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ABSTRACT: Brain Computer Interfaces suffer from
considerable cross-session and cross-subject variability,
which makes it hard for classification methods to gen-
eralize. We introduce a transfer learning method based
on regularized discrete optimal transport with class la-
bels in the interest of enhancing the generalization ca-
pacity of state-of-the-art classification methods. We
demonstrate the potential of this approach by applying
it to offline cross-subject transfer learning for the P300-
Speller paradigm. We also simulate an online experiment
to assess the feasibility of our method. Results show
that our method is comparable to -and sometimes even
outperforms- session-dependent classification.

INTRODUCTION

Brain Computer Interfaces (BCI) are a means of com-
munication that connect a human brain and a machine,
bypassing any other neurological output. In particular,
during a non-invasive EEG-based BCI session, neuro-
physiological signals are acquired, processed, and trans-
formed into commands, for which the user receives some
form of feedback. Due to the very low Signal to Noise
Ratio (SNR) non-invasive EEG-based BCI suffer from,
advanced signal processing and machine learning tech-
niques need to be employed for the intermediate steps [1].
EEG signals also suffer from a high amount of session-to-
session and subject-to-subject variability, whose sources
are diverse [2]. It can be due to the use of different acqui-
sition means, to varying conditions during the day of the
acquisition, to neurophysiological differences between
one user and another, or to the fact that mental states and
levels of concentration change from one session to an-
other. Therefore, the classifier used to label mental tasks
needs to be trained before every use, a task commonly re-
ferred to as calibration. Furthermore, because variability
can occur within a session, the BCI may need to be recali-
brated during its use. Calibration can last several minutes
depending on the subject; it lists high among the reasons
why the use of BCI is still not widespread.
The design of a robust transfer learning classification al-
gorithm has been a subject of broad interest in the BCI
community. The first attempts towards zero-training BCI
are made for the Motor Imagery paradigm. Some of these
methods rely on recovering spatial filters to project the

samples onto a space where a pre-trained classifier will
generalize well [3, 4], others on the use of adaptive or en-
semble methods [5, 6]. The latter are also used in cross-
session and cross-subject classification for P300-based
BCI [7, 8], along with approaches under the Riemannian
framework [9].
This work handles transfer learning classification by
treating cross-session and cross-subject variability as a
unsupervised domain adaptation problem. Recent works
by Courty et al. [10] propose a solution based on regular-
ized optimal transport to tackle the problem of classifying
unlabeled test data that belong to a different domain from
which the training data is drawn. Transportation theory
applications to BCI have been researched under a mostly
theoretical framework in the works of Ma et al. [11] to-
wards generalizing the Posterior Matching Scheme to ar-
bitrarily many dimensions.
Our contribution is a methodological framework based
on regularized optimal transport with class labels which
can be used for transfer learning alongside existing clas-
sifiers. In this paper, it is assessed through offline cross-
subject experiments under the P300-Speller paradigm.
In the following sections, we first describe the problem
formally and introduce notations. We proceed by describ-
ing our method, the dataset used in the experiments, and
the experiments themselves. Then, we present our results
and discuss them. Finally, we give our conclusions and
propose future extensions.

MATERIALS AND METHODS

Transfer learning as a domain adaptation problem
Let S = {(xi, yi)}Ni=1 be the set of data acquired dur-
ing a BCI session, that is, the set of N extracted feature
vectors X = {x}Ni=1 ⊂ Rd of dimension d coupled with
the corresponding labels Y = {y}Ni=1. Furthermore, let
P(x) ∈ P(Ω) denote the probability distribution from
which the samples in X are drawn, where Ω ∈ Rd is a
measurable space of dimension d and P(Ω) the set of all
probability measures over the domain Ω.
We denote by Se an existing session for which the la-
bels are available, and by Sn a new session for which
they are unknown. We seek to train a classifier to recover
the unknown labels Yn. However, as a result of cross-
session and cross-subject variability, most classifiers do
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not give accurate results about Yn when trained on Se.
This effect can be modeled as a domain adaptation prob-
lem, known as covariate shift [2]: while the conditional
probability distributions P(y|xe) and P(y|xn) are equal,
the same does not hold for the probability distributions of
P(xe) ∈ P(Ωe) and P(xn) ∈ P(Ωn). Assuming that a
transformation causes the drift between domains Ωn and
Ωe, we propose to recover a transport plan to map the new
features onto the domain of the existing features (Ωe) us-
ing Optimal Transportation (OT) theory.

