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D. Hübner1, T. Verhoeven2, P.-J. Kindermans3, M. Tangermann1

1 Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools,
Dept. of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
2 Electronics and Information Systems, Ghent University, Ghent, Belgium

3 Machine Learning Group, Berlin Institute of Technology, Berlin, Germany

E-mail: david.huebner@blbt.uni-freiburg.de, michael.tangermann@blbt.uni-freiburg.de

ABSTRACT

An ideal decoder in brain-computer interfaces (BCIs)
would not require any calibration period and instead start
with the actual online application right away. While
we cannot reach this goal yet, two novel unsupervised
classification methods for BCIs based on event-related
potentials (ERPs) of the electroencephalogram (EEG)
have recently been proposed which do not require a cal-
ibration session. The first method estimates the pro-
jection weights of the classifier heuristically using an
expectation-maximization approach, while the second
utilizes slight changes of the ERP paradigm and determ-
inistically learns from label proportions. As both un-
supervised methods have pros and cons, we propose to
combine their strengths in a novel MIX approach. Un-
der realistic unlabelled conditions, we compare the online
performances of the mixed and the two original methods,
finding that for our data recorded during visual spelling
with 6 subjects, the mixed approach reveals strong per-
formance gains. Users got perfect selection accuracy
after an average of only 2 minutes of online usage.

INTRODUCTION

In Brain-Computer Interfaces (BCI) based on event-
related potentials (ERP), the user is presented with a pre-
defined set of different control commands. For example
in the original P300-speller [1], a BCI for spelling text,
these options are symbols of the alphabet highlighted on
a screen. The user is asked to focus on the symbol that
he or she wants to spell. When this target symbol is high-
lighted, the brain of the user elicits a different brain re-
sponse compared to the case when other non-target sym-
bols are highlighted. The decoder in the BCI has the task
to classify the recorded ERP responses as target or non-
target and subsequently detect the desired symbol. In this
way, the user can spell words symbol by symbol, solely
by attending to the symbols on the screen.

To discriminate between target and non-target responses
in the brain, machine learning (ML) techniques are often
used [2, 3]. With ML, previously recorded ERPs are used

by the classifier to learn how to discriminate between the
two classes of responses. Newly recorded ERPs are then
processed by this classifier to assign them to one of these
classes. A common ML technique used in BCIs is linear
discriminant analysis (LDA), which searches for a one-
dimensional projection x ·w of the ERP response signal
features x in order to assign the target label t+ to the re-
sponse when x ·w ≥ 0 and label t− otherwise.

It was shown that ERP-BCI data follows a Gaussian dis-
tributed with class-wise means µ+ and µ−, and shared
covariance matrix Σs [4]. Under this assumption, the op-
timal projection w∗ in LDA can be computed as follow-
ing [4]:

w∗ = Σ−1
s

(
µ+ − µ−

)
. (1)

Training the classifier comes down to estimating the val-
ues of the class-wise mean responses µ+, µ− and the
shared covariance Σs. In a traditional supervised scen-
ario, labelled data would be collected during a calibration
session on which these three quantities can directly be es-
timated by using the sample statistics. In unsupervised
learning, no label information are present which makes it
a more challenging learning problem.

It can be shown that if the means are estimated cor-
rectly, then replacing the shared covariance by the pooled
covariance Σ, i.e. the covariance computed on all data
disregarding label information, leads to the same direc-
tion of the projection w. This follows from the equival-
ence of least square regression with rescaled outputs and
LDA [5]. No label information are needed to estimate the
pooled covariance matrix.

In BCI systems, the data is usually high dimensional and
the amount of data recorded during calibration is low. It
was shown that this makes the estimation of the covari-
ance matrix less accurate [4] This can be compensated
for by introducing a regularization term to obtain the
(shrinkage)-regularized covariance matrix ΣR

ΣR = (1− λ)Σ + λI (2)

where I is the identity matrix and λ is the regularization
parameter.
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The learning problem in the unsupervised case now boils
down to estimating the class means µ+ and µ− and the
shrinkage parameter λ. Everything else can be computed
without using label information.

To compute the class means, we recently proposed to
combine two unsupervised methods [6]. The first method
is an expectation-maximization (EM) algorithm which
estimates the class means to maximize the likelihood of
the recorded data [7]. It is a heuristic which relies on a
good random initialisation to obtain accurate class estim-
ates.

