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ABSTRACT: The detection of brain state changes can
dramatically improve the comprehension of cerebral
functioning. To reach this aim, machine learning based
automatic tools may be extremely useful to correctly clas-
sify different brain responses. The performance of these
instruments depends on the features and the classification
algorithm employed, but also from a good data prepro-
cessing able to improve the poor signal-to-noise ratio [4]
of the EEG signal. In this work, we combine data prepro-
cessing with a feature selection based on the filter ReliefF
and the linear SVM classifier LibLinear in order to anal-
yse the data deriving from a P300 speller paradigm on pa-
tients with Amyotrophic lateral sclerosis (ALS). The pur-
pose of this study is twofold: on the one hand we want to
maximize the predictor’s performance, but most impor-
tantly, we aim at showing how the features ranking can
be used to support scientific hypotheses or diagnoses.

INTRODUCTION

In neuroscience, a fundamental theme is the study of
brain functioning, for different scopes, such as neuro-
rehabilitation, diagnosis support and brain activity mon-
itoring in general. The detection of brain state changes
plays a fundamental role because it can dramatically im-
prove the comprehension of cerebral functioning. Evoked
potentials, for example, which are the electrical responses
recorded from the brain after specific stimulations, are
widely used by researchers and clinicians to support sci-
entific hypotheses [7] or to make diagnoses [8]. Recently,
in [1] a feature ranking approach combined with SVM
classifier was applied over the EEG signal of nine healthy
subjects. The subset of features identified for each subject
was physiologically correct. Indeed the filter was able to
detect physiological components elicited during the pro-
tocol either in space or in latency. In this work we try to
use a similar approach over Amyotrophic lateral sclerosis
(ALS) patients, even thought the poor signal-to-noise ra-
tio that characterise this kind of electroencephalographic
(EEG) signal makes this task more difficult to perform.

The rest of this paper is structured as follows: Material
and Methods provides a description of the dataset used
and of the strategy defined. Results shows the outcomes
both in terms of predictor’s performance and physiolog-
ical components detection. Discussion contains a com-
parison of the results obtained with the standard strategy

and the one proposed in this work. Finally, Conclusion
contains a brief summary of this work.

MATERIALS AND METHODS

The analysed dataset is the one proposed in [5] that can
be downloaded from the BNCI Horizon 2020 database [6]
(Dataset 8: P300 speller with ALS patients (008-2014)).
The dataset consists of eight patients affected by ALS,
and each patient was shown a 6 by 6 matrix containing
alphanumeric characters. The user’s task was to focus at-
tention on characters in a word that was prescribed by the
investigator (i.e., one character at a time). All rows and
columns of this matrix were successively and randomly
intensified at a rate of 4 Hz. Two out of 12 intensifica-
tions contained the desired character (i.e., one particu-
lar row and one particular column). Scalp EEG signals
were recorded from eight channels according to 10-10
standard (Fz, Cz, Pz, Oz, P3, P4, PO7 and POS8). The
EEG signal was digitized at 256 Hz and band-pass fil-
tered between 0.1 and 30 Hz. Participants were required
to copy-spell seven predefined words of five characters
each (runs), by controlling a P300 matrix speller. Rows
and columns on the interface were pseudo-randomly in-
tensified for 125ms, with an inter stimulus interval (IST)
of 125 ms, yielding a 250 ms lag between the appear-
ance of two stimuli (stimulus onset asynchrony, SOA).
For each character selection (trial) all rows and columns
were intensified 10 times (stimuli repetitions) thus each
single item on the interface was intensified 20 times and
the total number of flashes was 120. For each channel,
240 samples after stimuli onsets were selected for the
analyses. The dataset consisted hence of 4200 instances.
Drawing inspiration from [5], we split the dataset by us-
ing the first three words as training, and the last four as
testing set. We considered four different versions of the
dataset:

Single Trial we considered the original dataset, that is
4200 instances with 1921 attributes (240 samples
x 8 channels plus the attribute that represent the
row or the column intensified for each trial);

Decimated EEG data were then resampled in the time
domain by replacing each sequence of 12 samples
with their mean value, yielding 17 x 8 samples per
epoch (eight being the number of channels), which
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were concatenated in a feature vector of size 137

Decimated S-averaged EEG data were resampled in
the time domain as in the previous dataset ver-
sion, but also in the instances domain, so that five
consecutive instances of the same stimulation class
were replaced by one instance of their average; this
dataset version was then formed by 840 instances
and 137 attributes;

Decimated 10-averaged This version is similar to the
previous one, except that averages in the instances
domain were computed every 10 consecutive in-
stances of the same stimulation class; this dataset
version was then formed by 420 instances and 137
attributes;

The three decimated datasets were obtained by using
standard techniques for increasing the signal to noise ra-
tio and hence should represent an improvement over the
Single Trial dataset. However, it should be noted that,
for online applications, the time necessary to perform a
classification increases proportionally to the number of
the averaged instances. Following the results described
in [1], we use the filter ReliefF for feature selection, see
[3]. ReliefF is a robust feature selection filter that can deal
with incomplete and noisy data. This method randomly
selects an instance R;, then searches for k of its nearest
neighbours from the same class called nearest hits H,
and also k nearest neighbours from each of the different
classes, called nearest misses M;(C). It updates the qual-
ity estimation W [A] for all attributes A according to their
values for I;, hits H; and misses M. Due to the noise
of the data we have decided to weight nearest neighbours
by their distance.

