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ABSTRACT: The event related potential is traditionally
obtained in time domain by computing ensemble aver-
age. However, due to non-stationarity and poor localiza-
tion of these signals, this may result in erroneous feature
extraction. In this present study, a standard database is
considered to elucidate this problem. It is shown that
a frequency domain decomposition followed by the es-
timation of spectral distance by measures like Itakura-
Saito distance may partially resolve the problem. How-
ever, recognizing the contribution of endogenous and ex-
ogenous inputs to each event related potential, it is fur-
ther argued that a Wavelet Packet Decomposition may be
more useful since each signal in the frequency domain
can be further decomposed into five characteristic do-
mains (delta, theta, alpha, beta, and gamma) and based on
the feasibility of contributions from each domain a better
feature extraction will be possible.

INTRODUCTION

Oddball paradigm is an experimental standard used in
several studies to elicit event related potential (ERP) and
analyze its subcomponents. In this paradigm, a visual
stimulus is presented where a sequence of random el-
ements are displayed with a high likelihood (80-90%),
non-target stimuli and is interjected by a low likelihood
(5-20%), the “oddball” stimuli, which might vary in du-
ration and intensity [1].
The salience associated with stimulus ensures the occur-
rence of P300; more the event has an element of surprise
to it, stronger is the response. Hence the stimulus should
be designed in such a way that the desired event be ran-
domly positioned and infrequently presented among a se-
ries of non-target events. The present study focuses on
an enhanced component of ERP, the P3b observed at the
parietal region; commonly known as the P300. It occurs
around 300ms +/- 100ms after the onset of target stimu-
lus. The amplitude of P300 varies directly with the rele-
vance of the eliciting events and inversely with the prob-
ability of the stimuli [2].
The ERP waveform has the observable peaks and
troughs; however, it has also the unobservable latent com-
ponents. It is these latent components that give measure
of neuronal response to visual stimulation task, the peaks
are a summation of latent components. The latency, am-
plitude and duration of latent components vary across tri-

als. Once the ensemble averaging over multiple trials is
done, nothing can be ascertained about the behaviour of
these components.Given this, latency and amplitude may
not be sufficient measures to compare two ERPs [3].Ad-
ditionally,ERP phase can also shift across trials,which
would imply, that the signal to noise ratio will deteriorate
after ensemble averaging. Using the well-known time-
frequency inverse relation; it is hypothesized that a large
shift in time latency will depict as a small variation in
the frequency of ERP component. Thus, irrespective of
shift in phase; using frequency as the feature could deter-
mine presence of P3b-ERP. To further argue the choice
of frequency as a probable feature in a practical system,
one may assume a small window of samples taken after
each run. Within this window the amplitude and phase
are non-deterministic whereas frequency is a determinis-
tic parameter.While state of the art algorithms are well
equipped to analyze deterministic signals, it is still chal-
lenging to investigate the non-deterministic signals.For
some time, wavelet transforms have been used to observe
ERPs by choosing appropriate mother wavelets and ma-
nipulation of bases functions gives a closer look at the
wave shapes. This approach helps with choice of filters
to be used, extraction of single trial ERP, breaking down
ERP response into various frequency bands, detection of
overlapping peaks[4]. [5] Another study discusses which
single channel wavelet transform to auditory evoked po-
tentials in cats. It also draws attention to limitations of
sole reliance on amplitude and latency and highlights
ability of wavelet transform to identify ERP components
and effects of various experimental conditions on proper-
ties of these components. [6]This study used simulated
EEG data generated using Gabor logons and chirped sig-
nals. To extract P300, time frequency transformation us-
ing morlet wavelet and reduced interference distribution
(RID) are fed as inputs to principal component analysis
(PCA). It reduced three dimensional data to two dimen-
sional vectors which further retrieved P300 ERP. Wavelet
analysis indicated that appreciable theta activity was re-
lated to the more novel non-target stimuli; primarily tar-
get component delta coefficients were affected by the dis-
crimination difficulty variable. In the present study, it is
proposed that a frequency domain analysis be followed
after the time domain ensemble averaging. Further the
ERP be decomposed and visualized in terms of basic
brain rhythms using wavelet packet decomposition.
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MATERIALS AND METHODS