The second method is based on the learning from label
proportions (LLP) concept [8]. In this approach, the train
of stimuli is divided in two interleaved sequences with
different proportions of targets and non-targets. The av-
erage response in these two sequences is calculated and
used together with the known proportional composition,
to set up two linear equations. The two unknowns are
the class means. Solving the linear problem provides an
estimate of these class means. We presented the applic-
ation of the LLP method in BCI recently [9]. In con-
trast to the EM method, there is no variance in the res-
ult as there are no randomly initialized parameters in this
method. Furthermore, the estimation of the mean ERP
response is guaranteed to converge to the true solution as
more data is recorded [9]. This convergence slowly leads
to an increasing classification performance.

Two different options have been previously used to com-
pute the regularization parameter λ. An analytical for-
mula for λ has been presented by Ledoit and Wolf [10],
see Blankertz et al. for an application in BCI [4]. An-
other approach directly optimized λ as part of the EM-
algorithm [11].

The EM-means and LLP method for unsupervised ERP
classification clearly show complementary strengths and
weaknesses [6]. We proposed to exploit the different
strengths by combining their individual mean estimations
in a data-driven fashion. This resulted in a third method
which we call MIX. We previously evaluated this ap-
proach by comparing LLP, EM and MIX by simulating
an online experiment on existing visual ERP data [6]. In
this previous study all three classifier used the analytic
formula by Ledoit and Wolf for computing λ. To have
comparable results to the original EM-method, we used
the direct regularization of the EM-method in this current
study, while both other methods use the analytic formula
to find regularization parameter λ. The following table
shows an overview of the three different methods used in
this paper.

Table 1: Overview of classification methods

Method Mean estimation λ estimation
LLP Using known proportions Ledoit&Wolf
EM Maximizing data likelihood Direct (EM)
MIX Combining LLP and EM Ledoit&Wolf

Previous simulations showed that the MIX method sig-
nificantly outperformed both other methods [6]. How-
ever, as simulation on previously recorded data are pos-
sibly prone to overfitting, this work presents the first on-
line evaluation of the MIX method with 6 subjects and its
comparison with the LLP and EM algorithm. The goal
of this work is to compare the three methods under equal
conditions on unlabelled and unseen data. With this com-
parison, we hope to contribute further to the integration
of unsupervised classification methods in calibrationless
BCIs and as such to improve the usability of these sys-
tems.

MATERIALS AND METHODS

The MIX model

In the MIX method, the estimation of the class-wise
means is proposed as a mixing of the estimation found
with the LLP and EM method:

µ̂(γ) = (1− γ)µ̂EM + γµ̂LLP (3)

where µ̂ denotes the new estimator of the mean target
or non-target response, µ̂EM and µ̂LLP denote existing
estimators and γ ∈ [0, 1] is the mixing coefficient, indic-
ating the weight given to each estimator. See our previous
work about LLP [9] and the EM-algorithm [7] for more
details about these two unsupervised classification meth-
ods.

To minimize the expected mean squared error between
the estimator value µ̂ and the unknown true parameter
value µ, we proposed an analytical solution for the mix-
ing coefficient γ∗ [6]:

γ∗ =
1

2

(∑
d V ar

[
µ̂EM,d

]
−
∑

d V ar
[
µ̂LLP,d

]
‖µ̂EM − µ̂LLP ‖2

+ 1

)
(4)

Here, V ar
[
µ̂(·),d

]
denotes the variance on the estima-

tion of the dth entry of the estimated mean µ̂. This vari-
ance is a measure for the uncertainty on the estimated
value. The higher the uncertainty on the output of the
EM method, the higher the weight given to the output of
the LLP method in the MIX method and vice versa.

Implementation

In practice, the original EM algorithm and the one used
in the mean estimation of the MIX method are different
in terms of the number of parallel initialisations. It is
known that the EM-algorithm requires a good random
initialisation and therefore, it profits from many paral-
lel initialisations. A number of 5 was used before in the
EM algorithm [11]. In contrast, the MIX method in our
previous paper only used 1 initialisation of the EM al-
gorithm [6]. We keep these values to make the results
comparable.
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Experiment

Six healthy subjects (3 female, aged 22-31) performed a
visual copy-spelling task. The EEG study was approved
by the Ethics Committee of the University Medical Cen-
ter Freiburg and the subjects gave informed written con-
sent prior to the beginning of the session. They were
compensated with 8 Euros per hour. The experiment was
almost identical with the one described in [9]. A short
overview is provided here. Each subject was asked to
spell the 35 characters: ”FRANZY JAGT IM TAXI DURCH
DAS ” three times. Each time, a different classifier (MIX,
LLP, or EM) was trained from scratch such that each sub-
ject used each classifier exactly once. With 6 subjects,
each possible order of the three different classifiers was
used once to reduce order effects, see Fig. 1 for a schem-
atic overview.

