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ABSTRACT: With an increased interest to develop 

brain-computer interface (BCI) applications that can be 

used in real-world contexts, comes an increased need to 

deal with the myriad sources of artefacts that interfere 

with the signal of interest. We present real-world data 

recorded in a moving car, contaminated with muscle 

artifacts, mechanical artifacts, and noise produced by the 

car’s electrical systems. We use artifact subspace 

reconstruction and independent component analysis to 

rigorously clean and filter the data. We demonstrate that 

using state-of-the-art methods, it is possible to identify 

cortical processes even in heavily contaminated data.  

 

INTRODUCTION 

A number of current developments in brain-computer 

interface (BCI) research point towards an increased 

interest in real-world implementations. We see the 

development of easy-to-apply, commercial, dry electrode 

systems [1-3] as well as a number of wireless, mobile 

solutions for BCI [4-5]. These developments are no 

longer aimed at neurophysiological research per se, nor 

limited to support motor-impaired users. Also the 

ongoing proliferation of passive BCI [6-7], where BCI is 

used by individuals without disabilities to support 

ongoing human-computer interaction, indicates an 

increased interest in applying BCI to real-world 

scenarios, outside of the experimental laboratory.  

At the same time, developments in other areas are 

showing a clear need for information reflecting a user’s 

cognitive or affective state. As systems become 

increasingly automated, researchers attempt to make the 

automated adaptation match the needs and preferences of 

the individual user. As these may vary between contexts  

and over time, it is important that this information can be 

assessed in real time within the given context [8]. Such 

information can be provided using passive BCI 

methodology. This can be fed into neuroadaptive [9] 

systems as implicit input [10], enabling them to support 

their users in a timely and individualized fashion. 

One drawback of real-world scenarios is that they 

cannot be experimentally controlled. For EEG-based BCI 

in particular, the presence of electromagnetically active 

sources may interfere with or obscure the signal of 

interest. On top of that, users of real-world applications 

tend not to sit motionless for the duration of the activity. 

Thus, the myoelectric signals produced by the 

contracting shoulder, neck, and facial muscles 

contaminate the EEG recording. These movements as 

well displacements of the equipment itself may also 

introduce mechanical artifacts in the EEG recording. 

We focus here on the real-world use scenario of an 

autonomously driving car. The use of in-car EEG and 

BCI have recently been investigated by e.g. [11-14], 

establishing that state detection is possible, although the 

signal-to-noise ratio is low due to environmental noise 

and movement artefacts. Here, we focus on rigorous 

cleaning methods in order to implement neuroadaptivity 

in the context of autonomous driving.  

There is an increasing prevalence of automated 

driving systems taking over drivers’ tasks. While there 

are clear benefits to this in terms of comfort and safety, 

the human driver is more and more disconnected from 

the activity and left out of the loop. The behavior of 

current automated driving systems could benefit from 

additional information concerning the human driver’s 

perspective. That way, the human brain can serve as an 

additional sensor for the car, allowing the car to adapt to 

the needs and wishes of human driver. The driver can be 

implicitly kept in the human-machine interaction loop, 

and the car can benefit from the continuous, context-

sensitive implicit input provided by the passive BCI.  

The future car, thus, presents a highly promising but 

also challenging environment for BCI applications. 

In this paper we present real-world, moving-car EEG 

recordings of drivers confronted with different types of 

behaviors from the car’s adaptive cruise control (ACC) 

system. We investigate the detectability of elicited 

neuroelectric responses amidst unrelated myoelectric and 

electromagnetic noise. To that end, we use state-of-the-

art data cleaning and filtering systems that can also be 

used online. We present event-related potential (ERP) 

analyses as well as classification accuracies.   

 
MATERALS AND METHODS 

Participants 15 participants (6 female) aged 24-60 

participated. All possessed a valid driver’s license for at 

least three years. They received a monetary reward for 

their participation. This study was conducted in 

accordance with the Army Research Laboratory’s IRB 

requirements (DoDI 3216.02).  
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Experimental Set-Up The experiment was conducted in a 

modified Toyota Prius, in which a TNO-designed ACC 

system was installed [15]. The car was driven on the test 

circuit of the Dienst Wegverkeer Test Centre Lelystad, 

Netherlands. Other vehicles were present on a larger 

track surrounding the track but did not interfere with the 

experimental procedure. The experimenter was present in 

the backseat of the car during the whole experiment.  

