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ABSTRACT: Mental-Imagery based Brain-Computer In-
terfaces (MI-BCIs) enable users to control applications
using their brain activity alone, by realising mental-
imagery tasks. Although promising, MI-BCIs remain
barely used outside laboratories, notably due to the diffi-
culties users encounter when attempting to control them.
We claim that understanding and improving the user-
training process could greatly improve users’ MI-BCI
control abilities. Yet, to better understand the training
process, we need a model of the factors impacting MI-
BCI performance. In other words, we need to understand
which traits and states impact MI-BCI performance, how
these factors interact and how to influence them to im-
prove this performance. Such a model would enable us to
design adapted and adaptive training protocols, to guide
neurophysiological analyses or design informed classi-
fiers, among others. In this paper we propose a theoretical
model of MI-BCI tasks, which is the first step towards the
design of this full cognitive and computational model.

INTRODUCTION

Mental-Imagery based Brain-Computer Interfaces (MI-
BClIs) enable users to control an application using their
brain activity alone, through the realisation of mental im-
agery tasks. For instance, using MI-BCls, paralysed pa-
tients can control a wheelchair by imagining left/right
hand movements to make the wheelchair turn left/right,
respectively [33]. Although very promising for a wide
range of applications, MI-BCIs remain barely used out-
side laboratories, in particular due to the difficulties users
encounter when attempting to control them. Indeed, 10
to 30% of users are unable to control MI-BClIs [3].

Two main factors have been identified to explain the low
reliability of MI-BCIs. The first, which has been ex-
tensively investigated, concerns brain signal processing,
current classification algorithms being still imperfect [3].
On the other hand, the potential role of user-training in
MI-BCI performance requires much further investigation.
Controlling an MI-BCI requires the acquisition of spe-
cific skills, and particularly the ability to generate stable
and distinct MI brain activity patterns [21]. An appro-
priate training procedure is required in order to acquire
these skills and an inefficient training protocol could con-
sequently be partly responsible for users’ modest perfor-
mances. Yet, although current training protocols are the-

oretically inappropriate for skill-acquisition, rather little
research is done towards their improvement [10]. We
claim that understanding and improving the user-training
process could greatly improve MI-BCI performance.

In [11], we reviewed the available literature on MI-BCI
training protocols, which gave rise to several guidelines
for the design of MI-BCI training protocols. For instance,
regarding the instructions, it appears promising to explic-
itly specify the object of the training process. Further-
more, we should provide training tasks that are specific to
each user. Then, visual feedback with emotional connota-
tions seems to increase user motivation levels and, conse-
quently, performance, although formal comparisons with
non-emotional feedback are missing. Finally, it has been
shown that gamifying the training environment increases
motivation, and consequently performance.

These guidelines show that several promising avenues re-
garding the training protocols have been explored. Unfor-
tunately, such studies remain scarce and, critically, their
results are rarely taken into account by the BCI commu-
nity. By building on theories in disciplines such as psy-
chology and instructional design, it is possible to sug-
gest new approaches for further improving user perfor-
mance. However, being able to do so requires to under-
stand the MI-BCI training process, and how it is impacted
by users’ specificities, in order to adapt the training pro-
tocols to their individual profiles. In order to reach a
better understanding of the training process, we need a
model of the factors impacting MI-BCI skill acquisition.
In other words, we need to understand which users’ traits
and states impact MI-BCI performance, how these factors
do interact and how to influence them through the exper-
imental design or specific cognitive training procedures
in order to improve MI-BCI performance. Such a model
is called a Cognitive Model. Busemeyer and Diederich
describe cognitive models as models which aim to scien-
tifically explain one or more cognitive processes or how
these processes interact [7]. Three main features charac-
terise cognitive models: (1) their goal: they aim to ex-
plain cognitive processes scientifically, (2) their format:
they are described in a formal language, (3) their back-
ground: they are derived from basic principles of cog-
nition [7]. Cognitive models guarantee the production of
logically valid predictions, they allow precise quantitative
predictions to be made and they enable generalisation [7].

In the context of BClIs, developing a cognitive model is
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a huge challenge due to the complexity and imperfection
of BCI systems. Indeed, BCIs suffer from many limi-
tations, independent from human learning aspects, that
could explain users’ modest performance. For instance,
the sensors are often very sensitive to noise and do not
enable the recording of high quality brain signals while
the signal processing algorithms sometimes fail to recog-
nise the correct mental command. But it is also a huge
challenge due to the lack of literature on the topic and to
the complexity and cost associated with BCI experiments
that are necessary to increase the quantity of experimen-
tal data. Nonetheless, as stated earlier, a cognitive model
would enable to reach a better understanding of the MI-
BCI user-training process, and consequently to design
adapted and adaptive training protocols. Additionally, it
would enable us to guide neurophysiological analyses by
targeting the cognitive and neurophysiological processes
involved in the task. Finally, it would make it possible
to design classifiers robust to variabilities, i.e., able to
adapt to the model factors. To summarise, building such
a model, by gathering the work done by the whole BCI
community, could potentially lead to substantial improve-
ments in MI-BCI reliability and acceptability.

