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ABSTRACT: Motor imagery is one common paradigm
in brain computer interface (BCI) systems where the user
imagines moving a part of his/her body to control a com-
puter. Motor imagery is endogenous and requires a large
amount of training for the user to be able to control the
BCI. Therefore, the feedback that is provided to the user
is critical to ensure informative insight into improving
imagery skills. In this study, we investigate a new proto-
col for providing motor imagery feedback and compare it
to the conventional feedback scheme. The proposed feed-
back focuses on ‘elaborating’ how the user can improve
imagery as opposed to the conventional training proto-
cols which only provide information on whether the user
was ‘correct’ in performing imagery. Our results show
that providing more easily interpretable feedback results
in more efficient motor imagery training and is preferred
by the users.

INTRODUCTION

Brain computer interface (BCI) systems attempt to infer
certain cognitive or affective states based on neural sig-
nals collected from the brain while bypassing common
neuromuscular pathways [1,2]. One modality to collect
brain signals is electroencephalography (EEG) which is
popular for being non-invasive and inexpensive. Motor
imagery is one common paradigm in EEG-based BClIs in
which the user imagines moving a part of her/his body,
such as a hand, foot, tongue, etc. Motor imagery of dif-
ferent body parts results in different spatial patterns of
decrease in power across the scalp in mu (8-13 Hz) and
beta (14-30 Hz) frequency bands [3,4,7, 8]. These fea-
tures are used to distinguish among the imagined classes.
One of the advantages of motor imagery based BClIs is
that they are endogenous [5]; they do not depend on user
response to external stimulation. Endogenous BCIs have
several benefits: 1) They do not require the user to have
good visual or other sensory responses to respond to ex-
ogenous stimuli, 2) They do not require the computer
presentation of (possibly annoying or fatiguing) stimuli,
and 3) They have the potential to be used in natural asyn-
chronous communication. However, because they are en-
dogenous and depend on the user generating the signal,
there are large individual differences in the ability to gen-
erate different discriminable motor imagery patterns for

different imagined body parts. Therefore, training users
to provide classifiable motor imagery signals is critical.
So far, there have been a few training methods proposed
in the literature, e.g. [9—14]. Lotte et al. [15] investigated
the current state-of-the-art training approaches and iden-
tified flaws in their design based on instructional design
literature. They looked at the training approaches at the
level of feedback provided to the user, instructions pro-
vided to her/him and the task itself. Our current study fo-
cuses on the feedback that the user receives. In traditional
motor imagery BCI training, the feedback provided to the
user is evaluative and corrective, where it only tells the
user whether he/she has performed the task correctly and
possibly with what confidence [15]. In other words, tra-
ditional motor imagery training involves giving the user
feedback on the output of the classification. When classi-
fication is unsuccessful, however, this feedback does not
provide any information about why it failed. For exam-
ple, participants may fail to be successful at right hand vs.
left hand motor imagery because they do not induce suf-
ficient mu-desynchronization or the induced desynchro-
nization is bilateral for both right- and left-hand motor
imagery.

Motivated by work of [6] we hypothesized that providing
richer feedback while users are learning motor imagery
would result in faster and better learning. To do so, we
decided to provide the users with not just the classifica-
tion output and its confidence, but a perceivable form of
features that are used by the classifier. In other words,
our proposed feedback is an example of ‘elaborated feed-
back’ as described by [25], where it will provide more
easily interpretable feedback and will let users evaluate
their performance based on the input to the classifier.

METHODS

We recorded data from 6 healthy participants recruited
from the UC San Diego student population. All partic-
ipants were naive to BCI and motor imagery skills and
before participating in the study, signed a consent form
that was approved by UC San Diego Institutional Review
Board. The demographic details of the participants (i.e.,
age, gender and handedness) are specified in Tab. 1.

