
P300 SPELLER IMPLEMENTATION USING WEB DEVELOPMENT

LANGUAGES

R.E.S. Harnarinesingh1 and C.S. Syan2

1 Department of Electrical and Computer Engineering, The University of the West Indies, St.

Augustine, Trinidad

2 Department of Mechanical and Manufacturing Engineering, The University of the West Indies, St.

Augustine, Trinidad

E-mail: randy.harnarinesingh@sta.uwi.edu

ABSTRACT: Brain-computer Interface (BCI)

applications present significant assistive potential for

disabled individuals. BCI software is typically

implemented on desktop and laptop computers. Mobile

platforms such as smartphones and tablets however

possess comparable processing power to desktops and

laptops. Recent studies have investigated BCI

implementation using mobile phones [1, 2]. However,

the programs developed in these studies are intended for

specific platforms and recoding is required to

implemented the programs on other mobile devices.

This paper investigates the implementation of the P300

Speller Paradigm using web development languages.

This provides an avenue for universal implementation

of the paradigm without the need for recoding for

specific platforms. The developed paradigm was tested

to ensure that the temporal properties of the paradigm

complied with the required timed delays. The testing

showed a maximum mean error of 5.17ms and standard

deviation of 11.23ms for 100ms temporal segments.

This work demonstrates that web languages are a

promising avenue for the implementation of BCI

paradigms. However, modalities for increasing timing

compliance will be explored. Further work will also

investigate incorporating data collection and signal

processing into the developed program to implementing

training and testing sessions for full BCI

implementation.

INTRODUCTION

Brain-Computer Interfaces (BCIs) allow user control

of external devices using inherent brain activity. BCI

paradigms require users to perform tasks which

represent commands for external devices. For example,

some paradigms can require users to gaze at a left arrow

to issue motive commands to a driven wheelchair [3].

BCIs are responsible for recording the raw brain activity

and processing the signals to interpret the subject

command. This involves multiple hardware and

software stages and the anatomy of the standard BCI is

presented in Fig. 1.

Figure 1: Anatomy of the standard BCI.

BCIs can be implemented using a host of paradigms.

These paradigms include the P300 Speller [4], Steady

State Visually Evoked Potentials (SSVEP) [5], Slow

Cortical Potentials (SCP) [6] and Motor Imagery (MI)

[7]. BCIs have been employed for a host of assistive

applications such as wheelchair navigation [8] and

keyboard control [9].

BCIs are typically implemented on desktop and

laptop computers. Mobile platforms such as

smartphones and tablets however possess comparable

processing power to desktop and laptop machines whilst

being smaller and more affordable. Recent studies have

investigated BCI implementation using cell phones [1,

2].

These studies however implemented programs on

select phone models using device specific software

libraries and operating systems. This presents a hurdle

to implementing the developed programs on other

mobile platforms since code would have to be rewritten

to be compatible on other devices.

This paper investigates the feasibility of

implementing the P300 Speller Paradigm using web

development languages. The expression of the P300

Speller in web development languages allows for

implementation on all devices with web browsers

regardless of operating systems. These devices include

desktops, laptops, tablets and smartphones. This work

however treats with the presentation aspects only.

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

MATERIALS AND METHODS

The development, testing and analysis was

performed on a Dell Inspiron17R laptop with an Intel®

Core™ i7-4500U CPU clocked at 1.8GHz with 8.00GB

of Random Access Memory (RAM). The browser used

for laptop testing was Google Chrome Version

55.0.2883.87m. The mobile phone used for testing was

the Digicel DL1 manufactured by TCL.

P300 SPELLER DEVELOPMENT

This section provides background on the P300

Speller Paradigm as well as details of the

implementation of the P300 Speller using web

development languages.

P300 SPELLER PARADIGM

The seminal work on P300-based BCIs was done by

Farwell and Donchin [10]. Various modifications to the

P300 Speller have since been implemented such as

alterations to the paradigm character set and stimulus

delivery patterns.

The P300 Speller Paradigm itself is an oddball

paradigm in which rare target stimuli are presented

amongst frequently delivered non-target stimuli [11].