Regularized discrete OT with class labels
OT theory studies a problem known as the Monge-
Kantorovic transportation problem [12]. This problem
can be intuitively understood as the search for the opti-
mal way to transport mass between two probability dis-
tributions. The optimization criterion is the minimization
of a transportation cost; typically, the cost function repre-
sents some metric between the random variables of each
distribution. Also, constraints may be imposed so that
the mass is preserved during the transport. Since we only
have a fixed number of samples from each set, the dis-
crete adaptation of the OT problem boils down to match-
ing empirical measures µe, µn of P(xe) and P(xn).
We can now formally define regularized discrete OT with
class labels in the following way: consider the estimated
empirical marginal distributions µe =

∑Ne

i=1 piδxe
i

and
µn =

∑Nn

i=1 piδxn
i

of the samples in {xei}
Ne
i=1 = Xe

and {xni }
Nn
i=1 = Xn, where δxi is the Dirac function at

xi ∈ Rd and pi is the probability mass associated to the
ith sample,

∑N
i=1 pi = 1. We look for a probabilistic

coupling γ0 ∈ B satisfying the following minimization
problem:

γ0 = argmin
γ∈B

〈γ,C〉F + λRs(γ) + ηRc(γ) (1)

where 〈·〉F is the Frobenius dot product, and B is the
set of all probabilistic couplings between µe and µn,
B =

{
γ ∈ (R+)Ne×Nn | γ1Nn

= me, γ
T1Ne

= mn

}
where 1d denotes a d-dimensional vector of ones and
m ∈ RN denotes a vector of probabilities, each proba-
bility associated to a point in feature set X.
The first term of equation 1 is the discrete adaptation
of the Kantorovic formulation of the OT problem [13].
C is the cost function matrix, whose elements corre-
spond to a metric between two points, cij = d(xei , x

n
j ),

xei ∈ Xe, xnj ∈ Xn; it can be intuitively understood as
the effort required to move a probability mass from xei
to xnj . In this work, the metric we use is the squared
Euclidean distance d(xei , x

n
j ) = ‖xei − xnj ‖22, as it guar-

antees the existence of a unique coupling [12]. When the
squared euclidean distance is used as the cost function,
the first term leads to a sparse version of γ0
The second term regularizes γ0 by its entropy [14]:

Rs(γ) = λ
∑
i,j

γ(i, j) log γ(i, j) (2)

This allows for smoother variants of γ0, whose sparsity
gradually decreases as λ increases, and renders the trans-

port more robust to noise. Moreover, Rs(γ) can also be
interpreted as a Kullback-Leibler divergence between γ
and a uniform joint probability γu = 1

NeNn
, which allows

for the use of a computationally efficient algorithm based
on Sinkhorn-Knopp’s scaling matrix approach [15].
The third term is a regularizer, proposed by Courty et
al. [10], based on group sparsity which makes use of the
available class labels of session Se:

Rc(γ) =
∑
j

∑
cl

‖γ(Icl, j)‖2 (3)

where Icl denotes the set of indices belonging to class
cl ∈ {Target,Nontarget}. In this way, the j-th ele-
ment xnj ∈ Xn will not be coupled with elements from
Xe that belong to different classes.

OT applied to P300-based BCI
Based on the previous formulation of the OT problem,
we propose a transfer-learning method whose three main
steps are (a) feature extraction, (b) transportation of the
new features to the domain of the existing set and (c) la-
bel prediction. The pipeline of our method is illustrated
in Fig. 1.

Figure 1: Pipeline of the method. During the training process,
an existing set Me is given as input along with the correspond-
ing labels Ye. Then, (a) the X-DAWN spatial filters are learned
and (b) the extracted features Xe are used to estimate µe and
train the LDA classifier. When a new set Mn is given as input
to the trained classifier, (a) the trained X-DAWN filters are used
to extract features Xn, (b) µn and γ0 are estimated, and (c) X̂

n

is computed and given as input to the LDA classifier, which
estimates Yn.