The present study uses P300 speller dataset from BCI
competition III webpage with due acknowledgement
[7].In the beginning, an ensemble average of a single trial,
corresponding to a target is obtained; the spectral compo-
nents of the signal are extracted, using DFT.Following
this, the spectral components of all ensuing trials are
computed. Subsequently, using some of the spectral dis-
tance measure techniques, the spectral distances between
the initial trial and each of the subsequent trials are com-
puted. It is assumed that if a threshold for each of these
spectral distances is selected, and then target and non-
target may be differentiated.
The input EEG signal is sampled at 240Hz.There are 85
epochs, each having a target character. Also an epoch
contains 7794 samples, but for the purpose of ERP re-
trieval, individual trails are extracted from within each
epoch. Each trial has 240 samples. The process of ex-
tracting samples from epochs can potentially corrupt the
original signal by introducing noise. To avoid this, appro-
priate window functions are applied to the signal while
deducting samples. Windows are selected so that the sig-
nal smoothly approaches zero at both ends.
The fast Fourier transform algorithm has been be used
for ensemble average of each trial, i.e. 240 samples taken
over 1000ms while DFT is designed for signal extending
from 0 to ∞. For such a case, nothing can be known
about the signal behavior outside the measured interval
and the Fourier transform makes an implicit assumption;
that the signal is repetitive. This assumption leads to dis-
continuities that are not really present in signal. Since
sharp discontinuities have broad frequency spectra, this
will cause frequency spectra to spread out. Consequently,
the signal energy which should be concentrated only at
one frequency instead leaks into other frequencies. This
will lower the signal to noise ratio. Secondly, the spec-
tral leakage from a large signal component may be severe
enough to mask other smaller signals at different frequen-
cies.
Thus, the signal is multiplied within the measurement-
time, by some function that smoothly reduces the signal
to zero at the end points; hence, avoiding the discontinu-
ities altogether and curtailing the spectral leakage. Fur-
ther it is expected to reduce the contribution of each fre-
quency to one DFT bin.
The basic discrete Fourier transform (DFT) synthesis and
analysis equations are

X[k] =
N−1∑
n=0

x[n]ejkΩon, 0 ≤ k ≤ N − 1 (1)

x[n] =
1

N

N−1∑
k=0

X[k]e−jkΩon, 0 ≤ n ≤ N − 1 (2)

X[k] and x[n] are periodic sequences in frequency and
time domains respectively. X[k] is equal to samples
of periodic fourier transform X(ejω). X[k] will be the

transform of a periodic extension of x[n] for n outside
the interval 0 ≤ n ≤ N − 1. In defining DFT representa-
tion, we are recognizing that we are interested in values
of x[n] only in the interval 0 ≤ n ≤ N−1 because x[n] is
really zero outside this interval. k represents discrete in-
stances in frequency, n represents the number of samples
in time, N the period, j represents

√
−1, Ωo represents

discrete frequency [8].
Distance measure is a common technique used to mea-
sure difference between a model/estimate(s) and its ob-
servations.The spectral distances are computed using sec-
ond order properties of signal. Current study uses asym-
metric and symmetric distance measures to gauge target
and non-target ERP responses.
The Itakura-saito distance measure is defined as

DIS(P (wk), P̂ (wk)) =
1

N

N−1∑
k=0

|X[k]|2∣∣∣X̂[k]
∣∣∣2

− 1

N

N−1∑
k=0

log
|X[k]|2∣∣∣X̂[k]

∣∣∣2 − 1


(3)

where k = 0, 1, ..., N − 1 and P (wk) = |X[k]|2
It is a measure of difference between original spectrum
(template P300 in present context) P (w) and a typical
observation that can be considered as an approximation
P̂ (w) of that spectrum. It is intended to reflect structural
dissimilarity. Further Itakura-Saito distance is a Bregman
divergence which is not a true metric since it fails to meet
the symmetry and inequality axioms.
Spectral distances between two spectral densities P (wm)

and P̂ (wm) can be measured using Lq norm of the dif-
ference between them, depicted as;

D(P (wm), P̂ (wm)) =
∥∥∥P (wm)− P̂ (wm)

∥∥∥
q

(4)

Such distances satisfy triangular inequality and symme-
try property and are thus true distances [9].
A spectral distance measure D can be symmetrized by
extending DIS as shown:

Dcosh =
1

N

N∑
m=1

[
P (wm)

P̂ (wm)
− log

P (wm)

P̂ (wm)
+

P̂ (wm)

P (wm)

]

− 1

N

N∑
m=1

[
log

P̂ (wm)

P (wm)
− 2

]
(5)

One of the main spectral deviation measures is log spec-
tral, defined by Lq norm of difference between log of

spectra D =
∥∥∥log P (wm)