We tested different SVM based classifiers and the most
efficient one was LibLinear described in [2], since it re-
sulted the best on all the datasets, and it is also fast in
terms of time for building the model. Liblinear returns
an hyperplane w”'z + b, that discriminates among the
two classes. It is important to stress that we did not use
the standard classification function of LibLinear (that is
y(z) = sign(w? z+b)), but we exploited the information
on the protocol that there is exactly one target element ev-
ery six instances. Therefore, we assigned the target class
to the maximum over the six flashes of w” 2 + b both
for rows and columns. Whenever this assignment does
not correspond to the real target, it results in both a false
positive and a false negative.

We compare our results with the standard strategy in BCI
(used also in [5]), that is SWLDA. SWLDA uses a step-
wise method to perform a multilinear regression of the re-
sponse values. We used the Matlab implementation with
its default setting and with the decision function exploit-
ing the knowledge on the protocol. Therefore, also for
this method, we assigned the target class to the maximum
over the six flashes of w” 2+b both for rows and columns.

RESULTS
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The following tables show, for each patient and for each
kind of dataset, the accuracy, the Cohen’s K appa, and the
true positives rate on the test set (that we recall is the last
4/7 of the whole dataset), obtained both with SWLDA
(default setting, and with the decision function described
above) and with our strategy, that is LibLinear combined
with the feature selection given by ReliefF.

A01 SWLDA OUR

dataset acc k TP acc k TP

orig 0.8145 | 0.3323 | 0.4436 || 0.811 | 0.320 | 0.434

dec 0.854 0.475 0.563 0.854 | 0.475 | 0.563

5-avg 0.925 0.730 0.775 0.917 | 0.700 | 0.750

10-avg 0.958 0.850 0.875 0.958 | 0.850 | 0.875

Table 1: Results for Patient AO1 on all the datasets

A02 SWLDA OUR
dataset acc k TP acc k TP
orig 0.8187 | 0.3474 | 0.4561 0.815 | 0.335 | 0.446

dec 0.828 0.382 0.485 0.837 | 0412 | 0.510

5-avg 0.938 0.775 0.813 0.933 | 0.760 | 0.800

10-avg 0.967 0.880 0.900 0.967 | 0.880 | 0.900

Table 2: Results for Patient AO2 on all the datasets

A03 SWLDA OUR

dataset acc k TP acc k TP

orig 0.8371 | 0.4135 | 0.5113 || 0.836 | 0.411 | 0.509

dec 0.869 0.529 0.608 0.873 | 0.544 | 0.620

5-avg 0.917 0.700 0.750 0.942 | 0.790 | 0.825

10-avg 0.925 0.730 0.775 0.942 | 0.790 | 0.825

Table 3: Results for Patient AO3 on all the datasets

A04 SWLDA OUR
dataset acc k TP acc k TP
orig 0.824 | 0.365 | 0.4712 0.835 | 0.408 | 0.506
dec 0.856 | 0.481 0.568 0.843 | 0.433 | 0.528
5-avg 0.854 | 0.475 0.563 0.867 | 0.520 | 0.600
10-avg 0.892 | 0.610 0.675 0.950 | 0.820 | 0.850
Table 4: Results for Patient A04 on all the datasets

A05 SWLDA OUR
dataset acc k TP acc k TP
orig 0.849 | 0.456 | 0.5464 0.832 | 0.395 | 0.496
dec 0.850 | 0.460 0.550 0.863 | 0.505 | 0.588
S5-avg 0.933 | 0.760 0.800 0.942 | 0.790 | 0.825
10-avg 0.975 | 0.910 0.925 0.967 | 0.880 | 0.900
Table 5: Results for Patient A0S on all the datasets

A06 SWLDA OUR
dataset acc k TP acc k TP
orig 0.850 | 0.459 | 0.5489 0.835 | 0.405 | 0.504
dec 0.881 | 0.571 0.643 0.878 | 0.562 | 0.635
5-avg 0.958 | 0.850 0.875 0.946 | 0.805 | 0.838
10-avg 0.967 | 0.880 0.900 0.975 | 0.910 | 0.925
Table 6: Results for Patient A06 on all the datasets