We used a 64-channel BioSemi Active-Two to record 

EEG. We additionally recorded EOG above and below 

the left eye, ECG, and EMG on the left and right 

trapezius muscles. Peripheral data is not discussed in this 

paper (ECG and EOG findings are described [16]). All 

physiological signals were recorded at a sampling rate of 

512 Hz using the same amplifier.  

 

Task and Procedure Participants were told that we are 

working on automated detection of the driver’s desired 

deceleration settings for an ACC, without requiring the 

driver to explicitly communicate this desire. We told 

them that since this is not yet possible, we use a recording 

of a human voice to represent the desired setting for each 

trial (i.e. “soft brake please”, or “hard brake please”). 

Participants started with 10 practice trials to get familiar 

with the task and car dynamics, followed by 300 

experimental trials. 

 
Figure 1: Overview of one trial. 

 

The events constituting one experimental trial are 

depicted in Figure 1. The car drove at 35 km/h on the 

track when a human voice indicated the desired 

deceleration (either soft or hard, in Dutch; 50% chance). 

The participant pressed down a lever to activate the ACC 

deceleration. Before executing the deceleration, the ACC 

announced through a computer voice whether it would 

decelerate softly or strongly. In 80% of trials, the wish 

expressed by the human voice was followed (match trial), 

while in 20% it was not (mismatch trial). A variable time 

between 0.5 and 3.5 s after the ACC’s announcement, the 

car decelerated to 25 km/h, following either a steep or a 

shallow velocity profile (i.e. strong or soft deceleration, 

a maximum deceleration of 3 or 0.7 m/s2, respectively; 

total deceleration time of 0.9 or 2.8 s). Following this, the 

human voice asked the driver to accelerate again. The 

driver indicated whether the ACC had followed the 

desired type of deceleration or not, and pushed the lever 

up to have the ACC accelerate back to 35 km/h. 

 

Data Processing We used EEGLAB [17] for processing. 

We compare the data after two different processing 

paths: “standard” and more rigorously ICA-cleaned data. 

Standard preprocessed data was first high-pass 

filtered at 1 Hz using a Hamming windowed sinc finite 

impulse response filter. Heavily artifact-contaminated 

channels were then rejected using the pop_rejchan 

function, based first on kurtosis, and then on probability. 

ICA-cleaned data received additional, more rigorous 

processing. First, the data was high-pass filtered as above 

at 2 Hz. Artifact subspace reconstruction (ASR; [18]) 

was used to clean the data. ASR uses a section of clean 

reference data to compute baseline statistics, and then 

detects subspaces in continuous data that significantly 

differ from this reference. It reconstructs the contents of 

the identified sections using a mixing matrix calculated 

on the reference data. We used those settings that led to 

the most rigorous cleaning within the recommended 

range (burst criterion: 3, window criterion: .05). 

Infomax independent component analysis (ICA) on 

CUDA architecture [19] was applied to the ASR-cleaned 

data. ICA transforms the mixed-source EEG as recorded 

in sensor space into time series that are statistically 

maximally independent (independent components; ICs). 

Under the assumption that signals from different cortical 

processes and sources as well as artefactual sources are 

statistically independent from each other, this method 

thus transforms the data into ‘source space’. ICA results 

in a transformation matrix, i.e. a filter matrix weighting 

the individual channels in sensor space, to isolate the 

different source activities. These independent activities 

can then be identified and subtracted individually. 

The resulting transformation matrix was then copied 

back to the standard preprocessed data. The additional 

filtering and ASR cleaning was thus only applied in order 

to obtain a “clean” transformation matrix. Using this 

matrix, we then removed artefactual ICs from the 

standard preprocessed data. In the end, we compare 

standard preprocessed data versus that same data with 

artefacts removed through ICA. 