P̂ (wm)

∥∥∥
q

where q = 2 for root mean

square (rms) or the mean quadratic distance given below:

Drms =
1

2N

N∑
m=1

[
log

P (wm)

P̂ (wm)

]2

(6)
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Given a signal, the wavelet packet decomposition filters
the signal into equal low-frequency and high-frequency
subspaces. Present study uses MATLAB software for
wavelet packet decomposition. Averaged trials from in-
dividual epochs were the input signals and decomposi-
tion into the lower frequencies was repeated till level 5.
Daubechies wavelet of order 8 was used as the mother
wavelet. The outcome was signals divided into delta,
theta, alpha, beta, gamma activity.

RESULTS AND DISCUSSION

Ensemble averaging is one of the most popular time do-
main methods for extraction of ERP signatures. During
the course of present investigation, it was found that this
signature makes significant departure from its known pat-
tern across trials. Fig. 1-3,are manifestations of the same.
Fig. 1-3 are time domain ensemble average of target and
non-target responses at frontal (Fz), Parietal (Pz) and oc-
cipital (Oz) electrodes, taken over duration of one second.
In Figures 1 and 2, the target responses peaks at nearly
450 ms though the peaks begin to appear around 200 ms,
modulated by a higher frequency noise. Both patterns
closely match upto an expected ERP. It has to be noted
though that they are not same, because, while what ap-
peared at Pz correspond to P3b component, the response
to rare target, in an oddball paradigm. The response at
Fz is directing to P3a component which corresponds to
non-target [10]. This distinction is important to make, in
order to choose the right channel for analysis.

A marked departure from the said pattern can be seen in
Fig. 3, which is a time domain ensemble average of target
responses computed over central midline at the occipital
lobe. Contrary to the norm, there is rather a dip spread-
ing across 250-380 ms. One possible explanation could
be that the ERP response is getting superimposed by a
more prominent activity at the occipital lobe [11]. It is
imperative to recognize the patterns associated with non-
target responses. Ideally a non-target stimulus does not
elicit the endogenous ERP component, specifically peak
around 300ms. For example, the non-target in Figures 1
and 2 depicts compliance to the rule, while in Fig. 3, it
does not. An small unanticipated peak appears between
300-400ms. A classifier such as PCA which is not able
to handle jitters will not be able to make the system very
much efficient with such responses in given signal. The
present study proposes to compute spectral distances be-
tween two spectra. One is a fixed spectrum, that of a tem-
plate or estimated ERP. The other is a dynamic spectrum
which changes with each trial; in other words, spectrum
of each subsequent trials. Itakura-Saito reveals the spec-
tral distances between the two. The procedure to compute
Itakura-Saito distance is as follows: 1- The first input is
estimated and its spectrum is computed as follows: The
grand average of responses to target stimuli for a single
channel is taken.

Figure 1: Target(T) and Non-Target(NT) responses at Fz.

Figure 2: Target(T) and Non-Target(NT) responses at Pz.

Figure 3: Target(T) and Non-Target(NT) responses at
Oz.

To avoid high frequency noise modulation an appropri-
ate window function is applied right before it is mapped
onto the frequency domain using DFT. The spectral com-
ponents thus retrieved are considered as desired markers
of an ERP.
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Figure 4a Frequency spectrum for target and non-target
responses at Pz.

Fig 4b Closer look at frequency spectrum for target and
non-target responses at Pz.

Fig 4c Closer look at frequency spectrum for target and
non-target responses at Pz.

2- The template evaluated in earlier step is compared
with respect to spectral components of each subsequent
trial. These spectral components are computed in a simi-
lar fashion as described in the above step.

Figure 5a: Frequency spectrum for two target responses
at Pz.

Figure 5b: Closer look at frequency spectrum for two
target responses at Pz.

Figure 5c: Closer look at frequency spectrum for two
target responses at Pz.

3- The Power spectra for estimated spectra as well as
of individual trials are computed to evaluate the Itakura-
Saito distance as described in equation (3). The Itakura-
Saito distances was measured between, a target and a
non-target, as well as, between two targets and following
interesting observation were made. Ideally the frequency
components while attending to the target and non-target
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stimulus should differ, as attention to a target stimulus
should elicit ERP response containing peak component at
300ms after stimulus onset. It was observed that both tar-
get and non-target responses had overlapping frequency
components, to a certain degree Figures 4,5. Frequency
spectrum of target responses between two trials is shown
in Fig.5a-c, again while some components are overlap-
ping; a disparity can also be observed. It can be explained
by going back to jitter effects between trials in time do-
main.

