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ABSTRACT:  

 

The aim of the MoreGrasp project is to develop a non-

invasive, multimodal user interface including a brain-

computer interface (BCI) for intuitive control of a grasp 

neuroprosthesis to support individuals with high spinal 

cord injury (SCI) in everyday activities. We describe the 

current state of the project, including the EEG system, 

preliminary results of natural movements decoding in 

people with SCI, the new electrode concept for the 

grasp neuroprosthesis, the shared control architecture 

behind the system and the implementation of a user-

centered design. 

 

INTRODUCTION 

 
In Europe, there are 11,000 new cases of SCIs per year 

with a total population of 330,000 [1]. More than half of 

the individuals with SCI are tetraplegic, meaning that 

they not only suffer from paralysis of the lower but also 

of the upper extremities. The bilateral loss of hand 

function with its associated dependency on caregivers 

result in a tremendous decrease of quality of life and 

represent a major barrier for inclusion in professional 

and social life. Besides the burden for each affected 

individual, the consequences of a high SCI also have a 

substantial impact on the healthcare system. 

Motor neuroprosthesis, systems based on functional 

electrical stimulation (FES), can be used to restore lost 

functions in particular of the grasp function. Basic grasp 

patterns such as the palmar or lateral grasp can be re-

established by positioning FES electrodes on dedicated 

positions on the forearm of an end user [2]. For the 

control of such systems mainly the contralateral 

shoulder can be used, if there are enough residual 

voluntary movements present. This only works if the 

shoulder function is not restricted at all. If the shoulder 

control cannot be used, a BCI offers an alternative to 

implement a simple grasp control by the detection of 

imagination of movements [3, 4, 5, 6]. Most of the 

studies in the field are single case studies that show the 

feasibility of coupling BCI with FES. However, up to 

now no BCI-controlled neuroprosthesis has showed its 

successful use in the everyday life of potential end 

users. To overcome this situation, the European 

collaborative project MoreGrasp aims at the following 

objectives: 

(O1) development of novel multimodal user interfaces 

based on noninvasive BCIs, which detect intentions of 

various hand movements from EEG using gel-less 

electrodes and wireless amplifiers. 

(O2) development of a sophisticated noninvasive 

multichannel motor and sensory grasp neuroprosthesis 

including the integration of orientation, position and 

force sensors and implementation of haptic feedback as 

well as a closed-loop control concept for semi-

autonomous operation. 

(O3) implementation of the concept of personalization 

and user-centered design. 

(O4) setup of a web-based service infrastructure by a 

registration and matchmaking platform for the 

assessment of priorities of individuals with disabilities; 

screening of potential users’ functional, neurological 

and personal status with a specific evaluation toolkit; 

documentation of the BCI and FES performance and 

evaluation of the training of end users with a training 

toolkit. 

(O5) evaluation of the novel technology with a long-

term clinical study with end users in real need of a grasp 

neuroprosthesis to demonstrate its reliability, usefulness 

and impact on the end users’ quality of life. 

 
MATERALS AND METHODS 

 
     EEG Amplifier: From the EEG recording technology 

point of view, the MoreGrasp project final objective is 

to develop easy-to-use, wearable, ergonomic and 

comfortable systems that can be used over an extended 
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period of time in everyday conditions. One of the main 

ways to increase user friendliness is to abandon gel-

based electrodes. To achieve this goal, MoreGrasp is 

developing three EEG systems. The first two systems 

use water–based electrodes and will be integrated in the 

evaluation toolkit (32-channel amplifier) for screening 

and in the mobile toolkit (16-channel one) for training.  

Fig. 1 shows both amplifiers. They record EEG with a 

sampling rate of 256 Hz, 24-bit, RMS noise under 1μV, 

input range ±100 mV and [0,40] Hz bandwidth. The 

dimensions of the 16-channel amplifier are 78x72x32 

mm and weighs 125g. The 32-channel version is a little 

bit larger (107x72x32 mm) with a weight of 164g. They 

are designed to be carried on the cap, or attached to the 

upper arm or the wheelchair. They have Bluetooth 

connectivity and include an inertial measurement unit 

(IMU) to measure motions during operation, one digital 

input, one photodiode input and, in the case of the 32-

channel system, 2 extra ExGs inputs. 