The Speller Paradigm requires subjects to view a single

matrix element during the randomly ordered flashing of

all matrix elements [12]. When a matrix element the

subject is focusing on is flashed, the P300 response is

evoked and the detection of the P300 is used to identify

user focus [13]. The P300 Speller has been used for a

host of practical BCI applications [8].

WEB DEVELOPMENT LANGUAGES

The sequential operation of the P300 Speller is

embodied in the flow chart of Fig. 2. This flow chart

represents the specific case of 100ms flash time and

Inter-Stimulus Interval (ISI).

Figure 2: P300 Speller Paradigm Flow Chart

There are 3 main client-side programming languages

that are used to implement webpages. They are Hyper

Text Markup Language (HTML) [14], Cascading Style

Sheets (CSS) [15] and JavaScript (JS) [16]. There are

also server-side programming languages that are

utilized in live websites. However, the P300 Speller

developed in this work is intended to be used offline

without the need for an active internet connection. This

work therefore does not involve server-side

programming languages.

The client-side languages each perform different

functions as it relates to webpages. Some of their

functions are pictured in Fig. 3.

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

Figure 3: Functions of client side programming

languages

There are some elements of the P300 Speller that do

not vary with time. These time-static elements such as

background colour and button positions can be realized

using HTML and CSS. However, it can be seen from

Fig. 2. that the P300 Speller also has time-dynamic

elements such as element colour changes and timing

delays. The only client-side language capable of

expressing time-dynamic behaviour is JS. This work

also uses JQuery [17] which is a JS Library capable of

shorthand coding conventions.

PROGRAM IMPLEMENTATION

This section presents some code snippets and

technical information regarding the developed program.

The P300 Speller was implemented using HTML, CSS

and JS.

The matrix of P300 Speller elements was realised as

a table in HTML as shown in Fig. 4. The HTML code

for the first row of Speller element is presented below.

The remaining 5 rows denoted by the vertical ellipsis

are identical to tow 1 besides the text and HTML ids.

<table>

<tr>

 <td id="A">A</td>

 <td id="B">B</td>

 <td id="C">C</td>

 <td id="D">D</td>

 <td id="E">E</td>

 <td id="F">F</td>

</tr>

⁝
</table>

Figure 4: P300 Speller Paradigm HTML code snippet

Each element of the P300 Speller matrix was given a

unique id label in HTML. This was done to enable easy

targeting by the CSS for character flashing. The CSS

code snippet that defines the margins and background-

foreground colour for the P300 elements is presented in

Fig. 5.

table {

color: white;

background-color: black !important;

margin-left: auto;

margin-right: auto;

}

td {

width:120px;

height:120px;

font-size:6em;

text-align: center;

font-family: Arial;

}

Figure 5: P300 Speller Paradigm CSS code snippet

The JS code snippet that was responsible for the

time dynamic aspects of the P300 Speller Paradigm is

showed in Fig. 6.

function flash() {

i=0;

if(i<c) {

var flash_index = new_chars[i];

light_unlit(flash_index,1);

setTimeout(

function() {

 light_unlit(flash_index,0);

 setTimeout(flash,ISI);

}

,flash_time);

}

i++;

}

Figure 6: P300 Speller Paradigm JS code snippet

The ‘new_chars’ variable with length ‘c’ is defined

outside of the function and contains the total list of

characters to be flashed based on the number of trials.

The “light_unlit” function flashes a P300 matrix

element if the second function input is ‘1’ and reverts

the element base colour to white if the second input is

‘0’.

The JS language does not contain a standard delay

function that halts code execution for a predefined

period. The paradigm timing is therefore implemented

using the “setTimeout” JS function. The “setTimeout”

function waits for a certain time before running some

specified code. Recursion is then employed to ensure

HTML

Content

Layout

Tables

Paragraphs

Images

Forms

CSS

Colour

Font size

Positioning

Margins

Alignment

JS

Dynamic Interaction

Control HTML properties

Control CSS properties

CLIENT SIDE LANGUAGES

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

that the code progresses to highlight and then revert

character colours until the total character set is flashed.

The developed P300 Speller as viewed on a laptop is

shown in Fig. 7.

Figure 7: P300 Speller on Laptop Chrome Browser

A mobile version of P300 Speller was also

developed and is viewed in Fig. 8. This is a modified

P300 Speller with a smaller command matrix intended

for better viewing on a mobile platform. The commands

are tailored for the control of a vehicular platform which

is a common P300-based BCI application.