Let m(t) ∈ RC be a measurement extracted from a
downsampled EEG signal over C electrodes at time t
during a P300-Speller session. After pre-processing,
Mi ∈ RC×T denotes the ith trial whose columns are T
consecutive measurements. From {Mi}Ne

i=1 = Me and
the corresponding labels Ye, we learn spatial filters us-
ing the X-DAWN algorithm [16], and project each Mi

onto the first Nf X-DAWN filters, yielding feature vec-
tors xi ∈ RNf×T .
We proceed by computing γ0 according to equation (1)
and use it to map Xn onto Ωe by computing a transfor-
mation based on barycentric mapping [10],

X̂n = diag(γ>0 1Ne
)−1γ>0 Xe (4)
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Each xn ∈ Xn will thus be mapped onto the weighted
barycenter of the features of Xe that it was coupled with.
In the end, a Linear Discriminant Analysis (LDA) clas-
sifier is trained on Se, and used to predict the labels
{yni }

Nn
i=1 = Yn that correspond to {x̂n

i }
Nn
i=1 = X̂n.

Dataset Description
The first dataset used in our experiments, Dataset A,
consists of EEG signals recorded during P300-Speller
sessions that were conducted by adult patients suffer-
ing from Amyotrophic Lateral Sclerosis. The experiment
took place in the premises of the Nice University hospi-
tal, and had been approved by the local ethics committee
CPP Sud Méditerrannée [17]. Each subject participated
in three free-spelling sessions, each one preceded by a
calibration session. In this paper, we use the calibration
sessions of 12 randomly selected patients. In each session
there are in total 200 trials in the Target class (consid-
ered to contain the elicited P300 component) and 1000
trials in the Nontarget class.
Dataset B includes EEG signals from four healthy sub-
jects, which were recorded during P300-speller ses-
sions conducted in the premises of Inria Sophia-Antipolis
Mediterranée. Each subject participated in two free-
spelling sessions, each one preceded by a calibration ses-
sion. Again, we only include the calibration sessions,
each one containing 66 trials in the Target class and 330
trials in the Nontarget class.
In both datasets, a Refa-8 amplifier (ANT) with 12
electrodes (Fz,C3,Cz,C4,P7,P3,Pz,P4,P8,O1,Oz,O2) was
used for the recording. The EEG signals are filtered with
a 5th order Butterworth filter between 1 and 15Hz. Each
signal is then downsampled from 256 Hz to 64Hz and
separated into trials Mi ∈ RC×T , where C = 12 and
T = 32 to account for a 0.5s epoch starting at the time of
the flash.

Cross-subject experiments
To demonstrate the potential of our approach, we ini-
tially conduct two offline experiments using Dataset A,
the difference between them lying in the composition of
the training (existing) set. In both cases, the labels as-
sociated to the testing (new) set are not taken into con-
sideration during the experiment, and are only used for
evaluation purposes.
In the first experiment we assess the generalization ca-
pacity of our classifier in pairwise transfer learning ex-
periments. For each experiment, the training set consists
of a single session, that is, a set Me

i of trials along with
the corresponding labels in Ye

i and the test set is Mn
j ,

where i, j ∈ I = {A1, A2, ..., A12} denote the sub-
ject index, and i 6= j. The cardinality of each set is
Ne = Nn = 1200.
For the second experiment, we evaluate the performance
of our classification method when trained with a larger
training set by performing Leave-One-Out transfer learn-
ing. As the test session contains data from a single
session, Xn

j∈I , here, the training set consists of the en-
tire dataset but session j. Hence, Me =

⋃
i∈I−

j
Mi and

Ye =
⋃

i∈I−
j

Yi, where I−j = I − {j} denotes the set of
indices of all subjects except subject j. In this setting,
Ne = 13200 and Nn = 1200.
Since the size of the training set is prohibitively large to
allow for the fast computation of γ0, we use an ensemble
classifier method known as Bootstrap Aggregating (BA)
or Bagging. Introduced by Breiman in 1996 [18], BA has
often been used in BCI [19, 20] to enhance classification
results. The pipeline of our method combined to BA is
illustrated in Fig. 2. Initially, BA creates k subsets of
length l, called bootstraps, by sampling the training set
uniformly and with replacement. We train an instance
of our classifier for each bootstrap. During testing, each
instance produces a prediction; all of the predictions are
aggregated via a voting scheme, that is, a majority vote,
to produce the final result.