The third system will be used to evaluate the control of 

the final system using dry electrodes. It is still under 

development and will integrate as few sensors as 

possible placed in those locations that optimize the 

control of the MoreGrasp system. This cap will have the 

amplifier integrated within a small and light support 

structure. With the current prototypes, a setup and time-

to-signal well under four minutes for 12 sensors is 

possible. Signal-to noise-ratio is not as good as water-

based systems, but preliminary tests have shown that the 

brain processes required for MoreGrasp can be 

measured (motor-related cortical potentials (MRCPs), 

error potentials and sensorimotor rhythms). Fig. 2 

shows MRCPs and ERD/S measured with the dry 

technology.  

 

 
Figure 1: 32- and 16-channel MoreGrasp amplifiers 

(left). 16-channel system with the sensors and amplifier 

on a commercial cap (right).  

 

Figure 2: MRCPs measurements (top) and ERD/S 

(bottom) during self-paced grasping of able-bodied 

subjects. Results show the average EEG patterns of 10 

subjects (100 trials each), measured in CP1 location. 

The dashed vertical line shows the EMG onset. 

 

     Decoding of natural movements with EEG: 

CLASSIFICATION OF SINGLE JOINT MOVEMENTS: Based 

on EEG signals from 0.3 to 3 Hz, we found 6 different 

upper-limb movements to be discriminable with a 

classification accuracy of 37% in a group of 15 able-

bodied subjects. The classifier sources originated 

mainly from premotor and primary motor areas. 

CLASSIFICATION OF DIFFERENT GRASP TYPES: We 

conducted an EEG study in 15 able-bodied subjects to 

find out whether palmar, pinch and lateral grasps can be 

discriminated from each other and from a no-movement 

condition. Our results show that time-domain features 

located in the low frequency range provide sufficient 

information for classification (binary classification of 

74% grasp vs. grasp).  

CLASSIFICATION RESULTS IN SCI PATIENTS: Based on 

the previous results on able-bodied subjects [7], we 

conducted preliminary studies in a clinical environment 

with individuals with SCI (see Tab. 1). EEG was 

obtained from 61 channels covering frontal, central, 

parietal and temporal areas using active gel-based 

electrodes (g.tec medical engineering GmbH, Austria). 

The reference electrode was placed on the right mastoid, 

ground on AFz. We used an 8th order Chebyshev 

bandpass filter from 0.01 Hz to 200 Hz and sampled 

with 512 Hz. Power line interference was suppressed 

with a notch filter at 50 Hz. We downsampled the data 

to 32 Hz, removed artifacts based on statistical methods, 

and bandpass filtered the data with an 4th order zero-lag 

Butterworth filter from 0.3 to 3 Hz. 

 

Table 1: Neurological and functional characteristics of 

the participants with SCI. EU = end user, NLI = 

neurological level of injury, AIS = American Spinal 

Injury Association (ASIA) impairment scale. 

EU NLI AIS Status of upper extremity 

motor function 

P1 C3 D rudimentary grasps 

P2 C5 B Little finger and hand function 

right hand 

P3 C4 B No finger function in (dominant) 

hand 

P4 C4 C Little index finger and thumb 

movements 

P5 C3 D Right: finger function, but no 

sensory perception 

Left: no motor function 

 
GRASPS VERSUS PRONATION/SUPINATION (PARADIGM 

WITH ICON CUES): In this experiment, data of the 5 

participants (P1-P5) were recorded while they attempted 

to perform two different grasp patterns and a rotation of 

the forearm. Recording was done using a cue-guided 

paradigm. At second 0 a cross appeared on the screen 

together with an auditory beep to get the participants’ 
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attention. At second 2 a cue indicating the type of 

movement was shown. This cue consisted in a hand 

icon in different postures, according to the movement 

type. The cue was on the screen for 4 seconds. As soon 

as the cue appeared, the participant was asked to 

attempt to perform the movement according to these 

instructions: starting from a neutral, slightly opened 

hand position, perform a grasp and return to the starting 

position. For arm rotation, participants were asked to 

perform a pronation followed by wrist supination. 
GRASP PATTERNS VERSUS HAND OPENING (PARADIGM 