Each participant participated in a one-session experiment
consisting of 5 blocks, each consisting of 20 motor im-
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agery trials. Each trial began with an arrow on the screen
pointing to the right or the left to specify the trial type.
After 1.5 seconds, the arrow disappeared and a cross
showed up in the center of the monitor and 1 second later,
a term “imagery” on top of the cross appeared. Partici-
pants were instructed to begin motor imagery of the cor-
responding hand (depending on the direction of the ar-
row) for 3 seconds until the cross disappeared. The par-
ticipants were instructed to imagine their action of choice
so long as it involved a hand movement. Fig. 1 shows an
example of the frames shown in one trial. At the end of
each trial in blocks 1, 3 and 5, no feedback was provided.
In blocks 2 and 4, the conventional and proposed elab-
orated feedback were provided which will be described
next. Participants 1, 2, and 6 were shown the elaborated
and conventional feedback in blocks 2 and 4 respectively.
Participants 3, 4, and 5 on the other hand, were presented
with the conventional feedback in block 2 and elaborated
feedback in block 4. This is to balance the order of the
provided feedback types.

Table 1: The demographics of participants.
Participant ID  Age Gender Handedness

P1 18 Female Right
P2 18 Female Right
P3 19 Female Right
P4 21 Female Right
P5 21 Male Right
P6 18 Female Right

We designed our experiment in python using the python-
based Simulation and Neuroscience Application Platform
(SNAP) toolbox [20]. In each trial, data were downsam-
pled to 100 Hz and Laplacian filtered [19] to partially
compensate for spatially distributed artifacts by subtract-
ing the mean of the four directly neighboring channels
from each channel. Next, an FIR filter of order 225
was used to calculate the average of the power in 3 sec-
onds of motor imagery in the 8-13 Hz frequency band for
the channels specified over the right and left motor cor-
tices in Fig. 2. The average power in each channel was
then normalized with respect to the sum of power in all
channels specified in Fig. 2. The conventional feedback
was provided as the difference between the power on the
two sides and the proposed feedback protocol showed the
power on both sides. In each trial, the feedback was pro-
vided as a single (static) image after the imagery period
was over. Fig. 3 shows an example of the two types of
feedback. Since motor imagery results in contra-lateral
de-synchronization of power [7, 8] the participants were
instructed to maximize the bar height on the motor im-
agery side.

As the power over motor cortices may be biased towards
one side, we trained a threshold to be the average of the
difference in the normalized power on right and left sides
of the motor cortex across trials of each block. In blocks 2
and 4, the threshold that was trained with trials in blocks
1 and 3 respectively, was used to adjust for the potential
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bias. Therefore, the provided feedback to the participant

was based on the adjusted bar heights.
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Figure 1: An example of a trial in the experiment.
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Figure 2: Electrode locations in 10-20 international sys-
tem EEG cap. The selected electrodes were used to cal-
culate power on each side of the motor cortices.

Elaborated

Figure 3: Types of feedback.

Conventional

EEG data were recorded with a 64-channel BrainAmp
system (Brain Products GmbH) located based on the in-
ternational 10-20 system, as Fig. 2 shows. EMG data
were also recorded with the same system through two sets
of bipolar electrodes on each arm and wrist — for more
details on the set-up please refer to [16]. Data were col-
lected with sampling rate of 5000 Hz but were downsam-
pled to 500 Hz for further processing in offline analysis.
We chose 500 Hz instead of 100 Hz — which was the rate
of the downsampled signal in the online experiment — to
keep information in higher frequencies for the purpose of
running independent component analysis (ICA) later.

MATLAB [17] and EEGLAB [18] were used for offline
analysis. Data were processed in two cases: 1) without
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artifact removal to investigate the effect of the feedback
that was provided to the participants during the experi-
ment. 2) with artifact removal to investigate the effect
of training on brain signals and to verify that the partici-
pants are not potentially using facial muscle movements
to control the bar heights.