Figure 2: Pipeline of our method with BA. Initially, BA cre-
ates k subsets from the training set. Then, an instance of our
classifier is trained for each subset. During testing, the new set
Mn is given as input to each instance. All instances produce
a prediction, and all predictions are aggregated via voting to
produce the final result.

Finally, we simulate one online experiment per session
in Dataset B, using the pairwise transfer learning classi-
fier from dataset A that produced the best performance.
The simulation proceeds in the following way: every
NF = 36 trials, the feature vector set is extracted from
{Mi}NF

i=1 = Mn, the transport map between Xe and
{xi}NF

i=1 = Xn is computed, and {yi}NF
i=1 = Yn is gen-

erated from the mapped set {x̂i}NF
i=1 = X̂n. Note that we

keep the chronological ordering of the trials within each
test session.
For all experiments, we use the first and last two X-
DAWN filters during feature extraction, resulting in a to-
tal of Nf × T = 128 extracted features. The best values
for the OT regularization terms are searched and selected
in λ, η ∈ {0.01, 0.1, 1, 10, 100}. For classifiers using the
BA method, k = 20 bootstraps of length l = 500 were
used, and we drew the same number of elements from
each class to remedy the issue of class imbalance.

RESULTS

We introduce this section by illustrating an example of a
transport between two pairs of sessions. Then, we report
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Table 1: Pairwise transfer learning. Columns display the average AUC value and standard deviation over 11 experiments where the
classifier is trained with the corresponding existing session; the last column is the average over 132 experiments. The first row shows
the results obtained by XD+LDA, while the second row shows the results from XD+OT+LDA.
Existing Session A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Avg.

XD+LDA
0.535 0.562 0.598 0.600 0.591 0.595 0.570 0.578 0.516 0.566 0.553 0.526 0.566
± 0.05 ± 0.07 ± 0.09 ± 0.07 ± 0.10 ± 0.08 ± 0.06 ± 0.06 ± 0.02 ± 0.07 ± 0.06 ± 0.02 ± 0.03

XD+OT+LDA
0.627 0.539 0.567 0.548 0.611 0.598 0.560 0.490 0.518 0.551 0.583 0.585 0.565
± 0.07 ± 0.02 ± 0.06 ± 0.04 ± 0.11 ± 0.07 ± 0.06 ± 0.17 ± 0.01 ± 0.04 ± 0.05 ± 0.06 ± 0.04

Table 2: Leave-One-Out transfer learning. Columns display the AUC score when the classifier is trained with all of dataset A except
for the corresponding new session. The last column is the average and standard deviation over 11 experiments. The first two rows
show results obtained whithout OT; in the first row, the BA method is not used either. The third row displays the results when both
BA and OT are used. The last row shows the AUC score of the Session-Dependent (SD) classifier of each session in dataset A.
New Session A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Avg.
XD+LDA 0.804 0.500 0.529 0.567 0.528 0.593 0.577 0.506 0.525 0.689 0.690 0.721 0.602 ± 0.099
BA+XD+LDA 0.778 0.535 0.720 0.808 0.623 0.698 0.739 0.596 0.521 0.696 0.673 0.809 0.683 ± 0.098
BA+XD+OT+LDA 0.779 0.529 0.835 0.790 0.732 0.541 0.802 0.608 0.673 0.740 0.655 0.809 0.708 ± 0.106
SD Classifier 0.724 0.593 0.709 0.713 0.648 0.624 0.692 0.658 0.548 0.694 0.702 0.781 0.673 ± 0.063

(a) Xe
A1 and Xn

A8, before transport.

(b) Xe
A1 and Xn

A8, after transport.

(c) Xe
A5 and Xn

A3, before transport.

(d) Xe
A5 and Xn

A3, after transport.