Figure 8: P300 Speller on Android Chrome Browser

RESULTS

The developed paradigm was executed on the

Google Chrome Browser for Windows. The paradigm

also successfully ran on Internet Explorer and Mozilla

Firefox however Chrome was preferred due to previous

author experience with the browser. A scaled down

P300 Speller was also developed for Chrome on

Android to highlight the feasibility of the program for

mobile platforms.

The developed program accurately implemented the

stimulus sequencing required of the P300 Speller.

However, stimulus flash times and ISIs were obtained to

determine compliance with the stimulus timing

requirements. The PC monitor was therefore recorded

using a software screen recorder which ran concurrently

with the paradigm. The recording was done at 60 frames

per second (fps) which coincides with the screen refresh

rate. The recorded videos were then imported into

MATLAB and decomposed into individual frames

which were analysed to determine the stimulus flash

times and ISI.

Fig. 9 and Fig. 10 presents examples of the image

processing that was done to determine where a stimulus

was flashing or base colour. The technique used utilised

the non-flashing case as a subtractive reference image.

The result image for subtraction from the non-flashing

case is therefore a blank image output. The result for

subtraction from the screen capture of the flashing case

is a non-zero image. The latter result was therefore

discriminated against the former using a basic RGB

intensity count feature.

Figure 9: Image subtraction for ISI period

Figure 10: Image subtraction for stimulus highlight

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

The P300 Speller was run for 5 trials which entailed

180 individual character flashes. The frame analysis

therefore testing two main timed elements: (1) 180 flash

times and (2) 179 ISIs. The flash times and ISIs were

collected for each session. This was repeated for 30

experiments in total and the average times were

obtained.

Fig. 11 presents the histogram of stimulus highlight

times in terms of number of frames for a single session.

Fig. 12 shows a histogram of ISIs for a representative

session. It is worth noting that 6 frames are equivalent

to the programmed time of 100ms.

Figure 11: Histogram of stimulus flash times

Figure 12: Histogram of ISIs

The global mean and standard deviation of stimulus

flash times and ISIs across all testing sessions are

presented in Table 2.

Table 2: Programmed and actual timings for P300

Speller

Feature
Programmed

Timing

Mean

observed

time

Error

Mean SD

Flash

Time

100ms 94.83ms 5.17ms 10.65ms

ISI 100ms 96.17ms 3.83ms 11.23ms

DISCUSSION

This work investigated the implementation of the

P300 Speller using web development languages. The

developed paradigm was executed on both laptop and

Android variants of the Google Chrome browser. The

paradigm was captured and analysed to determine the

compliance of the programmed timing delays. This was

useful in evaluating time skew due to computational

overheads and determining if time skew was significant.

The results revealed that the actual flash times and ISIs

deviated at most 5.17ms from the programmed time.

These timing errors are expected in any time-based BCI

paradigm. However, their magnitudes in this work were

not detrimental to the success of the paradigm.

The successful implementation of the P300 Speller

using web development languages provides a useful

proof of concept for BCI implementation in a web

browser. In addition, the advent of Android compatible

EEG headsets [18] provides a pathway for full

implementation of a BCI using mobile platforms such

as smartphones and tablets.

There are also benefits to coding the P300 Speller in

web development languages such as HTML/CSS/JS

instead of device standard languages such as C++ and

Java. Web pages can be executed on all modern devices

with a web browser. This averts the requirement for any

special library or virtual runtime and promises universal

execution. This allows the benefit of a single program

which can run on every operating system that

implements a web browser without considerations for

library and hardware constraints.

CONCLUSION & FUTURE WORK

This paper investigated the implementation of the

P300 Speller Paradigm using web development

languages. The results demonstrate that the developed

paradigm complied with the timing delays required of

the P300 Speller. The paradigm was executed

successfully on both a laptop and Android smartphone.

This paper therefore provided an important proof of

concept for web browser based BCI paradigm

presentation.

However, there are possible avenues of future work.

The developed paradigm must be integrated to data

collecting and signal processing elements to allow for a

full BCI implementation that included training and

testing sessions. Virtual PC COM ports provide an

avenue for this integration. This would allow for the

communication of data between JS and data collection

programs in MATLAB for example. In addition, the

user interface can be improved to allow for selectable

parameters. This can be further expanded to allow for a

testbed based approach.