In the first case, the raw data were filtered from 8 to 13 Hz
with a 500-tap FIR filter. Laplacian filter [19] was ap-
plied to partially compensate for spatially distributed ar-
tifacts by subtracting the mean of directly neighboring
channels from each channel. We looked at the classifier
score of each trial in blocks 2 and 4 where the feedback
was present. This score is estimated as follows: first the
power on each channel over motor cortices is calculated
— as shown in Fig. 2. Then the power on each channel
was normalized to the sum of the powers on the specified
10 channels and the average of the power on each side of
the motor cortex was used as the classifier score.

We also looked at the classification rates in blocks 1, 3
and 5 where no feedback was provided. To do so, we se-
lected three non-overlapping one-second time windows
to cover 3 seconds of imagery period in each trial. Since
there are 20 trials in each block, each block has a total
of 60 one-second windows of imagery. Next we applied
common spatial patterns (CSP) [23] to data from all 64
channels and selected the top 3 filters for each class. Lin-
ear discriminant analysis (LDA) [24] was chosen as the
classifier to classify right/left imagery classes.

For the second case, we first filtered the raw data using
a 500-tap FIR filter in 1 to 200 Hz. Next, we removed
up to 6 noisy channels with large muscle artifacts mostly
from the temporal and one from the occipital sites. Then
the Cleanline EEGLAB plug-in was used to remove the
line noise [21]. We removed parts of the EEG data that
were suffering from large muscle artifacts; however, no
information from the 3 seconds of imagery was removed.
We ran independent component analysis (ICA) using the
AMICA [22] EEGLAB plug-in to isolate eye and mus-
cle artifacts. Eye and muscle artifacts from the top 30 IC
components were removed. Similar analysis to the pre-
vious case were performed and the results are described
next. Significance in what follows is calculated with
a paired-sample two-tailed t-test with 0.05 significance
level.

EMG data (4 channels, two on each hand and arm) were
bandpass filtered in 10 to 200 Hz using a 500 tap FIR
filter, and the line noise was removed with the Clean-
line plug-in [21]. EMG data during the three seconds
time interval of motor imagery were epoched into non-
overlapping one second intervals and used for classifica-
tion. Results are presented in the next section.

RESULTS

To investigate how the right/left classifier score changes
over time, we looked at it as a function of the trial number
in blocks 2 and 4. For each participant in each trial, the
right/left classifier score is calculated as the ratio of the
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power on the corresponding side as described in the pre-
vious section. A line was fit and the slope of the line was
estimated. Fig. 4 shows the slopes calculated in case one
(without artifact rejection) as height of the bars in blocks
2 and 4 in separate plots based on whether conventional
feedback was provided in block 2 and elaborated in block
4 or vice versa. Fig. 5 shows the same for data from case
two (with artifact rejection). Note that P1, P2 and P6
show some improved performance when the elaborated
feedback is provided to them — i.e., in block 2. How-
ever, they show decreased performance across the trials
in block 4 — where conventional feedback was provided
subsequently. P3 and PS5 who were provided with conven-
tional feedback first in block 2, show decreased perfor-
mance; however, they both show improved performance
during the elaborated feedback in block 4. P4 shows im-
proved performance during both feedback types; how-
ever, the improvement is higher in the elaborated feed-
back block when only brain signals are considered, i.e. in
Fig. 5. This shows that the proposed feedback paradigm
could potentially be more effective than the conventional
feedback.
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Figure 4: Percent change of classification rate per trial in
data during feedback blocks, without artifact rejection.

To verify how the percent change in classification rates
per trial (i.e. the height of the bars in Fig. 4 and Fig. 5) are
different in the two elaborated and conventional feedback
conditions among the 6 participants, we ran a paired-
sample two-tailed t-test between the bar heights across
participants. We found significant difference in both
cases with p-values 0.036 and 0.006 for cases one and
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two respectively — i.e., with and without artifact rejec-
tion.