WITH OBJECT CUES): In this experiment, instead of the 

hand icons explicitly representing the movement types, 

objects were used as cues. Participants P3 to P5 were 

asked to perform/attempt the appropriate grasping 

action for the designated cue. The objects presented and 

respective instructions were: 

1. Glass - attempt to perform palmar grasp and release 

2. Spoon - attempt to perform lateral grasp and 

release 

3. Glove - attempt to open your hand with spread 

fingers like putting on the glove 

4. Bush - diverse object, just look at it and rest (not 

used for classification) 

The EEG data from both experiments were then 

classified with a shrinkage regularized linear 

discriminant analysis (LDA) classifier using the time-

lags 0, 100 and 200 ms of the EEG as input. As both 

experiments comprised 3 classes, we applied a 1-vs-1 

classification strategy. The results were then validated 

with a 10-fold cross-validation. 

Fig. 3 shows the classification accuracies of the icon 

paradigm. The maximum average classification 

accuracy was 53 % at 2.6 s after trial start. The 

classification accuracies of the object paradigm can be 

seen in Fig. 4. The maximum average classification 

accuracy was 57 % at 2.6 s after trial start. Fig. 5 and 

Fig. 6 show the MRCPs. 

 

 
Figure 3: Classification accuracies of 5 EUs with SCI 

for grasps and pronation/supination (icon paradigm). 

The dashed line is the significance level. 

 

New electrode concept for the grasp neuroprosthesis: 

Apparent disadvantages of todays grasp neuroprostheses 

based on a set of single surface electrodes include 

difficulties with daily reproduction of the desired 

movements and large variations in finger and thumb 

movements during wrist rotations due to electrode-skin 

shifts.  

 

 
Figure 4: Classification accuracies of 3 EUs with SCI 

for grasps and hand open (object paradigm). The dashed 

line represents the significance level. 

 
 

Figure 5: MRCPs evolving in the icon paradigm. 

 

 
 

Figure 6: MRCPs evolving in the object paradigm. 

 

In MoreGrasp, an electrode array has been developed, 

which consists of up to 64 electrodes integrated into a 

forearm sleeve (Fig. 7), which is personalized to the 

anatomy of each individual end user. The first prototype 
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consists of a sleeve made from medical-grade silicon, in 

which an electrode array made from conductive silicon 

material is embedded. In the final version, the silicon 

array electrodes will be integrated into a textile sleeve to 

improve handling and comfort in particular in respect to 

sweating. The electrodes of the array can be 

electronically merged to larger electrode clusters 

according to context-specific demands such as varying 

wrist rotation angles. For measurement of the wrist 

angle a set of position and orientation sensors (IMUs) 

have been integrated in the electrode sleeve to allow for 

automatic adjustment of stimulation schemes (selection 

of electrodes, amplitudes) according to the sensor data.  

With this approach, we have shown in two able-bodied 

subjects that dynamic electrode and skin shifts during 

operation can be compensated and a stable grasp pattern 

can be achieved. 

Another important issue for users is to have feedback 

from the neuroprosthesis to perform fine motor tasks. 

Foil force sensors attached to everyday objects will 

allow for measurement of grip forces. Data of grip 

forces will be transmitted by a Low Energy (LE)-

Bluetooth module to a central control unit, where a 

semi-autonomous grasp control can be implemented. By 

assignment of unique identifiers to different Bluetooth 

modules an automated selection of an object-dependent 

grasp pattern is possible. If the user moves her or his 

hand near the object of interest, the neuroprosthesis will 

automatically switch to the grasp pattern predefined for 

this object. By using additional FES electrodes in parts 

of the body with preserved sensation, e.g., the upper 

arm or the upper torso, electrotactile feedback about the 

applied grip forces will be provided to the end user. 

 

 
Figure 7: First prototype of a multi-electrode forearm 

electrode sleeve. (a) individual gypsum model of the 

forearm with electrode cavities, (b) prototype of 

personalized arm sleeve made from non-conductive 

medical silicon with integrated conductive silicon 

electrodes and cables, and Inertial Measurement Units 

(IMUs) for measurement of the wrist and elbow 

position and calculation of the wrist rotation angle. 

