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ABSTRACT: Many brain-computer interfaces (BCls)
measure brain activity using electroencephalography
(EEG). Unfortunately, EEG is highly sensitive to arti-
facts originating from non-neural sources, requiring pro-
cedures to remove the artifactual contamination from the
signal. This work presents a probabilistic interpretation
for artifact correction that unifies session transfer of lin-
ear models and calibration to upcoming sessions. A lin-
ear artifact correction model is derived within a Bayesian
multi-task learning (MTL) framework, which captures in-
fluences of artifact sources on EEG channels across dif-
ferent sessions to correct for artifacts in new sessions or
calibrate with session-specific data. The new model was
evaluated with a cross-correlation analysis on a real world
EEG data set. We show that the new model matches state-
of-the-art correlation reduction abilities, but ultimately
converges to a simple group mean model for the exper-
imental data set. This observation leaves the proposed
MTL approach open for a more detailed investigations of
artifact tasks.

INTRODUCTION

As opposed to artifact-computer interfaces, a brain-
computer interface (BCI) relies on decoding signals of
neural origin. Unfortunately, electroencephalography
(EEG) based BClIs are very prone to contamination with
non-neural noise sources. On the one hand, such ar-
tifacts may deteriorate the signal-to-noise ratio and de-
crease BCI performance. On the other hand, the perfor-
mance may misleadingly increase due to exploitation of
artifact patterns in the learning process. Hence, reduc-
ing the effect of artifacts is a key requirement for BCIs in
order to reliably decode brain activity from EEG signals.

Many successful techniques to enhance the signal-to-
noise ratio in EEG signals have been proposed for BCIs
over the last decades. However, advanced methods like
beamforming [1], Independent Component Analysis [§]
or Common Spatial Patterns [2] often require manual se-
lection of components by an expert for optimal perfor-
mance. While hybrid approaches have been reported to

work well [9], computing filters in the first place is also
prone to noise and may miss signals of interest in favor
of artifacts. It may therefore be advantageous to correct
the signal from known artifact sources before applying
further techniques. A popular method is the correction of
electrooculographic (EOG) artifacts caused by eye move-
ments and blinks using linear regression. This technique
aims to learn the influence of EOG electrodes on EEG
and subtracts EOG artifacts from the EEG signals. Note
that EOG electrodes may accidentally capture brain ac-
tivity from the frontal area, which is then unwantedly
removed in the process. Influence coefficients are usu-
ally determined by regressing the observed EEG signal
[10,11,12]. It has been found that averaging over co-
efficients from different signal segments, trials or sub-
jects may increase performance of the artifact correction
[13,14]. However, approaches based on calibration data
from the upcoming session or time based re-calculation
of the coefficients were also suggested [3,15]. These
findings motivate a common framework in order to ex-
ploit stability of transfer models while still retaining the
ability to calibrate regression models with new data.

In this work, a theoretical framework is presented that
unifies the combination of influence coefficients from dif-
ferent sessions and the adaptation with new artifacts. The
artifact correction problem is put into a probabilistic in-
terpretation and approached within a Bayesian multi-task
learning (MTL) framework that is already used to decode
brain activity [4, 5, 16]. The presented algorithm is able
to learn a matrix Gaussian prior distribution over artifact
influences from different signal segments, sessions and
subjects. The trained prior can be either used to directly
correct artifacts in new sessions or be calibrated with new
artifacts.

The remainder of this paper is organized as follows. The
method section introduces a probabilistic interpretation
for artifact correction and restates the problem with an
equivalent formulation in order to derive a closed form
solution. It is then shown how the new model can be im-
mediately used for artifact correction and later on adapted
with calibration data. Afterwards, the experimental setup



Proceedings of the
7th Graz Brain-Computer Interface Conference 2017

and the evaluation of the new model against current arti-
fact regression models is described. The results section
shows that the new model operates on lower correlation
levels in comparison with other models. However, the
MTL algorithm is found to train a simple group mean
over influence coefficients for the artifacts in the data set.
Finally, this paper elaborates on the results with a discus-
sion and concludes with a short summary and future work
on the proposed framework.