Figure 1: Experimental structure. Each subject per-
formed three copy-spelling blocks with each of the three
classifiers in varying order. Each block consisted of 35
characters.

The classifiers were retrained after each character util-
izing the complete data set up to that point. Label in-
formation were not used for the training of the classifiers
at any point in time, they were solely used to assess the
performance. To spell one character, a train of 68 high-
lighting events with a stimulus onset asynchrony (SOA)
of 250 ms was presented. An example of a highlighting
event is shown in Fig. 2. Classifier outputs for each high-
lighting event and symbol were summed up and the sym-
bol with the highest sum was selected and shown to the
user.

Figure 2: Spelling Interface. The ’#’ symbols serve as
visual blanks, meaning that they are always non-targets,
and are part of the LLP decoding strategy.

EEG and Feature Extraction

EEG signals from 31 passive Ag/AgCl electrodes (Easy-
Cap) were recorded, which were placed approximately
equidistantly according to the extended 10–20 system,
and whose impedances were kept below 20 kΩ. All
channels were referenced to the nose. The signals
were registered by multichannel EEG amplifiers (Brain-
Amp DC, Brain Products) at a sampling rate of 1 kHz.
The data was then bandpass filtered between 0.5 and
8 Hz and downsampled to 100 Hz. Epochs were win-
dowed to [-200, 700] ms relative to the stimulus onset
and corrected for baseline shifts observed in the interval
[-200, 0] ms. Per channel, the mean amplitudes of six
intervals ([50, 120], [121, 200], [201, 280], [281, 380],
[381, 530] and [531, 700] ms) were finally computed as
features. This resulted in a total of 6 · 31 = 186 features.

Performance estimations

Two performance metrics were used to evaluate the per-
formance of the three different classifier during the on-
line experiment. First, we looked at how well single tar-
gets could be discriminated from non-targets. This was
assessed in terms of area under the curve (AUC) as a
threshold-independent robust performance measure. The
AUC values can range between 0 and 1, with a theoret-
ical chance level of 0.5. An AUC value of 1 indicates
perfect separation between the two classes, i.e. the clas-
sifier can correctly tell for each single stimulus whether
it was attended or not. To compute this score during the
online experiment, the unsupervised classifiers were re-
trained after each character and applied to the complete
previous data up to the current point of the experiment.
The given label information were then used to compute
the AUC. Please note that overfitting is not a problem in
this context, because the classifiers do not use the label
information for training.

Second, we looked at the selection accuracy, i.e. to which
percentage a user could spell the intended characters. To
obtain more robust estimates, this metric was evaluated
on sub-blocks of 5 trials, i.e. on characters 1-5, on char-
acters 6-10, and so on.

In addition, we performed an offline analysis after the ex-
periment to assess the overall quality of the data and to
judge whether there is an interaction between classific-
ation method and classification performance. This was
done by training and testing a supervised shrinkage-LDA
classifier [4] in a 5-fold chronological cross-validation.
This is the same classification method as described be-
fore – only that all quantities are estimated with the (su-
pervised) sample statistics. The offline analysis was done
individually for each subject and block.

RESULTS

First, we assessed the quality of the data of the online re-
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cordings by looking at the grand average ERP response
shown in Fig. 3. A strong early negativity with a peak
around 160 ms in the occipital area is observable in target
responses while the non-targets only have a very weak
rhythmic response. Furthermore, a central positivity ex-
ists for targets, which is however smaller in amplitude
and more washed out than the early negativity. The
strongest class discriminant information comes from the
early visual component. This is in accordance with earlier
studies using the same highlighting scheme [9, 12].

O1
Cz

Figure 3: Grand average (N=6) ERP plot. Top row:
Average responses evoked by visual target (blue) and
non-target (green) stimuli in the occipital channel O1
(thick) and the central channel Cz (thin). The signed r2

values for channels O1 and Cz over time are provided
by two horizontal colour bars with the same scale as
in bottom row scalp plot. Middle rows: Scalp plots
visualising the spatial distribution of mean target and
non-target responses within four selected time intervals
marked by blue/pink shading. Bottom row: Scalp plots
with signed r2 values indicate spatial areas with high
class-discriminative information.

Classifier influence on the data quality

To quantify the quality of the ERP responses and judge
whether there is an interaction between classification
method and performance, a supervised classifier was ap-
plied in an offline analysis after the experiment. The
resulting target vs. non-target AUC performances were
sorted according to the classifier used in each block and
are shown in Fig. 4. One can see that the quality of the
data is very high with all subjects having an AUC above
95 %. This is most likely due to the high saliency of
the optimized stimuli [12]. In addition, a paired t-test
between the supervised classification values of the three
methods showed no significant differences. Hence, we
cannot reject the null hypothesis that there is no interac-

tion between classifier and performance. This means that
we observed no effect of the feedback on the user per-
formance probably due to the small sample size. Other
studies did observe this effect [13, 14].