 

      Shared control principles: Successful FES-

supported grasping requires continuous, real-time 

control, but existing neuroprostheses are driven by low-

bandwidth, constrained input channels such as an EEG-

based BCI or a shoulder position sensor. Efficient 

interfaces are required that maximize the control of 

these channels with minimum effort. Environmental 

sensing can be used to gather broader context about 

reaching and grasping tasks, and has the potential to 

empower users to conduct everyday tasks through the 

limited control channels available. Therefore, we 

developed a shared control architecture for the 

MoreGrasp project. The aim is to maximize grasping 

performance with minimum user effort by supporting 

human control processes with environmental sensing. 

The development of our shared control architecture was 

driven by the following principles: the system should be 

able to reason under the uncertainty of noisy and 

ambiguous input; to gracefully handle sensor failure; 

and to respond safely to emergency situations. 

The proposed shared control architecture has a set of 

loosely coupled, configurable elements as illustrated in 

Fig. 8 (top panel). A sensor encoder unit estimates the 

probabilities of binary events such as “is the hand close 

enough to an object to grasp?”, “is the user activating 

the shoulder joystick?”, and “is the BCI indicating an 

intended wrist rotation?” from sensor feature vectors. A 

Bayesian network with binary nodes estimates the 

intention of the user in terms of discrete FES 

stimulation outcomes, and the certainty of that estimate. 

User feedback from this unit indicates prediction of user 

intentions. An action-state-machine monitors the 

probability of actions, and switches between activity 

states (e.g. “begin open grasp fully now”) when 

probability thresholds are crossed. Outputs affecting the 

estimation of intention (e.g. “the user is unlikely to 

release grasp 5 ms after opening it”) are fed back to the 

Bayesian network. User feedback from this unit 

indicates prediction of future actions. A continuous 

dynamics module generates the signals to open/close, 

rotate or reconfigure the hand smoothly when the 

action-state-machine indicates a change of state, 

separating the synthesis of continuous values from 

underlying discrete states. Direct feedback from the 

sleeve inertial sensing will be used for closed-loop 

control in this module. The “emergency stop” estimator 

feeds directly in here to override all pattern generation 

and return safely and quickly to a neutral state. The 

electrode pattern generator generates appropriate FES 

patterns across the electrode array to satisfy the 

continuous dynamics required. 

The system is fully probabilistic between the sensor 

input vectors and the action-state-machine, which 

makes it practical to support sensors with widely-

varying reliability and also to provide meaningful 

feedback about inferred user intentions. It is feasible to 

reason about the intention decoding process because of 

our simplifying assumptions that (i) intention can be 

mapped onto a set of (unknown) latent binary variables, 

(ii) that actions can be seen as transitions in a finite-

state machine (iii) continuous closed-loop physical 

output can be generated from discrete internal 

transitions. The factorization of the decoding/control 

process allows different elements of behavior to be 
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implemented by altering the Bayesian Network, without 

interfering with the optimization of electrode patterns or 

the continuous-time dynamics. Each of the pipeline 

elements can be developed with a significant degree of 

independence; for example, the electrode pattern 

generator can be optimized automatically without 

changing the sensor interpretation model. This 

framework is also flexible enough to support interaction 

spread over time. For example, a grasp may be “cued” 

by the BCI in advance and only executed when the 

probability of being close enough to an object is 

sufficiently high. Alternatively, the BCI could 

immediately issue commands, but be “locked out” by 

holding the shoulder joystick high to suppress control. 

Estimates of both local reliability (per-command) and 

general reliability (e.g. tiredness detection) from the 

BCI can be encoded as rules in the Bayesian network to 

support control across the full spectrum of signal 

quality. User feedback via electrotactile (primary) and 

audio/visual (secondary) channels includes the system’s 

estimate of what the user is trying to do (intention); the 

certainty of that intention (reliability); and the 

prediction of the future action sequence that is going to 

occur imminently (predicted action). Simple feedback, 

like “countdown” style displays on LED strips or via 

electrotactile, can be used alongside display modes that 

show the uncertainty or “tension” within the inference 

engine. 

