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ABSTRACT: Brain-Computer Interfaces (BCls) enable
users to control devices or communicate by using brain ac-
tivity only. While BClIs based on visual evoked potentials
(VEPs) have been shown to achieve high performance, we
present a different paradigm for BCI control: random VEP
(rVEP). We designed a regression model, trained on VEPs
of fully random bit codes. Afterwards, the model is able
to perform a bit-wise prediction of a previously unseen
stimulation sequence, which in turn can be used for BCI
control. In an offline study, the model predicts unknown
stimulation sequences with an average ITR of 94.5 bits
per minute (bpm) and up to 281 bpm on a single-trial level.
In a copy-spelling task, the model achieved an average
ITR of 64.3 bpm and up to 115.5 bpm.

INTRODUCTION

Using a Brain-Computer Interface (BCI), a user is able
to control a computer by brain activity without physical
activity. In general, BCIs are used to restore functionali-
ties of handicapped people, like restoring communication
ability of people who are not able to communicate by
muscle activity. The EEG of the brain’s response to a
visual stimulus, called visual evoked potential (VEP), is
one commonly used method for BCI control.

For rare stimuli (less than 2 Hz) the VEP includes three
major early components: C1 (60-80 ms), P1 (80-120 ms),
and N1 (120-180 ms) [1]. If stimuli become more rapid,
the single VEPs can no longer be determined. How the
brain responds to overlapping stimuli is not entirely clear,
as it could be a simple overlap of the VEPs or the brain is
entrained to the stimulus frequency [2].

One of the earliest papers proposing the use of VEPs
for BCI control was published by Sutter in 1984 [3]. To
date, several types of stimuli were tested for BCI control,
most commonly steady state VEPs (SSVEPs) or code-
modulated VEPs (cVEPs). SSVEP BCIs make use of
frequency modulated stimuli, and the brain’s response can
be interpreted, for example, by using the frequency do-
main. For cVEP BClIs, the stimuli are code modulated, i.e.
a pseudorandom code with a low auto-correlation which
is shifted for the different targets. The fastest SSVEP
BCI has an information transfer rate (ITR) of 319 bits per
minute (bpm) [4], whereas the fastest cVEP BCI achieves
an ITR of 144 bpm [5].

Current BCIs based on VEPs have been shown to achieve

high performance, but all methods are not able to interpret
VEPs of arbitrary stimuli. The only study, known to us,
researching VEPs of arbitrary stimuli is by Thielen et al.
[6]. They developed a convolution model, making the
assumption that the composition of VEPs induced by the
parts of a decomposed modulation sequence should yield
the same result as the VEP pattern induced by the modu-
lated sequence. For this, the model was trained to predict
the ’single” VEPs of a decomposed modulation sequence,
which in turn are composed to the predicted chain of VEPs.
For an unseen modulation sequence the predicted chain
of VEPs is then compared to the real measured brain’s
answer, in order to select one of the 6 x 6 = 36 targets.
But the modulation sequences are not fully random, as
they are composed of short and long pulses.

In this paper, we present a method to predict the bit-
sequence of a fully randomly modulated stimulus and
demonstrate how this can be used for BCI control based
on random visual evoked potentials (rVEP).

MATERIALS AND METHODS

The rVEP BCI is based on a simple regression model,
which is able to interpret the EEG signal during an arbi-
trary stimulation. The model uses a bit-wise prediction of
the modulation sequence, which in turn can be applied for
BCI control.

Bit-wise prediction: Yet, it is unclear how the VEPs
are generated by the brain if the duration of two successive
stimuli is lower than the duration of a single VEP (approx.
250 ms). We propose a new paradigm where sliding win-
dows of 250 ms of the EEG data are used to predict the
modulation sequence. After training, the regression model
is able to predict an arbitrary and previously unseen mod-
ulation sequence by sliding the window sample-wise. A
schematic representation of the rVEP prediction is illus-
trated in Fig. 1. For each 250 ms window of the EEG
signal, the regression model predicts a real number. In
order to get a bit-sequence, we defined that each predicted
value above 0.5 is a boolean 1, and 0 otherwise. To get
the prediction accuracy, we use the hamming distance be-
tween the predicted bit sequence and the stimulation bit
sequence. Because the distances are 1’s and 0’s, the aver-
aged distance of all samples corresponds to the accuracy
of how much of the stimulation sequence can be predicted
correctly. In short, we do an ongoing prediction of the
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Figure 1: Schematic of the rVEP prediction. A Once the model is trained, an unseen (random) stimulation sequence can be
used for prediction. B A 250ms window (highlighted in green) will be slided sample-wise over the spatially filtered EEG
signal. For simplicity, it is shown bit-wise using 3 exemplary windows. C The trained model predicts a real number for
each 250ms window (again, highlighted in green). The red dashed line indicates a value of 0.5. D Each value above 0.5
is interpreted as boolean 1, and as 0 otherwise. The resulting bit sequence can be compared to the stimulation sequence

(match = green, mismatch = red).

modulation sequence using the following 250 ms of the
EEG data after the stimulus.