Figure 3: Examples of the barycentric mapping induced by γ0
for pairs of sessions. On the left we see the average response
and standard deviation of the first X-DAWN filter projection for
the Target and Nontarget classes. On the right side, we see
the 2D projection of the features, projected using t-SNE.

the experimental results of our method, which we refer
to as XD+OT+LDA. Motivated by the high level of im-
balance between the Target and Nontarget class, we
use the Area Under the receiver operating characteristic
Curve (AUC) as our performance metric.
We display two examples of the estimated optimal trans-
port in Fig. 3. In the first, the training and testing feature
vector sets are Xe

A1 and Xn
A8 respectively, while in the

second, Xe
A5 and Xn

A3. Fig. 3a and 3c show the original
datasets, while Fig. 3b and 3d illustrate the outcome after
computing X̂n

A8 and X̂n
A3. On the right side, we display a

2D projection of the features using t-distributed stochas-
tic neighbor embedding (t-SNE) [21]. On the left side,
we can observe the average response and standard devi-
ation of the first X-DAWN filter, estimated on Xe

A1(A5),
for both sessions and both classes. By looking closely
at Fig. 3b and 3d, we can see that the transport causes
a decrease in the variance of the response, for both the
Target and Nontarget classes.

Pairwise Transfer Learning
The results of pairwise transfer learning can be seen on
Tab. 1. To evaluate the performance of our method, we
compare it to the performance of an XD+LDA classi-
fier, i.e. an LDA classifier and X-DAWN features trained
on Me

i∈I , Ye
i∈I , where no transport takes place. For

each training session, we display the average AUC score
and the standard deviation of the 11 experiments con-
ducted with its corresponding classifier, where each one
of the remaining session was used as the test session,
Mn

j∈I , j 6= i. At first glance, the two methods seem
to perform equally well, yielding an average score of
∼ 0.56. We note however that the best performance over-
all is the one of our method when trained with session
Se
A1, which is equal to 0.627.

Leave-One-Out Transfer Learning
On Tab. 2, we display the results of Leave-One-Out trans-
fer learning; for each test session Mn

j∈I , we trained a
BA+XD+OT+LDA classifier (a combination of the BA
ensemble method and our method, where each bootstrap
is used to train an XD+OT+LDA classifier), using the
union of the remaining sessions. For comparison pur-
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poses, we show the corresponding results of two addi-
tional transfer learning classifiers: a classifier without
OT, in which BA is used to enhance the performance of
an XD+LDA classifier, and those of an XD+LDA clas-
sifier, where neither BA nor OT are used. Finally, the
performance of the session-dependent (SD) LDA classi-
fier trained on X-DAWN features, computed after 5-fold
cross-validation, is also displayed at the bottom.
Our findings demonstrate that merely using the BA
method produces better results than the simple XD+LDA
classifier. The average score of the BA+XD+LDA classi-
fication method is equal to 0.683, while the average per-
formance of the session-dependent classifiers is 0.673.
On top of that, when we use OT, we boost the per-
formance even more producing an average performance
equal to 0.708.

Online Simulation
After obtaining the results from pairwise transfer learning
and observing that the XD+OT+LDA classifier trained
with Me

A1,Ye
A1 generated the best performance, we used

it to simulate an online experiment using each one of the
four sessions {B1, B2, B3, B4} in Dataset B as the test
session (Sim 1). A label set Yni was produced every
NF = Nn = 36 trials; since each test set contains 396
trials, a total of 11 label sets Yni , i ∈ 1, · · · , 11, were
generated in the course of each experiment. For each sim-
ulation, we report on Tab. 3 the average AUC and stan-
dard deviation over all label sets Yni . We compare it to
an analogous online simulation using the XD+LDA clas-
sifier trained with Me

A4,Ye
A4, which generated the best

score in pairwise transfer leaning among all XD+LDA
classifiers (Sim 2). The AUC scores for the session spe-
cific classifiers of each test session, computed after 5-fold
cross-validation, are also reported.

Table 3. Results from the online simulations. Sim 1 is the
simulation where the XD+OT+LDA classifier is trained with
Dataset A session A1, while Sim 2 is the simulation where the
XD+LDA classifier is trained with Dataset A session A4.