MIX EM LLP
Supervised performance sorted by data blocks
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Figure 4: Supervised offline cross-validation perform-
ance sorted by the classification method used per
data block. Bars show the mean ± std of the super-
vised performances for each sentence sorted according
to the decoding method. Individual dots and numbers
indicate the subject numbers. MIX = Mixing method,
EM = Expectation-maximization, LLP = Learning from
label proportions.

Next, we compared the performance of the three different
classifiers in the online experiment. Fig. 5 shows the av-
erage and individual AUC performances for all subjects
over time. While LLP starts at relatively high level and
slowly improves over time, the EM algorithm behaves di-
chotomous: depending on its initialisation, it can either
achieve a very high performance early on or it can fail to
improve over a prolonged time period. The MIX method
combines the strengths of both decoders by starting on
a relatively high level and quickly finding a very good
projection with almost perfect decoding performance by
utilizing the complementary information of the LLP.
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Figure 5: Online decoding performance over time. The
y-axis shows the AUC of separating target from non-
target epochs for each decoder. Thick line depicts the av-
erage performance while thin lines show results for each
individual subject.
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Another way of looking at the decoding performance is
by considering the number of correct character selections.
One can see in Fig. 6 that the MIX method slightly out-
performs the LLP and that both these methods outper-
form the EM-method by a big margin. This is due to the
two sentences in which the EM-algorithm found the right
projection only relatively late, see again Fig. 5.
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Figure 6: Online character selection accuracy for each
decoder. The y-axis shows the percentage of correctly
classified characters for sub-blocks of 5 characters each.

When looking at the correctly and incorrectly spelled
characters of all three methods for each subject in Fig. 7,
similar results are visible. After a short learning phase of
2-8 characters corresponding to an average of around 2
minutes of training time, users gain perfect control with
the MIX method. Depending on the initialisation, the
user can get very good control with the EM-algorithm
at an earlier or later stage of the experiment. The LLP
determines many characters correctly already after a few
trials, but fails to display a very high reliability in the later
stage.
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Figure 7: Correctly (yellow) and incorrectly (blue)
spelled characters of all three methods in the online
experiment.

DISCUSSION

The goal of this study was to show that the unsupervised
MIX method can work in an online scenario and compare
it to the EM and LLP method. We found that the MIX
method could quickly and reliably decode the users’ in-
tention for all 6 subjects clearly outperforming both other
methods. Remarkably, we observed almost perfect single
epoch classification accuracy, meaning that the classifier
could assign almost each highlighting event correctly as
being attended or not. Here, the unsupervised classifier
also profited from the very salient highlighting scheme.

On the other hand, spelling speed was not the focus of
this work. Indeed, it was rather low with around 2.4 char-
acters per minute after the initial training phase. This is
due the high and constant number of 68 epochs per trial
and long SOA of 250 ms. A moderate single epoch classi-
fication accuracy is already sufficient to correctly decode
most characters with 68 highlighting events per char-
acters. Hence, the additional performance in the MIX
method is only slightly rewarded in terms of spelling
speed or accuracy in this set-up. However, it could eas-
ily be boosted by implementing dynamic stopping [15],
where the classifier stops a trial when he reaches a pre-
defined certainty threshold.

Results from the online study showed that an average of
around 2 minutes of online training time is sufficient to
obtain perfect control over the BCI with the MIX method.
Remarkably, this result was achieved without prior calib-
ration or transfer learning. And even the data from the
initial training phase can be corrected, when a more ad-
vanced classifier from a later stage of the experiment is
re-applied to the initial data. In this way, initial mistakes
due to limited data can be post-hoc corrected in unsuper-
vised classifiers [11]. Hence, a potential user could dir-
ectly start spelling with this MIX method when trusting
the re-analysis.

CONCLUSION

The online ERP study showed that the MIX method is
combining the strength of the probabilistic EM algorithm
and the deterministic LLP approach. This opens the door
for short ramp-up times combined with a very high reliab-
ility. Further desirable properties like the lack of calibra-
tion phase, the continuous learning, the guaranteed con-
vergence and the possible post-hoc analysis, make this
method an attractive alternative to traditional supervised
methods. Future work will go towards increasing the us-
ability of the system by increasing the information trans-
fer per time. This can be achieved by implementing an
SOA reduction, dynamic stopping, transfer learning, ad-
aptive channel selection and using language models.
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