BCI control: For BCI control, we need a method to
choose the correct target out of others. For this, we used
two methods: (1) The most obvious method is to compare
the predicted bit sequence to modulation sequences of all
possible targets, the one with the highest accuracy will be
chosen. But the bit-wise prediction does not allow differ-
entiation between how large (or small) the predicted real
number really is, this approach wastes additional informa-
tion. (2) To address this, we used a “distance” prediction
of each target. We calculated euclidean distances of pre-
dicted real numbers to the corresponding target bits and
the one with the shortest distance will be chosen.

BClI design: The rVEP BCI consists of an EEG am-

plifier, a personal computer (PC) and a CRT Monitor,
because of its near-to-zero reaction time and the resulting
sharp transitions between black and white. The presen-
tation of the stimuli are operated from the PC and syn-
chronized with the EEG amplifier by using the parallel
port. BCI2000 [7] is used as a general framework for
recording the data. The visual stimuli are presented on
a 17 inch CRT Monitor with a 60 Hz refresh rate and a
resolution of 1280x 1024 pixel. The subjects are seated
approximately 80 cm in front of the monitor. To ensure
synchronization of the presented stimuli with the refresh
rate of the CRT monitor, DirectX (Microsoft Inc.) is used
for programming the stimulation module.
A stimulus can either be black or white, which can be
represented by O or 1 in a binary sequence. Each stimulus
was modulated with a random binary sequence using a
60 Hz refresh rate. The rVEP BCI consists of 32 targets
(i.e. stimuli) which are arranged as a 4x8 matrix and
surrounded by 28 complementary non-target stimuli. The
targets were used to select one of the 26 letters from the
alphabet as well as underscore and numbers 1 to 5. A
screenshot of the layout that was displayed to the subjects
can be seen in Fig. 2.

Figure 2: Screenshot of the rVEP BCI during a trial show-
ing the target layout and non-targets.

EEG data was recorded with a g.tec g USBamp at a sam-
plingrate of 600 Hz and a Brainproducts Acticap system
with 32 channels. Locations of the 29 EEG electrodes are
depicted in Fig. 3. The ground electrode was positioned at
AFz and the reference electrode at FCz. Three electroocu-
logram (EOG) electrodes were placed beside the left eye,
right eye and at the center above the eyes. The data was
notch-filtered by the amplifier at 50 Hz.

Figure 3: Location of the 29 EEG electrodes. Ground
electrode (GND) was positioned at AFz and reference
electrode (REF) at FCz.
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A spatial filter is applied to the EEG data using the Canon-
ical Correlation Analysis (CCA) as described by Spiiler
et al. [8]. First, one needs to find the best EEG channel
where the cVEP is most prominent. The EEG data of this
channel is averaged over all cVEP sequence cycles and
used to calculate the spatial filter. For this, each subject
has to perform some cVEP trials. The spatially filtered
EEG signal is used as input for the regression model.
During the training we use fully random stimulation se-
quences and do a regression on each 250 ms window
(shifted sample-wisely) of the spatially filtered EEG data
to its corresponding bit modulated at the time the win-
dow starts (see Fig. 4). We make the assumption that
a fully random stimulation should be sufficient to cover
most possibilities of different stimulation patterns within
a window of 250 ms, provided that the random sequence
is long enough. Afterwards the coefficients obtained by
the regression model are used for prediction.

measured EEG
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Figure 4: Training of the rVEP model. Each 250ms win-
dow of the spatially filtered EEG data will be projected to
its correspondig bit (1 or 0, highlighted in green) of the
corresponding random stimulation sequence.

Experiment design: To test the system, 9 healthy sub-
jects, named S1 to S9, were recruited. All subjects had
normal or corrected-to-normal vision. A summary over
age, sex and vision of the subjects can be found in Tab. 1.
Each subject participated in one session and completed the
whole experiment. None of the subjects ever participated
in another VEP EEG study.

Table 1: Subject overview. Sex and age of the subjects
and if they are wearing glasses.