A07 SWLDA OUR
dataset acc k TP acc k TP
orig 0.860 | 0.495 | 0.5789 0.830 | 0.389 | 0.491
dec 0.873 | 0.541 0.618 0.863 | 0.508 | 0.590
5-avg 0.933 | 0.760 0.800 0.963 | 0.865 | 0.888
10-avg 0.967 | 0.880 0.900 0.967 | 0.880 | 0.900
Table 7: Results for Patient AO7 on all the datasets
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A08 SWLDA OUR
dataset acc k TP acc k TP
orig 0911 | 0.678 | 0.7318 0.906 0.663 0.719
dec 0.933 | 0.757 0.798 0.928 | 0.7396 | 0.783
5-avg 0.983 | 0.940 0.950 0.979 0.925 0.938
10-avg 0.983 | 0.940 0.950 0.983 0.940 | 0.950
Table 8: Results for Patient AO8 on all the datasets

In order to show the physiological significance of the fea-
ture selection that we use, in Figure 1 (patient A02) and
Figure 2 (patient AQ7) are shown the target signals (or-
ange) vs the non target signal (blue) on all the electrodes
for patient A02 and patient AO7. N200 VEP component
can be observed in Fig. 1 on Oz, Po7 and Po8 whereas the
P300 component can be observed on both patients in the
400-500 ms range and on Fz and Cz electrodes. Despite
the fact that these averages were obtained from a rele-
vant number of trials (300 targets vs 1500 non targets),
they appear to be quite different from those known from
the literature and from healthy subjects for two main rea-
sons: first of all the EEG signals from these patients have
a lower signal to noise ratio, and secondly the responses
overlap after each stimulation as they are elicited (every
250ms) before the physiological response in extinguished
(usually after no less than 800ms), thus causing some in-
terference.
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Figure 1: Target (Orange) vs Non-Target (Blue) for Pa-
tient AO2.

We have selected these two patients because they repre-
sent opposite classifiers performance: A02 is among the
worst while AQ7 is one of the best, as shown by the re-
sults in Tables 2 and 7.
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Figure 2: Target (Orange) vs Non-Target (Blue) for Pa-
tient A07.

In order to investigate whether the features selected by
ReliefF are coherent with the physiological signals rep-
resented in Figures 1 and 2, we compared topographic
maps (Fig.3, A02; Fig. 4, AO7) computed at certain time
interval, and according to three different methods:

- on the left we draw the weights chosen by SWLDA
for each feature;

- in the center we have the ERPs
- on the right the score computed by ReliefF

In all maps plotted values are relative to 7 distinct time
intervals, and averaged across 12 consecutive time sam-
ples. SWLDA and ReliefF weights were computed after
averaging 10 consecutive instances of the same stimula-
tion class and using 3/7 of the whole dataset. So, 180
instances with 1921 attributes (1920 from the signals and
one from the label) were used for training them. Note
that each of the 1920 obtained weights are bound to a
feature and then to a sample and an electrode. Weights
are then reduced after averaging 12 consecutive of them,
in order to further increase the signal to noise ratio. Note
that this approach preserve time and space information so
that each weight is still bound to an electrode and a time
(in this case an interval of 12 samples).

From all the possible maps, one for each time interval, a
subset of 7 (the most significant ones) is represented in
Figures 3 and 4.
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Figure 3: Topographic maps relative to patient A02 com-
puted according to 3 different methods and 7 different
time intervals.

From both Figures 3 and 4 it can be seen that maps com-
puted from features selected from ReliefF are very simi-
lar to those obtained from the ERPs whereas those com-
puted from SWLDA weights are quite different. This
clearly suggests that features selected with our approach
are more related to physiological signals than those se-
lected from SWLDA.
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Figure 4: Topographic maps relative patient AO7 com-
puted according to 3 different methods and 7 different
time intervals.

DISCUSSION

The reported results show how our approach based on Re-
liefF and LibLinear represents a valid alternative to the
widely used SWLDA, since it provides results compara-
ble to SWLDA in terms of accuracy and Cohen?s Kappa,
but selecting features that are physiologically relevant
while the features selected by SWLDA show scarce cor-
relation with the ERPs. This kind of information might
furnish relevant insights to identify which brain areas and
when are involved during certain cerebral activities, thus
improving the comprehension of brain functioning and
furnishing a valuable instrument for supporting scientific
hypotheses or diagnoses. It is also clear how the prepro-
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cessing of the data (especially the averaging of the signal)
is effective at improving the performance of the classi-
fier, as shown by the increasing accuracy (and Cohen’s
Kappa) obtained over the four datasets.

CONCLUSION

The detection of brain state changes translates into clas-
sification problems with a huge number of features that
make difficult to distinguish those relevant ones for di-
agnostic use. Therefore, distinguishing significant char-
acteristics not only would improve the predictor’s perfor-
mance, but would also provide a better understanding of
the underlying cerebral process that generated the data.
From classification point of view, the obtained results
show how our approach represents a valid alternative to
the standard SWLDA approach. More significantly, as
for the feature selection, the performance obtained with
our strategy outperforms SWLDA, since it turns out that
also in the case of ALS patients, this feature selection
filter is particularly robust, and returns a subset of se-
lected feature that is physiologically compatible. Figures
3 and 4 show how ReliefF was able to detect physio-
logical components elicited during the protocol either in
space (e.g. Cz, Pz, ...) or in latency (e.g. P300).
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