Classification results in no-feedback blocks — 1, 3, and 5
— are provided in tables 2a, 2b, 3a, and 3b. The training
and testing were performed within each block separately
and we made sure that both train and test sets were bal-
anced and the test set was absolutely separate from the
training. We ran 10-fold cross-validation while making
sure that the three one second time windows from one
trial will appear all in either train or test sets and the re-
sults are presented in Tab. 2a and Tab. 2b. For ease of
comparison, we have included the type of feedback in
blocks 2 and 4 in these tables: EF and CF stand for elab-
orated feedback and conventional feedback respectively.
The first number in each table specifies the mean and the
second number is the standard error.
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Figure 5: Percent change of classification rate per trial in
data during feedback blocks, with artifact rejection .

Table 2a: P1, P2, P6 performances without artifact rejection
ID BI1 B2 B3 B4 BS5

P1 058/0.048 EF 0.60/0.051 CF 0.37/0.074
P2 0.73/0.051 EF 0.85/0.058 CF 0.80/0.065
P6 0.75/0.057 EF 0.85/0.058 CF 0.78/0.043

Table 2b: P3, P4, P5 performances without artifact rejection.
ID Bl B2 B3 B4 BS

P3 052/0.080 CF 0.57/0.037 EF 0.65/0.063
P4 0.82/0.072 CF 0.87/0.048 EF 1.00/0.000
P5 042/0.057 CF 0.57/0.057 EF 0.52/0.052

P1, P2 and P6 were provided with the elaborated feed-
back in block 2. P2 and P6 show improvement in block
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3 compared to block 1 which can be associated with
the training they received in block 2; however, this im-
provement is not significant. These two participants also
show decreased performance in block 5 which is right
after block 4 where they were provided with the conven-
tional feedback but the decreased performance is not sig-
nificant. Performance of P1 in all three blocks is below
chance level which is calculated as described in [26] to
be 62% with significance level of 0.05.

P3, P4 and P5 were provided with conventional feedback
in block 2 and elaborated feedback in block 4. P4 shows
significant improvement after being exposed to the pro-
posed elaborated feedback in block 4; however, P3 and
P5 show chance level performance in all blocks.

To make sure that the classification rates are not affected
by non-brain sources including eye and muscle move-
ments, we performed the same analysis described above
with the ICA-cleaned data. In this case, we filtered each
trial in 8 to 30 Hz frequency band to include both mu
(8-13 Hz) and beta (14-30 Hz) frequency bands. The
reason we did not include the beta band when we were
classifying the non-ICA-cleaned data is that beta band is
usually more contaminated with muscle artifacts. After
filtering the data, non-overlapping one second time win-
dows were selected and 10-fold cross-validation was per-
formed — while making sure that the three one second
time windows from one trial will appear all in either the
train or test set — to classify right/left motor imagery in
blocks 1, 3, and 5 separately. Tab. 3a and Tab. 3b show
the classification results. The first number in each table
specifies the mean and the second number is the standard
error. For ease of comparison, we have included the type
of feedback in blocks 2 and 4 in these tables: EF and CF
stand for elaborated feedback and conventional feedback
respectively. P3 and P4 who were provided with the con-
ventional feedback first and proposed feedback next, both
show significantly improved classification rates in block
5 compared to blocks 1 and 3. Moreover, P3 shows sig-
nificantly disimproved performance after being exposed
to conventional feedback in block 2. On the other hand,
P1 and PS5 show chance level performance in all of the
blocks before and after artifact rejection. P2 and P6 do
not show much difference in performance between blocks
3 and 5 after artifact rejection, which was not the case be-
fore artifact rejection. It is possible that these participants
have been controlling the bars with muscle movements
after elaborated feedback not brain signals. Nevertheless,
this shows that the elaborated feedback was more effec-
tive for the participant to somehow (either through brain
signals or muscle) control the bars. Note that since the
number of samples in each class is 30, chance level cal-
culated as described in [26] is 62% with significance level
of 0.05.