Subject: | S1 S2 S3 S4 S5 S6 S7 S8 S9
Sex: W m m W W W W m m
Age: 21 19 17 18 20 19 20 22 19
Glasses: | / x x x x 4/ 4 x X

The experiment was structured in three phases consisting
of 16 runs in total. The first 3 runs were used for the spa-
tial filter, the following 3 runs are the training phase of the
BCI and the remaining 10 runs form the testing phase. At
each run the subjects had to perform a copy-spelling task
where they had to look once at each of the 32 targets in
lexicographic order (A-Z, underscore, 1-5). The duration
of the 32 trials was constant within each run of a phase,
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but varies between the three phases. At the end of a trial a
target was selected, meaning that the corresponding box
was highlighted in yellow for 100 ms while the rest of
the matrix was darkened for the same time, to guide the
subject through the experiment. During the time between
the trials, called pause, the flickering continued, but the
recorded EEG data was not used for training or classifica-
tion. The pause between the runs amounted approximately
30 to 60 seconds.

Spatial filter phase: A cVEP modulation was used dur-
ing the spatial filter phase, because random modulation is
unsuitable to train a spatial filter since the EEG data has to
be averaged over a static modulation in order to filter the
noise. The cVEP setup was equal to the system of Spiiler
et al. [5]. For modulation of the targets we used a 63-bit
binary m-sequence, because of its low auto-correlation
property [9]. For each target the same m-sequence was
used for modulation, but shifted circularly by 2 bits for
each successive target. During each trial, the stimulation
sequence was repeated 3 times. Because the length of
the stimulation sequence is 63 bit/60 **/, = 1.05s, the
duration of a trial is 3- 1.05s = 3.15s. One stimulation se-
quence is presented during the inter-trial-pause, therefore,
the subject had 1.05s to move on an fixate the next target.
In total, the spatial filter phase consists of 3 - 32 - 3 = 288
presented m-sequences, excluding the pauses.

Training phase: During the 3 runs of the training
phase, each trial had a length of 5 seconds in which 300
random bits were presented. The inter-trial-pause had a
length of 2 seconds during which the subject had to look
at the subsequent target. Since the layout has 32 targets,
the subjects have to pass 96 trials. Each trial was spa-
tially filtered, resulting in vectors of 3000 samples (10
samples per bit). Each vector was split into windows of
150 samples (= 250 ms), shifted by 1 sample. Since the
last 150 windows do not have 150 successive samples,
they are excluded from the data. The resulting matrix
is of size 2850 x 150. The vector of the corresponding
random modulation sequence has also a length of 2850
samples (last 150 samples are excluded, too). The matrix
and the random modulation sequence vector are used as
input (predictors and observed responses, respectively) of
the ridge regression model (see Fig. 4). Since the method
is a proof-of-concept, we did not optimize the regression
parameter A, but it was set to its default value 1. The
output of the trained model are 151 coefficients, one for
each input sample and a constant term.

Testing phase: The 10 runs of the testing phase are sim-
ilar to the ones of the training phase, except that a trial had
a length of 2 seconds instead of 5 seconds, resulting in 320
trials (32 per run). Each test trial was spatially-filtered and
split into windows of 150 samples, same procedure as for
the training trials, resulting in a matrix of size 1050 x 150
(last 150 windows were skipped). Afterwards, the matrix
was applied to the trained regression model (multiplied
with the coefficients), resulting in a vector of 1050 sam-
ples, this is called the model prediction.

In order to use the model prediction p for BCI control,
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we used two different methods: (1) Interpret each model
prediction value above 0.5 as a binary 1 and 0 otherwise.
The result is a predicted binary vector b which can be
compared to the binary modulation sequences s; of all tar-
gets ¢. For this we used the hamming distance h; between
b and each possible s;. The target ¢ with the lowest h;
was selected. (2) The second method is to calculate the
euclidean distance e; between p and s; for each target 7.
The target ¢ with minimum e; is selected.

Random bit generation: During both the training and
testing phase the MT19937 [10] random generator was
used for modulation of the 60 boxes. At each monitor re-
fresh a random integer (0 or 1) is generated for each of the
60 boxes (targets and non-targets), therefore, each box’s
binary sequence is always random without conscious rep-
etitions and generated with a rate of 60 bits per second,
continuously. The “order” of the generated bits can be
varied by an assignable random seed.

