome of the 

rehabilitative intervention described in [2], i.e. upper 

limb motor recovery. 

An important aspect to discuss is related to the 

connectivity estimation performed with EEG sensor 

time series. It is known that this procedure can lead to 

the detection of spurious connections due to the mixing 

effects caused by volume conduction [9]. In this study 

we performed a statistical comparison between two 

experimental conditions that represents a way to 

mitigate these effects. Furthermore, in view of clinical 

application scalp EEG analysis can represent a more 

suitable procedure with respect to the use of method for 

solving the inverse problem that needs to take into 

account the presence of brain lesions. Altogether, the 

presented results show the feasibility of the procedure in 

a study aimed at capturing intervention-related 

variations in patients’ physiological activity, in 

challenging conditions characterized by high individual 

variability. 

 

CONCLUSION 

 

In conclusion, the proposed procedure provided 

quantifiable measures of brain networks changes after a 

BCI-based training at the single subject level; such 

measures correlate significantly with the variations 

captured behaviourally by functional scales commonly 

used in the clinical practice 
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