METHODS

In this paper, scalars are denoted with lowercase, vectors
with bold lowercase, matrices with upper case and sets
with calligraphic uppercase letters.

Probabilistic Artifact Regression: In accordance with
the literature, we assume that an EEG measurement sam-
ple y € RF from k channels can be modeled with
y = s + Wn, where s € R” are the EEG signals,
n € R™ are the artifact sources as measured by m arti-
fact channels and W € RF¥*™ is the weighting matrix.
W explains the influence of the m artifact sources on
each of the £ EEG channels. However, the signal that
is observed at the recording sites is additionally contam-
inated by noise contributions arising from other sources
that we do not keep track of. We therefore extend the
model to y = s + Wn + ¢, where ¢ € R* repre-
sents the signal contribution from other noise. This model
can be put into a probabilistic relation by assuming that
the noise is distributed according to a zero-mean Gaus-
sian e ~ N <O,O'QIk) with some variance o2, where
I, € R¥** denotes the identity matrix in & dimensions.
An observed EEG sample y is then drawn from a Gaus-
sian distribution

y~ N (s+Wn,o?l), (1)

centered at the linear model output and deviating accord-
ing to some noise encoded in o2

Multi-task Learning with Artifacts: The weight ma-
trix W is usually determined by linear regression on an
artifactual data set in order to find the influences of arti-
fact sources on EEG channels. However, these influences
may vary across subjects, sessions and trials. We there-
fore regard the regression problem for an artifact as an
individual task and denote the gathered data set of q tasks
with 7 = {D® }3:1' Each task data set D(*) € T takes

the form

Pl — {(ngﬂ,yy)) }" CR™xRF ()

i=1
consisting of a single artifact contaminated segment with
ny EEG samples yi(t)
fact samples ngt) recorded at m channels. Each data set
D) ¢ T is associated with a linear regression model de-
fined by its weight matrix W®*) € R¥*™_ We denote the
set of weight matrices with W = {W(t)}le. Follow-
ing the Bayesian MTL framework presented in [16], we

measured at k channels and arti-

DOI: 10.3217/978-3-85125-533-1-25

can state a data likelihood from the probabilistic interpre-
tation in (1) and introduce a prior distribution over the
weight matrices. The prior aims to capture commonali-
ties in the influence of artifact sources to EEG channels
across artifacts. In particular, we assume a matrix Gaus-
sian distribution p(W) = MN (W | Mw,X,.w, Ze.w)
as prior model, where My, € RF*™ is the mean weight
matrix, ¥,.;w € R¥*¥ is the row covariance matrix that
captures correlations in the influence between the EEG
channels and X is the column covariance capturing
correlations between the artifact channels. Unfortunately,
pulling everything together to state a posterior objective
does not yield a closed form solution. However, the re-
lation between matrix and multi-variate Gaussians is ex-
ploited in the next section in order to obtain an analytic
solution for MTL artifact regression.

Bayesian Kronecker Regression: While the MTL
approach using a matrix Gaussian prior does not de-
rive in closed form, the problem can be restated into
a form that yields an analytic solution. First, note
that the matrix Gaussian MN (W | Mw, 2w, Ze.w)
is equivalent to a multi-variate Gaussian of the form
N (vec (W) | vec (Mw) , Ze;w @ Xy ), where vec
RFXm 5 RF™ js the vectorization of a matrix stack-
ing the columns into a column vector and ® : R¥*™ x
RExm _y REmxkm i the Kronecker product of two ma-
trices [6]. Hence, instead of targeting the weight matrix
W itself, the vectorized version vec (W) of the weights
can be optimized. In fact, the model stated in (1) is equiv-
alent to a Kronecker formulation of the form

y~N(s+ (n" @) vec(W),o°L;). (3)