Artefactual ICs were identified by manual inspection 

of their scalp projection and frequency spectrum, as per 

[20]. Artefactual ICs were removed from the data such 

that only activity remained that could reasonably be 

assumed to be cortical. In brief, components were not 

removed only if they clearly fit two main criteria: a) 

dipolar, not too superficial projection pattern, and b) 

clear, smooth peaks in the power spectrum at frequencies 

known to have clear cortical correlates, mostly below 30 

Hz, with no high power beyond those frequencies.  

The windowed means approach using regularized 

shrinkage linear discriminant analysis [21], implemented 

in BCILAB [17], was used for classification. Data was 

band-pass filtered between 1 and 15 Hz and segmented 

into six non-overlapping consecutive time windows of 50 

ms each, from 0.2 to 0.5 s after the respective event—a 

time window that, a priori, could be expected to contain 

relevant responses to the experimental manipulations. 

We compare the response to the ACC announcing the 

upcoming braking behavior (match versus mismatch, 

strong versus soft), as well as to the actual braking. We 

used a five-fold nested cross-validation to compute 

classification accuracy estimates.  
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ERP analyses include statistics computed per sample 

between subjects on the amplitude differences of the two 

classes, using permutation tests with 1000 permutations.  

ASR and ICA cleaning was applied to the whole 

dataset. Cross-validated BCI performance estimates are 

calculated based on these cleaned sets as an additional 

measure of potential differences between the sets. 

 

RESULTS 

An average of 4 channels (ranging from 0 to 8) were 

removed from the initial data. From the on average 60 

remaining independent components, an average of 8 

(ranging from 2 to 14) ICs were identified as being 

cortical. All others were removed. See figure 2 for a small 

but representative selection of ICs that were kept. 

 

 
Figure 2: Four ICs that fit the main criteria: spectral 

speaks in sub-gamma bands and dipolar patterns. 

 

The artefactual noise was not spread evenly across 

the channels, but was most prominent on parietal and 

occipital sites. Figure 3 shows grand-average ERPs for 

the four comparisons. We focus mostly on Oz, a highly 

contaminated site showing the effect of the ICA cleaning 

most clearly. To illustrate the vast differences of the noise 

distribution between the different sites, and the effect on 

cleaner sites, for one condition, we also present the ERP 

at the less contaminated electrode Cz. ERPs extracted 

from standard-preprocessed data are shown on the left; 

the ICA-cleaned data on the right. Significant differences 

(p < 0.05) are highlighted in grey. 

Significant differences can be seen between the peak 

amplitude around 200 ms in the ICA-cleaned data at 

electrode Oz comparing the announcement onset of hard 

versus soft upcoming braking behavior. Also at Oz in 

ICA-cleaned data, significant differences can be seen 

around 500 to 600 ms after hard versus soft brake onset. 

These late differences are most likely due to the 

experience of the braking itself and not relevant to the 

driver’s mental preparation thereof—thus, we did not 

update our classification approach to go beyond 500 ms. 

Tables 1 to 4 list the individual and mean 

classification accuracy estimates for the same classifier 

calibrated on standard-preprocessed data and on ICA-

cleaned data for all four comparisons. These results are 

summarized and discussed in the next section. 

 

CONCLUSION AND DISCUSSION 

We have recorded data from 15 participants controlling a 

moving car. They were confronted with different and 

sometimes unexpected behavior of the automated driving 

system, in the form of either strong or soft deceleration. 

We applied state-of-the-art cleaning and filtering 

methods in order to investigate the detectability of 

cortical events amidst the many artifacts produced by the 

car itself and the participants’ movements. 

The ICA cleaning of the data was rigid, removing, in 

one case, all but only two independent components, and 

in all cases no less than three-fourths of all components. 

We see, however, that even in this heavily contaminated 

data it was still possible to identify cortical activity: we 

see clear event-related potentials reflecting cortical 

responses to various driving-related events, on electrodes 

where the original preprocessed signal was completely 

drowned out by large-amplitude artifacts (e.g. Oz).  

Indeed, even given very large-amplitude artifacts (up 

to 23 µV on Oz), the relatively small cortical signals (<1 

µV on that same electrode) could be identified with 

sufficient sensitivity to allow significant differences to 

become apparent between the classes. 