Different steps are required to build a cognitive model
[7]. First, building a cognitive model requires a formal
description of the cognitive process(es) to be described
based on conceptual theories. Next, since the conceptual
theories are most likely incomplete, ad hoc assumptions
should be made to complete the formal description of the
targeted cognitive process(es). Third, the parameters of
the model, e.g., the probabilities associated with each el-
ement of the model, should be determined. Then, the
predictions made by the model should be compared to
empirical data. Finally, this process should be iterated to
constrain and improve the relevance of the model.

In this paper, we propose to do the first step of this pro-
cess: the formal description of the cognitive processes
involved. Therefore, in a first section, we will introduce
briefly the different factors depicted in the literature as in-
fluencing MI-BCI performance. Then, we will describe
the first step of the cognitive model. Finally, we will pro-
pose future work that will aim at completing the model.

FACTORS IMPACTING MI-BCI PERFORMANCE

In [12] we proposed a literature survey dedicated to
the description of the factors impacting MI-BCI perfor-
mance, also called predictors. It has to be noted that we
used the classification accuracy as a measure of perfor-
mance, as most current MI-BCI studies do. This survey
enabled us to classify most of the predictors into three
categories representing higher-level cognitive concepts:

Category 1 - The user-technology relationship & the no-
tion of control: indeed, it appears that people who appre-
hend the use of technologies (and more specifically the
use of BCIs) and who do not feel in control, experience
more trouble controlling BCIs. This category gathers dif-
ferent concepts such as self-efficacy, mastery confidence,
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sense of agency, computer anxiety or self-reliance.

Category 2 - Attention: this category includes both atten-
tional abilities (trait) and attention level (state). The latter
can fluctuate with respect to different parameters such as
mood or motivation. Both these aspects of attention have
been repeatedly suggested to be predictors of BCI perfor-
mance, and more generally of learning performance.
Category 3 - Spatial Abilities: many predictors depicted
in the literature are related to motor abilities (e.g., 2-hand
coordination) or to the ability to produce mental images
(e.g., kinaesthetic imagination). These predictors can be
gathered under the label of “spatial abilities”, which are
described as the ability to produce, manipulate and trans-
form mental images [28].

As explained in [12], the involvement of Category I pre-
dictors can be explained by the fact BCI users were naive
[1], while the involvement of Category 2 and Category 3
predictors is relevant with the Ackerman model [2]. In-
deed, this model states that inter-individual differences
of performance in early stages of training are due to dif-
ferences in attentional (Category 2 predictors) and task-
specific (Category 3) abilities. Interestingly enough, this
model was already used by Neumann and Birbaumer to
interpret BCI performances in 2003 [20].

COGNITIVE MODEL - STEP #1: DESCRIPTION OF
THE COGNITIVE PROCESSES

While our survey in [12] enabled us to gather the BCI
performance predictors into 3 categories, it lacks a global
view of the relationships between these factors, of how
they interact to impact MI-BCI performance and of how
they can be influenced by external factors. We propose
to fill this lack in this section. It should be noted that
we only considered the factors that are supposed to im-
pact performance based on the MI-BCI literature: thus,
several relevant factors, that have not yet been studied by
the BCI community, are likely to be missing. They will
be investigated in the second phase of the construction of
this model. Also, since we are dealing with a model, it is
of course only a simplified representation of the complex
cognitive processes underlying MI-BCI tasks that will re-
quire formal validation, testing and updating in the future.
To provide a formal description of the cognitive processes
leading to good BCI performances, two steps had to be
completed. First, we described both the intrinsic factors
(i.e., users’ states and traits) which impact performance
as well as the connections between these factors. Then,
the extrinsic elements impacting the users’ states/traits,
and consequently their performance, as well as the nature
of this impact was formalised. These extrinsic elements
include design artefacts and different cognitive activities
or exercises. The next paragraphs are dedicated to the
description of both these stages.