It turns out that by assuming that the source s and noise
signal m are independent, the artifact regression prob-
lem in this formulation is directly solvable by the MTL
algorithm from [16]. Hence, the maximum a-posteriori
(MAP) estimate of a task weight matrix W € W for task
t is given by

-1

ng T

vec (W) = <E® Z Nz(t) Nz(t) + UQIkm>
i=1

ng T
<Z® Z Ni(t) yz@ + o?vec (MW)> ,
i=1

“4)
where Ni(t) = nz(.t)T ® I and Xg = Zew ® Mpw.
Applying the iterative learning algorithm from [16] trains
the parameters of the multi-variate Gaussian prior, i.e. the
vectorized mean vec (My) and Kronecker covariance
matrix Yg. The original weight matrix W can be easily
restored from the Kronecker model by reshaping the vec-
torized weights accordingly W = unvec (vec (WW)). The
original row and column covariance matrices X,y and
Y¢,w, respectively, may be obtained from the unvector-
ized weights using expectation maximization algorithms
[17]. An algorithm to obtain the matrix Gaussian param-
eters is outlined in Algorithm 1.
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Calibration-Free Correction: A prior model
MN (M, 3,.w, Xew) encodes shared characteris-
tics across artifact regression models. In fact, the mean
weight matrix My can be used to parameterize a ma-
trix regression model y = s + Mpyn. A sample
(y,n) € R¥ x R™ from a new session can be there-
fore immediately corrected by computing

s=y—- Mwyn &)

and using s as the artifact-free sample. This correction
is based on the commonalities found across artifact influ-
ences in different sessions or subjects. Hence, in contrast
to the group mean approach, the MTL algorithm addi-
tionally updates the prior mean in dependency to the co-
variance relations.

Model Adaptation: The Bayesian setting of the MTL
model proposed in this work allows for a natural adap-
tation to calibration data. If a calibration data set D(*)
becomes available, an adapted weight matrix W) can
be inferred using the MAP estimate from (4) on the data
set D*). The prior then acts as a regularizer towards
the shared structure that is controlled by the variance fac-
tor o2. The correction procedure then follows (5) where
we replace the prior mean My with the adapted weights
W), The adaptation is also eligible for calibration in
which new artifacts are obtained in an online setting, e.g.
by thresholding techniques [18] or the Riemannian Potato
[7].

Experimental Setup: We performed an evaluation of
the model on real EEG signals recorded from five sub-
jects with four to five sessions. Each subject sat on a com-
fortable chair in front of a screen and began the session
with a five minute resting state recording (eyes open, fix-
ating a cross on the screen). The subject then performed
five to 13 runs of mental imagery with nine trials per run.
As we are only interested in the artifacts of the record-
ings, the exact design of the imagery experiment is of no
further interest in this work (however, details on the data
set can be requested from the authors).

Brain activity during the experiment was recorded using
EEG with 128 electrodes positioned according to the ex-
tended 10-20 system (referenced at TPP10h). The signals
were sampled at 500Hz using actiCHamp amplifiers ! and
active electrodes.

The recorded EEG signals were divided into training and
test segments. The five minute resting state recording was
used to extract EOG blinking artifacts for model training.
Each training segment consisted of a one second window
containing an EOG blink artifact in the center that was
automatically extracted by variance thresholding. In ab-
sence of explicitly placed EOG channels in the record-
ings, the artifacts were measured at two frontal electrodes
(Fpl and Fp2) designated to act as sources for EOG ar-
tifacts that measure eye blinks. The data from the exper-
imental runs were then used as test signals for a cross-
correlation evaluation between artifact sources and EEG

I BrainProducts GmbH, Gilching, Germany
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Algorithm 1: Multi-task Kronecker Regression

Data: Training sets 7 as described in (2)
Result: Matrix-variate Gaussian prior
MN My, 2w, Zew)
1 Initialize My = 0, Xy.w = I, Yeow = I ;
2 Initialize W = {VV(”}Z:1 with W® =0
3 Setdg =Yew @ Biw
4 for DO e T do
5 for (ngt), y(t)) e D do