At less contaminated sites, e.g. electrode Cz, we see 

that the signal is hardly affected even by such rigorous 

cleaning. The cortical signals remain intact. 

The ERP plots show no significant difference 

between match and mismatch trials. The experimental 

set-up likely did not make this distinction sufficiently 

meaningful to the participant to evoke a clearly 

discriminable signal. Participants were not instructed to 

pay attention to this, and were occupied by the primary 

task of driving, so indeed little effect was expected [22].  

Because of this, we also see no general classifiability 

of match versus mismatch events, nor an improvement in 

classification accuracy after to ICA cleaning. Given the 

imbalanced number of classes, chance level is at 68% 

(±5.2, α = 0.05). Neither standard preprocessed nor ICA-

cleaned data is classifiable. We do, however, see an 

increase in the balance of the classes after ICA cleaning 

(i.e. the true positive divided by the true negative rate). 

Comparing hard versus soft trials, chance level here 

is 49% (±5.6, α = 0.05). Time-locked to brake onset, we 

see a very high classification accuracy of 94% in standard 

preprocessed data. This decreases significantly after ICA 

cleaning (p < 0.01). This is likely because in the non-

cleaned data, strong mechanical and muscular artifacts 

correlate to these two classes: a steeper braking profile 

will lead to increased muscular activity and movement. 

These artifacts are used by the classifier. In the cleaned 

data, these artifacts are removed and the classifier is only 

given the activity that was identified to be cortical. This 

still leads to a classification accuracy of 77%, 

significantly better than chance. 

Time-locked to the onset of the announcement, 

classification accuracy is 63% without cleaning, and 

cleaning does not significantly change this (p = 0.32). 

This shows a cortical response to the announcement that 

is detectable at a single-trial level. The lack of impact on 

classification accuracy shows that ICA cleaning does not 

negatively affect these cortical aspects of the data.  

The ASR cleaning method can be applied online. 

Although the precise ICA implementation used here was 

not online, methods have been developed to calculate 

ICA transformation matrices online [23]. The two 

measures on which component selection was based, scalp 

projection and power spectrum, are thus also available 

online. It is likely, in fact, that online ICA will give better 
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results as it can be configured to put more weight on 

current time windows, making it adaptive to the current 

context. In [23], the selection of which components to 

keep and which to remove can be done online but must 

be done manually. However, (semi)automatic component 

identification is underway [24]. 

These methods, thus, allow for strong, rigorous 

cleaning and filtering of data during continuous, online 

BCI operation. As we have shown here, these state-of-

the-art methods are capable of identifying cortical 

processes even amidst large-amplitude artefacts that 

would otherwise drown out the signal of interest.  

ICA-based cleaning can target artefactual activity 

specifically, affecting cortical processes only to a 

minimal degree. This can provide a large advantage for 

real-world neuroadaptive technology in realistic settings. 
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 Announce match vs. mismatch 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 32 74  0.42  66 44 61 0.72 58 

2 25 77  0.33  66 39 74 0.53 67 

3 30 74  0.40  66 37 64 0.58 58 

4 37 78  0.47  69 48 59 0.82 57 

5 32 78  0.41  69 47 73 0.64 67 

6 40 76  0.53  69 35 60 0.58 55 

7 23 71  0.33  62 33 64 0.52 58 

8 25 68  0.37  59 42 59 0.70 56 

9 33 70  0.48  62 38 63 0.61 58 

10 38 75  0.51  68 43 66 0.65 62 

11 30 68  0.44  60 42 56 0.75 53 

12 52 85  0.61  78 45 75 0.60 69 

13 40 76  0.53  69 43 65 0.66 61 

14 30 68  0.44  61 38 59 0.65 55 

15 48 79  0.61  72 47 61 0.77 58 

 34 74 0.46 66 41 64 0.65 59 

 
Table 1: Classification accuracy estimates for all fifteen 

participants based on standard-preprocessed data and 

ICA-cleaned data. Classification distinguished between 

match versus mismatch trials, time-locked to 

announcement onset. P = participant number, TP = true 

positive rate, TN = true negative rate, Rat. = TP/TN, Acc. 