Stage 1 - Building a Model of the Intrinsic Factors Influ-
encing MI-BCI Performance

The intrinsic factors included in this model correspond
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Figure 1: This network gathers the factors impacting MI-BCI performance, according to the literature and the extrinsic
elements that can influence these factors. The factors are represented by hexagons. The circles represent ways to measure
these factors: they are either neurophysiological markers or psychometric test scores. Moreover, vertically juxtaposed
hexagons as well as unidirectional arrows represent causal relationships (if factor A is above factor B, then factor A in-
fluences factor B). The plus and minus signs indicate if the causal relationship between 2 factors is positive or negative.
Concerning the links with extrinsic factors, solid lines represent a “direct influence on user state”, dashed lines correspond
to a “Help for users with a specific profile” while dash-dot lines represent extrinsic factors that can “Improve abilities”.
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on the one hand to users’ cognitive and motivational
states and on the other hand to users’ traits, i.e., person-
ality traits and malleable cognitive abilities that can be
trained. All these factors are represented as hexagons
in the model, see Figure 1. The circles represent ways
to measure these factors: they are either neurophysio-
logical markers or psychometric test scores. Moreover,
the plus and minus signs indicate if the causal relation-
ship between 2 factors is positive or negative. Subse-
quently, we briefly describe all the factors included in
the model. For more information about these factors or
the studies that revealed their relationship with MI-BCI
performance, please refer to our review of performance
predictors in [12]. This first model can be divided into 3
main parts, corresponding to the 3 categories of predic-
tors mentioned earlier. On the left of the model we can
find the factors related to the user-technology relationship
(in orange), in the middle, those related to attention (in
green) and to mood (in pink) and on the right, the factors
related to the ability to perform an MI-task (in blue). All
these factors can modulate the user’s ability, at a given
moment in time, to perform a MI task and to reach good
performance. Each of these blocks is described more pre-
cisely in the following paragraphs.

Factors pertaining to the user-technology relationship are
gathered on the left of Figure 1. Users showing low self-
reliance traits, according to the 16-PF5 test [8], tend to
perceive the task as more difficult [19]. Moreover, the
phenomenon of computer anxiety, that is to say the appre-
hension of the user towards BCI use, has been shown to
reduce users’ self-efficacy [29], which in turn will induce
a higher perceived difficulty [6] and a decrease in perfor-
mance. On the other hand, by reducing computer anxiety,
and consequently improving self-efficacy, it is possible
to improve users’ engagement towards the task and thus
their motivation and performance [1]. This can be ex-
plained by the fact that self-efficient users do not consider
difficulty as a threat but as a challenge which encourages
them to persevere to reach good performance [1]. In order
to reduce computer anxiety, the sense of agency should
be improved. Besides, a high sense of agency will also
increase the feeling of mastery of the system and conse-
quently reduce perceived difficulty, increase motivation
and performance [31]. Finally, tense(anxious) users tend
to have lower performances which is notably due to the
fact they devote a lot of resources to off-task considera-
tions (such as worrying about their performance) and thus
have fewer resources to allocate to focusing attention on
the task [6]. To summarise, in order to enable users to
reach good performance, training protocols should enable
them to experience a high sense of agency and a low level
of computer anxiety. Also, protocols should be adapted
to non self-reliant and highly tense users so that their per-
sonality does not hinder their progress.

Tiredness has a negative impact on motivation, focused
attention and mood. However, a good mood positively
affects motivation and performance [25]. Then, the
block in the middle comprises factors related to atten-
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tion. We have previously shown that engagement towards
the task as well as motivation are modulated by the user-
technology relationship and by users’ state (mood and
tiredness). Motivation as well as general attentional abil-
ities will determine how much focused attention is ded-
icated to the MI-BCI task. The more resources are allo-
cated to the task, the better the performance. One neuro-
physiological predictor has been shown to correlate with
attention state: the central gamma power (in attentional
networks related to executive control - [9]).

Finally, on the right of the model the elements represent
the various factors that have been suggested to be related
to the ability to perform MI tasks. Indeed, abstractedness
abilities correspond to the ability to produce mental im-
ages [8]. Also, visual-motor coordination is one aspect of
spatial abilities. Finally, active learners prefer “learning
by doing” [16] and might thus be more prone to produc-
ing kinaesthetic mental images, which have been shown
to be more efficient than visual ones [22]. These abilities
can be measured by different scores such as the Kinaes-
thetic Imagination score, the Visual-Motor Imagination
Score [32] or the Mental Rotation Score [30] (the latter
correlating with BCI performance [13, 10]). Moreover,
the mu rhythm could enable, to a certain extent, to mea-
sure the ability to perform motor-imagery. Indeed, [4]
have shown that a high mu amplitude at rest correlates
with motor-imagery based BCI performance.