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

Table 3a: P1, P2, P6 performances with artifact rejection
ID BI B2 B3 B4 BS

P1 055/0.043 EF 0.55/0.056 CF 0.47/0.060
P2 0.82/0.084 EF 0.85/0.046 CF 0.85/0.052
P6 0.77/0.079 EF 0.85/0.058 CF 0.83/0.043

Table 3b: P3, P4, P5 performances with artifact rejection.
ID BI1 B2 B3 B4 B5
P3 0.68/0.052 CF 0.52/0.052 EF 0.78/0.071
P4 0.80/0.074 CF 0.82/0.063 EF 1.00/0.000
P5 043/0.051 CF 0.55/0.043 EF 0.55/0.086

Aside from EEG data, we looked at classification rate
of a right/left classifier trained on EMG data in each
block. Non-overlapping one second time windows were
selected and 10-fold cross-validation was performed —
while making sure that the three one second time win-
dows from one trial will appear all in either the train
or test set. As Tab. 4 shows, all classification rates are
chance level or very close to chance level which is 62%
with significance level of 0.05 except for participant 4
in block 3. However, this participant shows improved
EEG classification after the elaborated feedback block in
which the classification rate on EMG rate is chance level.

Table 4: EMG classification results per block.
ID BI B2 B3 B4 B5

P1 058 057 052 043 0.68

P2 032 060 057 055 040

P3 055 047 048 047 048

P4 050 043 0.82 048 048

P5 058 048 053 0.62 038

P6 052 033 063 0.68 057

DISCUSSION AND CONCLUSION

In this pilot study, we have explored the capability of a
visually richer elaborated feedback in training motor im-
agery BCI and proposed a training protocol that suggests
providing the participant the input to the classifier, i.e.
an interpretable version of the features that are available
to the classification algorithm as opposed to the classi-
fier output. Since any classifier needs data to be trained
on and our participants were all naive to motor imagery
BCI, we chose to use a very simple classifier, i.e. a
threshold, to minimize the effect of instability in a clas-
sifier trained with motor imagery data that is changing as
the user learns how to control his/her event-related de-
synchronization signal. All our participants (6/6) chose
the elaborated feedback in an answer to a question on the
post-study questionnaire: “Which type of feedback did
you like better and found more useful?”. This shows that
the elaborated feedback approach has the potential to re-
place the standard conventional feedback paradigm for
motor imagery training.

Our results from offline analysis show that the elaborated
feedback protocol is potentially more powerful in training
motor imagery which is expected as described in [25]. In
fact, our participants found the proposed feedback more
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‘informative’ which again emphasizes this point.

One downside of the conventional feedback strategies
that our proposed protocol could overcome is the need to
have the first block of training with no-feedback or sham
feedback as there is no data yet to train a classifier on
— the conventional feedback is the output of a classi-
fier. The issue occurs if the participant does not provide
proper imagery during this time period, then the classi-
fier is trained on ‘incorrect’ data. Our method provides
the features to the user that later could be used to train a
classifier on. We propose to use the power on the motor
imagery cortices and train a threshold to compensate for
biases towards either side. Even if the bias is not compen-
sated for, the participant could still be provided with the
power on two sides of motor cortices and be instructed to
control the bars towards the ideal bar heights, i.e. sup-
pressed power on left side in right hand motor imagery
and suppressed power on right side in left hand motor
imagery trials. Hence, our proposed elaborated feedback
can function without training data.

To evaluate the elaborated feedback further, we are in-
terested in investigating providing participants with the
power on both sides of motor cortices normalized with
respect to a ‘baseline’ time period where the partici-
pant is relaxed and not performing motor imagery. An-
other aspect worth investigating further is how the two
approaches differ across multiple sessions and to see
whether there is more significant difference between the
two schemes when more time elapses between training
sessions.
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