Test Sess. B1 B2 B3 B4 Avg.
Sim 2 0.66 ± 0.11 0.60 ± 0.07 0.76 ± 0.14 0.86 ± 0.09 0.72 ± 0.11
Sim 1 0.78 ± 0.12 0.71± 0.14 0.77 ± 0.10 0.69 ± 0.10 0.74 ± 0.04
SD cl. 0.78 0.80 0.68 0.85 0.77

We can see that, 3 times out of 4, our best pairwise trans-
fer learning classifier outperforms the best pairwise trans-
fer learning XD+LDA classifier. For subject P3, both
classifiers score better than the session-dependent clas-
sifier.

Computation time
Regarding the complexity of our method, the average
computation time needed to compute each transport map
in pairwise transfer learning is equal to∼8 sec, compared
to ∼35 sec for Leave-One-Out transfer learning. Since
the test sets are much smaller in the online simulation,
the average computation time is ∼0.86 seconds per test
set. All experiments were conducted on a computer with
a 2.8 GHz Intel i7 processor and 8 GB of RAM.

DISCUSSION

The results presented in the previous section are strong
indicators that the OT approach can effectively enhance
transfer learning.
Regarding the mapping itself, the examples illustrated on
Fig. 3 give us some insight on the process and how it acts
on the components of the EEG signal. We see that, af-
ter the transport, the average values of the first X-DAWN
component of Target and Nontarget class match quite
well, especially for the Nontarget class. However, due
to the presence of a much larger number of Nontarget
class elements in the training set, it appears that samples
whose elicited P300 component is weak are drawn to the
training Nontarget class barycenter. Our decision to se-
lect an equal number of elements in each class to generate
the bootstraps for the BA method finds its motivation in
this observation.
Another product of barycentric mapping is the observed
decrease in the variance of the responses of the X-DAWN
filters, seen on Fig. 3b and 3d. This is a consequence of
the choices for parameter η and λ. For high values, the
“new” data points tend to be drawn to the mean of each
class in the existing set. Lower parameters generate a
larger variance in each mapped class; however, they also
reduce the separability of the classes in the mapped fea-
ture vector set.
Despite the fact that pairwise transfer learning did not
produce conclusive result in favor of OT, our method gen-
erated the two highest AUC scores. Concerning Leave-
One-Out transfer learning, we remark that the high level
of variability in the training set, due to the fact that it
contains trials from many different subjects, actually af-
fects the average prediction accuracy in a positive way.
Moreover, the use of the BA method induces a general
improvement in prediction accuracy, and leads to even
better results when OT-based mapping is used. However,
it increases the computational time, since the computa-
tional cost of computing γ0 depends on the size of the
number of elements in each set.
Fortunately, the computational time of ≤ 1 sec for each
small 36-trial set in the online simulation is low enough to
allow for a fast online implementation. Our findings dur-
ing online simulations show that our method outperforms
the state-of-the-art classification method. These observa-
tions encourage us to continue our research towards the
implementation of a zero-training OT-based classifier.

CONCLUSION

In this work, we have demonstrated that Discrete Reg-
ularized OT can be used in cross-subject transfer learn-
ing to improve the generalization capacities of existing
P300-based classification methods. The results obtained
by OT-based classifiers indicate that our method has the
potential to cancel the need for calibration.
Nevertheless, we are most interested in understanding
why some sets seem to contain more information than
others. In future works, we would investigate which are
the characteristics that qualify a good “map-to” candi-
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date. Subsequently, instead of using one specific session,
or a number of bootstraps generated from specific ses-
sions, we would be using a number of prototypical train-
ing sets that carry these characteristics. In that case, the
voting scheme could be bypassed by session-dependent
selection of one of these subsets with respect to a metric,
such as the Kullback-Leibler divergence or the Informa-
tion Geometry derived Riemannian distance.
While in this paper we concentrate on cross-subject trans-
fer learning, this work can be extended to cross-session
transfer learning or even be used to improve classification
results within a session classifier. Finally, we are also in-
terested in using this approach under Motor Imagery BCI
paradigms.
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