Stage 2 - A First Attempt at a Cognitive Model of the Task

Once all the intrinsic factors had been integrated into a
network, we added the extrinsic elements that can be seen
as levers to optimise users’ performance, see Figure 1.
These extrinsic elements are mainly based on theoreti-
cal hypotheses. Their impact on the users’ states, traits
and performance are yet to be quantified. Thus, although
these links make sense from a theoretical point of view,
they should still be considered with caution. These ex-
trinsic elements are of two kinds: design artefacts and
cognitive activities. We determined three types of links
between the extrinsic elements and the intrinsic factors:
“Direct influence on user state” (solid lines): this link
connects extrinsic elements in the “design artefacts” cat-
egory to intrinsic states (mainly). These extrinsic fac-
tors are suggested to influence the user’s state and, con-
sequently, are likely to have a direct impact on perfor-
mance. For instance, proposing a positively biased feed-
back has been suggested to improve (novice) users’ sense
of agency [17]. “Help for users with a specific profile”
(dashed lines): this link connects extrinsic elements to
traits; they indicate that these extrinsic elements could
help users who have a specific profile to improve their
performance. For instance, proposing an emotional sup-
port has been suggested to benefit highly tense users [26].
“Improved abilities” (dash-dot lines): finally, this link
connects extrinsic elements in the “cognitive activities”
category to abilities that could be improved thanks to
these activities. For instance, attentional neurofeedback
has been suggested to improve attentional abilities [34].
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The extrinsic elements related to the experimental de-
sign that theoretically impact users’ state are listed here-
after. First, providing novice users with a positively bi-
ased feedback [17] is thought to improve their sense of
agency and consequently decrease perceived difficulty
and increase their motivation. Then a transparent map-
ping as well as the priority, consistency and exclusiv-
ity principles [31] all aim to improve users’ sense of
agency. Moreover, providing users with emotional sup-
port and social presence could improve their motivation
[26]. Emotional support can be provided as smileys or
avatars, but not only. It is also important not to forget
the role of the therapist/researcher/experimenter, notably
concerning: (1) the demystification of the BCI technol-
ogy to reduce a priori computer anxiety, through scien-
tific mediation and communication with the media, (2)
the writing of informed-consent forms and explanations,
that should be clear and informative, and provide an ob-
jective estimation of the benefit on risk balance and en-
able to regulate any form of hope that may be gener-
ated [24], and (3) the social presence and trust relation-
ship with the user, which are essential in facilitating the
learning process [15]. Finally, adapting the difficulty and
proposing progressive difficulty has also been suggested
to improve performance [33]. On the other hand, medi-
tation, emotional support and social presence have been
suggested to help highly tense and non-autonomous users
[27]; while cognitive support (i.e., guidance to find a
good strategy) could help users to produce mental-images
that the system can recognise efficiently. Finally, the last
type of links (dash-dot links) connects cognitive activi-
ties/exercises to the specific abilities they could benefit.
Indeed, video-games, meditation and attentional neuro-
feedback have been suggested to improve attentional abil-
ities [5]; while video-games and spatial-ability exercises
may improve the ability to create mental-images.

FUTURE WORK

The model proposed comprises intrinsic factors impact-
ing BCI performance, their relationships, as well as ex-
trinsic factors that can be manipulated to modulate BCI
performance. This model has been built based on the
BCI and skill acquisition literature. As such, it represents
the first phase in the development of a cognitive model
[7], here for MI-BCI tasks. The next phases will con-
sist first in making assumptions about the missing fac-
tors that should be included. For instance, our model in-
cludes factors also present in the ARCS (Attention Rel-
evance Confidence and Satisfaction) model [14], notably
attention and confidence, but relevance and satisfaction
are missing. Yet, they may prove meaningful as well
for MI-BCI. Then, with all the factors and their rela-
tionships identified, we will have to computationally im-
plement this model, e.g., using a Bayesian network, and
thus to determine its parameters (i.e., the probabilities for
each factor and the weights -impact- of each factor on
the BCI performance). Ideally, this could be estimated
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from data. Finally, we will have to assess this compu-
tational model based on unseen BCI experiments data.
It will also be worth considering alternative performance
metrics, beyond classification accuracy [18]. This could
indeed bring additional insights about MI processes.

CONCLUSION

In order to bring BCIs out of the lab, both their relia-
bility and usability should be enhanced. To this end, all
their components should be considered: EEG caps should
be both reliable and aesthetic [23]; algorithms should en-
able the improvement of BCI robustness and reduction of
the calibration time [35]; the user training should be im-
proved [12]. In this paper, we focused on this last axis.
Indeed, we have provided the first theoretical cognitive
model of MI-BCI performance. This is the first step to-
wards a full model of MI-BCI tasks, which appears nec-
essary to fully understand and then improve MI-BCI user
training approaches, as well as to inform MI-BCI signal
processing tools. In the future, we are going to try to
complement this model with additional relevant factors,
start first computational implementations of it and collect
additional data to make that implementation possible. We
hope other BCI researchers could join us in that endeav-
our to contribute to make the full model a reality.
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