= combined classification accuracy. Due to class 

imbalances, chance level is at 68% (±5.2, α = 0.05). 

 

 Announce hard vs. soft 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 64 61 1.05 63 63 57 1.10 60 

2 66 55 1.19 60 66 59 1.13 62 

3 47 63 0.75 55 56 59 0.94 57 

4 61 59 1.03 60 61 66 0.92 63 

5 55 61 0.89 58 52 53 0.99 52 

6 57 63 0.89 60 61 59 1.03 60 

7 78 74 1.05 76 68 68 1.00 68 

8 54 63 0.85 58 62 56 1.10 59 

9 49 48 1.01 48 45 55 0.82 50 

10 78 69 1.13 74 67 71 0.95 69 

11 68 68 1.01 68 58 55 1.06 57 

12 72 65 1.10 69 74 67 1.10 71 

13 64 73 0.88 68 55 61 0.90 58 

14 55 55 0.99 55 62 59 1.06 60 

15 59 70 0.85 65 52 55 0.94 54 

 62 63 0.98 63 60 60 1.00 60 

 
Table 2: As table 1, with classification distinguishing 

between hard versus soft brake trials, time-locked to 

announcement onset. Chance level is at 49% (±5.6, α = 

0.05). 

 

 Brake match vs. mismatch 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 16 69 0.23 59 44 65 0.67 61 

2 35 72 0.48 65 37 67 0.54 61 

3 31 66 0.47 59 36 61 0.60 56 

4 39 73 0.54 66 36 57 0.63 53 

5 22 67 0.32 58 28 62 0.46 55 

6 27 75 0.36 65 37 64 0.57 59 

7 22 69 0.32 59 40 59 0.68 55 

8 29 74 0.39 65 33 65 0.51 59 

9 31 61 0.51 55 36 63 0.57 58 

10 17 73 0.23 61 43 70 0.62 64 

11 44 73 0.61 67 44 61 0.72 58 

12 28 77 0.37 67 50 67 0.75 63 

13 33 64 0.52 58 40 61 0.66 56 

14 30 64 0.47 57 47 54 0.86 53 

15 38 65 0.57 59 31 59 0.53 54 

 29 69 0.43 61 39 62 0.62 58 

 
Table 3: As table 1, with classification distinguishing 

between match versus mismatch trials, time-locked to 

brake onset.  

 

 

 

 

 

 

 Brake hard vs. soft 

 Standard ICA 

P TP TN Rat. Acc. TP TN Rat. Acc. 

1 94 85 1.10 89 91 79 1.16 85 

2 99 90 1.10 95 79 74 1.07 77 

3 87 85 1.02 86 68 69 0.99 69 

4 98 93 1.05 96 80 72 1.11 76 

5 95 94 1.01 95 65 68 0.96 67 

6 99 90 1.10 94 75 77 0.97 76 

7 99 96 1.03 98 79 69 1.14 74 

8 95 83 1.15 89 67 64 1.05 65 

9 99 94 1.05 96 96 90 1.07 93 

10 97 90 1.08 94 93 85 1.10 89 

11 88 79 1.11 83 88 72 1.22 80 

12 100 99 1.01 99 82 76 1.07 79 

13 100 98 1.02 99 68 62 1.09 65 

14 99 99 1.01 99 75 67 1.13 71 

15 99 96 1.04 97 92 79 1.17 85 

 97 91 1.06 94 80 73 1.09 77 

 
Table 4: As table 2, with classification distinguishing 

between hard versus soft trials, time-locked to brake 

onset.  
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Figure 3: Grand average (n=15) event-related potentials of standard-preprocessed (left) and ICA-cleaned data (right). Top 

to bottom: ERP at Cz time-locked to the ACC announcement onset of the upcoming braking behavior, match versus  

mismatch trials; ERP at Oz time-locked to the same, announcing “hard” versus “soft”; ERP at Oz time-locked to the onset 

of the braking behavior itself, match versus mismatch trials; ERP at Oz time-locked to the same, hard versus soft braking. 

Significantly different samples are highlighted in grey, modulated by p-values (lower p-value = darker grey).  
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