Figure 6: Itakura-Saito distance measure between the
response corresponding to target stimuli and the

non-target stimuli.

Figure 7: RMS Log Spectral distance measure between
the response corresponding to target stimuli and the

non-target stimuli.

Given the non-stationary nature of EEG signals, and pres-
ence of both endogenous and exogenous components in
the ERP response these manifestations are hard to deal
with by a simple mapping from time to frequency do-
main. This ambiguity calls for a more specific decompo-
sition of the ERP. The overlap in frequency components
of both targets and non-targets demands that the endoge-
nous component, which is unique to target response be
separated.

Figure 8: COSH distance measure between the response
corresponding to target stimuli and the non-target

stimuli.

In order to achieve this, wavelet packet decomposition
(WPD) could be carried out, using an appropriate basis
function. This shall be explained later in this section. If a
standard pattern manifests every time an ERP is elicited,
a measurement of spectral distance between a template
target spectrum and response of subsequent ERP trials
will be able to classify between target and non-target.
Fig. 6-8 illustrate spectral distance measures between tar-
gets and non-targets for which, Pz channel is selected.
At first, an asymmetric spectral distance measure is com-
puted using Itakura-Saito distance. This distance is cal-
culated between estimated spectrum and individual tri-
als. The range of Itakura–Saito distance lies within 0-
120 units which are divided in 50 bins. 87.5% of Nontar-
get and 81.1% of target responses falls within 0-25 units.
This shows that high percent of both target and non-target
stimuli lie in the same range and hence results in poor
detection of target responses. It also depicts the gener-
alization of our said observation for Fig. 4 and 5 across
all trials. As the detection of target responses in Itakura-
Saito became intricate, symmetric spectral distance mea-
sures were attempted. Here, RMS log spectral and COSH
spectral distances were computed and their outcomes are
shown in Fig. 7 and 8. In Fig. 7, RMS log spectral dis-
tance varies between 11- 22 units which is divided into 50
bins. 92.5% of nontarget and 94.7% of target stimuli falls
within above range. It is observed that the responses are
broadly distributed over a large range of distance. In Fig.
8, 91.5% of non-target and 88.2% of target responses are
between 0-20 units of COSH distances. Consequently,
the differentiation of target stimuli from non-target be-
comes obscure in both symmetric as well as asymmetric
spectral distance measure methods. At this juncture, in-
stead of looking at the ERP as a whole, wavelet packet
decomposition was used to separate the ERP to lower fre-
quency bands. After wavelet packets decomposition, an
ERP could be visualized in terms of delta, theta, alpha,
and beta rhythms. Fig. 9 shows decomposition of target
and non-target activity at Pz.
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Figure 9: Average Delta, Theta, Alpha and Beta
activities at Pz, corresponding to Target(T) and

Non-Target(NT) responses.

As ERP is not a single response but rather a coagula-
tion of exogenous and endogenous responses to the vi-
sual stimulation; coming from a highly non-linear sys-
tem, the human brain. Decomposing ERP into multi-
ple frequency bands rather than visualizing it as a whole
shall be more befitting approach, to extract the endoge-
nous P3b response to target stimuli.In present work when
target and non-target responses were decomposed into
multiple frequency bands using wavelet packet decom-
position, Fig. 9. The delta rhythm associated with target
has higher amplitude than for non-target. Theta activ-
ity is known to increase with increasing memory load; a
slightly higher theta activity was observed for target re-
sponses. Alpha activity for target stimulus had higher
amplitude compared to non-target when observed at Pz.
The alpha activity is associated with idle state of brain
region under consideration. But this statement would be
an oversimplification given the fact that, different areas
of brain possess their unique alpha activity. Parietal al-
pha power is known to increase as task load increases.
There is a marked difference between beta activity of tar-
get and non-target. Such can be considered as a feature
which can be used for classification between targets and
non-targets. By keeping these results as basis, we will
continue to take on a more thorough investigation on ERP
components and identify more features for robust target
classification.

CONCLUSION
The present study summoned up the non-stationary na-
ture of event related potentials. On that premise, a
scrutiny of common approaches for extraction of event
related potentials from raw EEG data was instigated. The
limitations of those approaches were accounted and the
study proceeded to computation of spectral distance mea-
sures expecting to mark distinction between target and

non-target ERP responses.
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