Performance Evaluation: To compare the results for
the different subjects and for the different modulation
types (rVEP and cVEP), the accuracy of both the model
prediction and the target classifier as well as the corre-
sponding information transfer rate (ITR) [11] were used.
The ITR can be computed with the following equation:

N -1

ITR =log, N + Plog, P + (1 — P)log,
with IV the number of classes and P the accuracy.
RESULTS

Although a cross-validation could be used, such a sim-
ulated online design takes into account non-stationarity
effects over time that can also occur in online experiments.
As such non-stationary effects don’t play a role in an evalu-
ation using a cross-validation, the evaluation used is closer
to the realistic online BCL.

Bit sequence prediction: To analyze the performance
of the bit sequence prediction, all 320 predicted test se-
quences of each subject were compared to their modulated
random bit sequence. For this, the accuracies of correctly
predicted bits were calculated. The results are shown in
Tab. 2. On average, the regression model achieves a per-
formance of 59.1% over all subjects, meaning that 59.1%
of all 302,400 bits were predicted correctly, which corre-
sponds to an average ITR of 94.5 bits per minute (bpm).
It should be noted that subject SO achieves an average
performance of 63.7%, which implies an average ITR of
197.2 bpm.

Target prediction using hamming distance: In order to
use the method for an online BCI, it is required to identify
the correct target. For this, we calculated the hamming
distances between all possible target sequences and the
predicted sequence. The one with the minimal hamming
distance was chosen. Averaged over all runs and all sub-
jects, 60.6% of all targets were predicted correctly, this is
an ITR of 44.8 bpm, including the inter-trial time of 1s.
Subjects S8 and S9 achieved an average performance of
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>90% (ITR >83 bpm). A comparison of the target predic-
tion and the bit prediction is shown in Tab. 2. Excluding
the inter-trial time, the ITR of the target prediction is 27.2
bpm lower compared to the bit prediction.

Table 2: Comparison of the bit prediction and target
prediction using the hamming distance. Accuracies (P)
are given in percentages of correctly predicted bits and
percentages of correct classifications of the 32 targets, re-
spectively. 60 bits are presented per second, whereas the
trial duration of the target prediction amounts 2s. The
Information Transfer Rates (ITR) are estimated excluding
the inter-trial time.

target prediction bit prediction
P (%) | ITR (bpm) | P (%) | ITR (bpm)

S1 | 28.1 17.5 54.8 24.3
S2 | 784 95.4 60.6 116.7
S3 | 478 42.5 57.2 55.3
S4 | 91.6 124.9 62.9 174.5
S5 | 531 50.4 58.2 70.6
S6 | 52.2 49.0 58.3 72.5
S7 | 69.1 77.2 60.0 104.0
S8 | 33.1 23.1 55.9 35.6
S9 | 919 125.1 63.7 197.2
%) 60.6 67.3 59.1 94.5

Target prediction using euclidean distance: The re-
sults of the correctly predicted targets within each run
of all subjects are shown in Tab. 3. Using this method,
on average 66.9% of all targets were predicted correctly.
This implies an average ITR of 52.6 bpm (including the
inter-trial time of 1s). It is worth to note that subject S9
achieves 100% in 4 of the 10 runs with an minimum accu-
racy of 93.8% and an average ITR of 94.8 bpm. Excluding
the inter-trial time, the ITR of the target prediction is 15.6
bpm lower compared to the bit prediction.

Table 3: Performance of each subject using the “distance”
method for target prediction. Accuracies (P) are given in
percentages of correct classifications of the rVEP test runs
and the cVEP runs, respectively. The trial duration (T)
differs for rVEP and cVEP runs. The Information Transfer
Rates (ITR) are estimated including the inter-trial time of
Is.

rVEP cVEP

P T ITR P T ITR

(%) | (sec) | (opm) | (%) | (sec) | (bpm)
S1 | 31.9 2 14.4 39.2 | 1.05 30.0
S2 | 87.8 2 77.2 75.3 1.05 87.0
S3 | 51.6 2 32.0 53.1 | 1.05 49.2
S4 | 93.1 2 86.0 88.9 | 1.05 115.5
S5 | 59.7 2 40.6 552 | 1.05 52.4
S6 | 65.6 2 47.4 63.5 | 1.05 65.8
S7 | 76.9 2 61.5 476 | 1.05 41.1
S8 | 37.8 2 19.2 33.7 1.05 23.2
S9 | 97.8 2 94.8 88.5 | 1.05 114.7
@ | 669 2 52.6 60.6 | 1.05 64.3




Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

Comparison to cVEP sequence prediction: In order to

compare the rVEP BCI with other VEP BClIs, the cVEP
trials of the first 3 runs were applied to the model and tar-
gets were predicted. Because each trial consists of 3 cVEP
cycles, each cycle is predicted separately, meaning that
each run has 3 - 32 = 96 trials. Averaged over all subjects,
the accuracy is 60.6%. The results for a bit-wise predic-
tion on the c-VEP dataset are shown in Fig. 5 for each
subject, it is worth noting that subject S4 achieved an aver-
age accuracy of 66.3% of correctly predicted bits, which
implies an average ITR of 281.1 bpm. The prediction
of the cVEP m-sequence, can be predicted significantly
better than the random sequences (p<0.005).
The results of the target prediction using the euclidean
distance are shown in Tab. 3 including a comparison to
the to the rVEP stimulation. On average, 60.6% of all
targets were predicted correctly, resulting in an ITR of
64.3 bpm with an inter-trial time of 1s.
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Figure 5: Prediction of the cVEP targets’ modulated bit
sequences. For each subject S1 to S9, the bit prediction
accuracies of all 288 cVEP trials are plotted.

DISCUSSION

In this work, a novel method to classify VEPs is evaluated.
While previous methods make use of special modulation
codes, i.e. with a low auto-correlation, to achieve the
maximum performance, we pursued a different approach.
We want to address the “overlapping” VEP behavior from
the ground. Since the assumption of linearity of VEP
generation is investigated by several other studies [12,13],
we proposed a new method based on linear ridge regres-
sion. Using random codes, we assume to cover most of
the possible “overlapping” VEPs in order to predict arbi-
trary modulation sequences afterwards. Aside from this,
the method has several advantages: trials can have an
arbitrary length, phase-lock is not required (like it is for
m-sequences), and the number of targets can be chosen
arbitrary.

With an average ITR of 86.5 bpm, our model proves that
it is possible to reconstruct arbitrary unseen (random)
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modulation sequences with an average accuracy of 59.1%
(without repetition). Surprisingly, the prediction of the
cVEP m-sequence, can be predicted significantly better
with an average accuracy of 60.6% and up to an ITR of
281.1 bpm. This could be due to the low auto-correlation
of the m-sequence and proves clearly that our model is
also able to handle cVEP modulation, although it never
has seen the m-sequence during the training phase.

As mentioned before, we loose information by using a sim-
ple threshold to construct the bit sequence. This effect can
also be seen in the results of the target prediction, where
the ITR is 27.2 bpm lower compared to the bit prediction.
But part of this difference might also be attributed to some
general problems of using ITR. By using the euclidean
distance to target prediction, the ITR drops significantly
less (15.6 bpm), and is therefore recommended for BCI
control.

Interestingly, the variance between the subjects is very
high. While two subjects achieved a poor accuracy during
the whole experiment with ITRs of lower 30 bpm, two
other subjects achieved average ITRs of always above 114
bpm and up to 281.1 bpm. This variance could be caused
by problems during the EEG preparation and/or because
of some subjects wearing glasses.

Using either the rVEP modulation or cVEP modulation,
our method also performed better than the re-convolution
BBVERP of Thielen et al. [10] which achieved an average
ITR of 48.4 bpm using their early-stopping trials.

CONCLUSION

In this paper, we have introduced the rVEP BCI, a new
approach to predict arbitrary VEP modulation sequences
based on random sequence learning. We showed that
our model was able to predict bits of fully random se-
quences as well as m-sequences. The model predicts
random sequences with an average accuracy of 59.1% and
m-sequence with an average accuracy of 60.7%. Surpris-
ingly, the average ITR of the m-sequence prediction of
S4, excluding the inter-trial time, amounts to 281.1 bpm
although the model has never seen the m-sequence before.
This clarifies the capability of our rVEP BCI. Also it is
quite interesting why m-sequences can be predicted signif-
icantly better than random sequences, although the model
was trained on random sequences. This could be due to
the low auto-correlation or the amount of bit changes. We
also showed that our approach can be used for BCI control
with an average ITR of 64.3 bpm and up to 115.5 bpm.
In future work, the rVEP BCI will be tested in an online
study. Due to the sliding window prediction, we also want
to use an early-stopping method, in which a trial ends
when a certain reliability-threshold is reached. Once we
found a threshold the method can be applied to an asyn-
chronous BCI, because targets will only be selected if the
threshold is reached and this should only be the case if
the user fixates a target. Additionally, the use of error-
correcting codes could be used for stimulus modulation in
order to improve the prediction.
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