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

REFERENCES

[1] Wang Y-T, Wang Y, Jung T-P. A cell-phone-

based brain–computer interface for

communication in daily life. Journal of neural

engineering. 2011;8(2):025018

[2] Campbell A, Choudhury T, Hu S, Lu H,

Mukerjee MK, Rabbi M, Raizada RD.

NeuroPhone: brain-mobile phone interface using

a wireless EEG headset, in Proc. Proceedings of

the second ACM SIGCOMM workshop on

Networking, systems, and applications on mobile

handhelds, 2010, 3-8

[3] Pires G, Castelo-Branco M, Nunes U. Visual

P300-based BCI to steer a wheelchair: A

Bayesian approach, in Proc. 30th Annual

International Conference of the IEEE

Engineering in Medicine and Biology Society,

658-661

[4] Krusienski DJ, Sellers EW, Mcfarland DJ,

Vaughan TM, Wolpaw JR. Toward enhanced

P300 speller performance. Journal of

Neuroscience Methods. 2008;167(1):15-21

[5] Zhu D, Bieger J, Molina GG, Aarts RM. A

survey of stimulation methods used in SSVEP-

based BCIs. Computational intelligence and

neuroscience. 2010;2010(1):1-13

[6] Hinterberger T, Weiskopf N, Veit R, Wilhelm B,

Betta E, Birbaumer N. An EEG-driven brain-

computer interface combined with functional

magnetic resonance imaging (fMRI). IEEE

transactions on biomedical engineering.

2004;51(6):971-974

[7] Scherer R, Lee F, Schlogl A, Leeb R, Bischof H,

Pfurtscheller G. Toward Self-Paced Brain-

Computer Communication: Navigation Through

Virtual Worlds. IEEE transactions on biomedical

engineering. 2008;55(2):675-682

[8] Iturrate IÃ, Antelis JM, Kubler A, Minguez J. A

noninvasive brain-actuated wheelchair based on

a P300 neurophysiological protocol and

automated navigation. IEEE Transactions on

Robotics. 2009;25(3):614-627

[9] Scherer R, Muller GR, Neuper C, Graimann B,

Pfurtscheller G. An asynchronously controlled

EEG-based virtual keyboard: improvement of the

spelling rate. IEEE transactions on biomedical

engineering. 2004;51(6):979-984

[10] Farwell LA, Donchin E. Talking off the top of

your head: toward a mental prosthesis utilizing

event-related brain potentials.

Electroencephalography and clinical

Neurophysiology. 1988;70(6):510-523

[11] Garcia-Larrea L, Lukaszewicz AC, Mauguiere F.

Revisiting the oddball paradigm. Non-target vs

neutral stimuli and the evaluation of ERP

attentional effects. Neuropsychologia.

1992;30(8):723-741

[12] Segalowitz SJ, Barnes KL. The reliability of

ERP components in the auditory oddball

paradigm. Psychophysiology. 1993;30(5):451-

459

[13] Guger C, Daban S, Sellers E, Holzner C, Krausz

G, Carabalona R, Gramatica F, Edlinger G. How

many people are able to control a P300-based

brain-computer interface (BCI)? Neuroscience

letters. 2009;462(1):94-98

[14] Frain B. Responsive web design with HTML5

and CSS3, Packt Publishing Ltd, (2012)

[15] Lie HW, Bos B. Cascading style sheets:

Designing for the web, Portable Documents,

Addison-Wesley Professional, (2005)

[16] Flanagan D. JavaScript: the definitive guide,

O'Reilly Media, Inc., (2006)

[17] De Volder K. JQuery: A generic code browser

with a declarative configuration language, in

Proc. International Symposium on Practical

Aspects of Declarative Languages, 2006, 88-102

[18] Duvinage M, Castermans T, Dutoit T, Petieau M,

Hoellinger T, Saedeleer CD, Seetharaman K,

Cheron G. A P300-based quantitative

comparison between the Emotiv Epoc headset

and a medical EEG device. Biomedical

Engineering. 2012;765(1):2012-2764

Proceedings of the
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-33