 

Appraisal, Monitoring and Training Services: As has 

been described already, the MoreGrasp system 

comprises a range of complex devices and subsystems 

that must work in harmony to accomplish the desired 

task: restoring autonomy in grasp function. To benefit 

from it, users need to learn the skills to use it.  

The consortium emphasizes adoption going beyond 

proof of concept, and designing a set of services to walk 

the user from finding out about MoreGrasp, through 

appraisal, training, customization of the 

neuroprosthesis, to a practical use.  

 

 

  
 

 

 
Figure 8: Shared control structure, showing the internal processing pipeline and the user in the loop. A probabilistic 

intention decoder is connected to a deterministic action synthesizer (top panel). MoreGrasp screening and training 

schemes leading to the final MoreGrasp system, including FES and BCI and respective stages of use of MET and MTT 

(middle panel). MET during BCI screening (lower panel, right) and MET during FES screening (lower panel, left). 
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WEB SERVICES FOR DATA COLLECTION AND 

MONITORING: In the MoreGrasp approach, a potential 

user with SCI registers, if necessary with the help of a 

caregiver or relative, on the MoreGrasp registration 

platform (online since 03.2016). A decision maker is 

notified to schedule a screening visit with the potential 

user. He/she uses a matchmaking platform to overview 

the status of all registered users, filtering by medical 

pre-injury conditions to assign new users to a screening.  

To assess if the potential user can benefit from 

MoreGrasp, two different screenings need to be 

performed: a clinical evaluation including a FES 

screening and a BCI screening. In both cases, an expert 

brings the hardware to the potential user and, with the 

aid of a Mobile Evaluation Toolkit, gathers the needed 

data, which are then used for the decision of study 

inclusion. A user passing the screening receives an ID 

and enters a training program. During the months of 

FES and BCI training the personalized MoreGrasp 

system is manufactured and is finally delivered to the 

end user. The systems used during screening and 

training collect data and seamlessly deliver it to a cloud 

service for analysis and personalization. These steps are 

represented in Fig. 8 (middle panel). 

THE MOREGRASP MOBILE TOOLKIT: The MoreGrasp 

system consists of two subsystems: control and 

presentation. The control subsystem is a self-contained 

system with a computational unit connected to the EEG 

and FES systems. It includes algorithms for control, 

feedback, and data collection modes. A presentation 

subsystem was developed with interfaces for experts 

and caregivers to configure the control subsystem for 

data collection during screening and training. Both 

subsystems communicate over a private secure network 

with a proprietary protocol, optimized for streaming. 

There are two versions of the system with two distinct 

functions: evaluation (Fig. 8, lower panel) and training. 

The mobile evaluation toolkit (MET) is used for 

evaluation (screening) mainly by experts, who visit a 

potential end user to acquire data about the user’s 

condition, residual abilities and the possibility for 

inclusion in the MoreGrasp training programme. Two 

separate screening steps are carried out: Clinical/FES 

screening and BCI screening. The clinical screening 

assesses the clinical and neurophysiological condition 

of the potential end user as well as the degree of 

denervated muscles, which cannot be activated by FES. 

BCI screening assesses the ability of the PU to produce 

distinct brain patterns by the imagination of movements 

as a prerequisite for BCI control.  

The mobile training toolkit (MTT) is used to tap the 

residual abilities of the user and turn them into the 

ability to operate a neuroprosthesis. The MTT is mainly 

operated by caregivers and relatives. It includes periodic 

training sessions for FES and BCI. The FES training 

aims to gradually strengthen the muscles of the end user 

for grasping. During the BCI training the user is 

expected to learn how to modulate his/her brain signals 

to operate the BCI. 

 

 

CONCLUSION 

 

In its current state the MoreGrasp project has created 

substantial basic knowledge together with various hard- 

and software components for a noninvasive, intuitive 

BCI-controlled motor and sensory grasp neuroprosthesis 

and the associated services for registration, evaluation 

and training of end users. In the next few months, a 

clinical proof-of-concept study will be conducted to 

obtain information about its impact on everyday life in 

end users with high SCI and to quantify their perceived 

changes in quality of life. 
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