T
6 L Compute Ni(t) = ngt) ® Iy,

7 while My and X, not converged do
s | forW® cWdo
Train vec (W®)) using (4) ;
Restore W®) := unvec (vec (W®));
11 Update My, with the sample mean of the
weights in W;
12 Update X with the sample covariance of the
| vectorized weights in W ;
13 Estimate X,..; and X, from W [17];

10

channels. Each test segment consisted of a four sec-
ond window where the subject was either in an imagery
phase (with rare eye blinks and little noise) or a pause
phase (with more frequent eye blinks and more noise).
In summary, the models were only trained from contami-
nated EEG samples, while the test segments consisted of
artifact-free as well as contaminated samples. All signals
were preprocessed with a common average reference and
band-passed in 1-40Hz (Butterworth, order 4).

We based our evaluation on the assumption that EEG
source signals are uncorrelated to artifact signals [13].
Accordingly, correction models with lower correlation
between artifact and EEG were considered better. We
compared the MTL regression model for artifact correc-
tion presented in this work against no correction, stan-
dard linear regression and a group mean of weight matri-
ces. The MTL prior and group mean are transfer models
and were trained from artifacts of the training segments
of all subjects, but excluding the subject that was evalu-
ated. The MTL prior model (MTL Reg (P)) was trained
using Algorithm 1. The group mean model (Mean Reg)
was constructed by averaging over the weight matrices
trained from individual artifacts. The standard regression
(Std Reg (A)) and adapted MTL regression (MTL Reg
(A)) were calibrated models trained from the artifacts in
the same session that was been evaluated.

The test segments were corrected with the models and the
Pearson correlation coefficient between the time series of
an artifact source and the cleaned EEG signals were com-
puted. This procedure resulted in 125 normalized cross-
correlation values for a total of 360 test segments (result-
ing in a total of 45000 correlations per artifact source).
The correlation coefficients were pooled and compared
according to their absolute total correlation, density
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Figure 1: Correlation analysis between EOG electrode and the EEG channels. The Pearson correlation coefficient be-
tween EOG channel Fpl and the 125 EEG channels were computed over all 360 test segments. The top and bottom left
plot show the mean (solid lines) and standard deviation (shaded areas) of the total absolute correlation of each model. The
bottom left plot rescaled the y-axis to highlight the differences between the transfer models. The histogram on the right
shows the density distribution of the correlation coefficients for each model.

EEG Channel AF7

amplitude

0.0 05 1.0 15 2.0 2.5 3.0 3.5 4.0
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—— Std Reg (A) —— MTL Reg (P)
—— No Reg —— Mean Reg

Figure 2: An exemplary comparison of the artifact cor-
rection models on a preprocessed EEG time series of four
seconds recorded at channel AF7. The signal was band-
passed between 1 and 40Hz and contains an EOG blink
artifact at 1.5 seconds. All artifact correction methods
visibly attenuate the deflection and follow the original
signal in the segments where no artifact occurs.

distribution and topographic relations. In the following
section, we only present the results for EOG channel Fpl
and omit Fp2, as both channels showed identical behav-
ior.

RESULTS

We first compared the performance of each model in
terms of total correlation. Therefore, the mean correla-
tion values over all 360 test segments was taken at each
EEG electrode. Then, the mean and standard deviation of
the absolute correlations were computed across all chan-
nels. The results for the different models are shown in
Figure 1 (top left and bottom left). The calibrated models
(suffixed by (A)) were trained on an increasing number
of artifacts from the calibration session. The standard
regression approach (orange) shows similar total corre-

lation as opposed to not performing any regression at all
(brown). The MTL and mean regression models show
equal performance by decreasing the total correlation and
variance compared to both, no and standard regression.
The bottom left plot scales towards the MTL models and
the mean regression. Here, the MTL prior (green) and
adapted model (red) have minimally lower correlation
than the mean model (blue). The MTL adaptation per-
formance is equal to the MTL prior and does not change
with more session-specific artifacts to train on.

The top right plot of Figure 1 shows the density distri-
bution of the correlations in a histogram. Performing no
regression at all (brown) exhibits a clear peak at negative
correlations and a smaller at the positive tail. Standard re-
gression (orange) also has modes at the positive and neg-
ative tails, but induces another peak around zero. The
MTL models (red and green) and mean regression (blue)
are again indistinguishable and centered with most corre-
lation values around zero. Hence, the transfer models are
able to keep more correlation values closer to zero than
standard or no regression.

The topographic relations of the cross-correlations are
depicted in Figure 3. The topographies show the corre-
lation difference on each electrode between the two mod-
els pairs in a row and column. Red areas are positive
differences indicating that the row model has lower cor-
relation than the column model. Likewise, blue areas are
negative differences and indicate that the row model has
higher correlation than the column model. Performing
regression lowers correlations mainly at the very frontal
and occipital region. The transfer models (Mean Reg,
MTL Reg (P) and MTL Reg (A)) yield reduced occipital
and parietal correlations compared to standard regression
(Std Reg (A)). While topographic differences between the
MTL models compared to mean regression are present,
there are no clear brain regions where one model outper-
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Figure 3: Topographies of the correlation difference be-
tween two models for artifact source Fpl and the EEG
channels. Red regions are positive differences and state
the the row-model induces a lower correlation at that re-
gion than the column-model. Likewise, blue regions are
negative differences and imply a lower correlation of the
column-model compared to the row-model. Notable dif-
ferences emerge for EEG channels near the frontal arti-
fact sources (associated with No Reg) and for the frontal
and occipital areas (associated with regression).

forms the other. The MTL prior model (MTL Reg (P))
and its calibrated version (MTL Reg (A)) show no differ-
ences at all.

Finally, Figure 2 shows an example of an EEG times se-
ries from a four second test segment at the frontal elec-
trode AF7. An eye blink occurred at 1.5 seconds and after
the preprocessing it is still clearly visible without EOG
regression (green). Standard regression (blue) manages
to reduce the amplitude, but the deflection is still visi-
ble. The transfer models (red and purple) manage to even
further reduce the amplitude and seem to have visually
corrected the artifact well. The corrected signals follow
the original signal before and after the artifact occurred.

DISCUSSION

The results suggest that the group mean and MTL models
outperform standard regression in terms of reducing cor-
relation between artifact sources and EEG channels. In
fact, standard correction seems to perform worse at some
EEG channels with a varying total correlation, similar to
the uncorrected signal and high negative and positive cor-
relation modes. The differences seem to also occur at rel-
evant brain regions within the frontal and parietal areas.
A possible explanation may be that the standard regres-
sion is able to regress out artifacts well, but corrupts the
signal at some channels when there is no artifact present.
The transfer methods on the other hand account for vari-
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Figure 4: Visualization of the matrix Gaussian prior pa-
rameters trained by the MTL algorithm. The top two
plots show topographies of the learned weights associated
with the corresponding artifact source Fp1 or Fp2 on each
channel. In both cases, the influence gradually decreases
with increasing distance to the artifact source. The bot-
tom plot shows a heatmap of the prior covariance matrix
in Kronecker form that was estimated from the vector-
ized form with the standard sample covariance. The co-
variance matrix shows spatial block structures captured
across artifacts from different subjects and sessions.

ability in the artifacts, resulting in more stable regres-
sion models. These results agree with findings that
group means may outperform individual regression mod-
els [13,14].

Notice that the group mean is a special case of the MTL
learning algorithm where only a single prior update is
performed. This equivalence led to our expectation that
the MTL prior will perform at least as good as the group
mean. Moreover, as the prior was used to regularize adap-
tation with session-specific calibration data, we expected
to further increase performance as opposed to using the
plain prior or group mean. Unfortunately, the MTL prior
and adaptation have trained the same weights and there
are only minimal differences between the MTL and group
mean model. The neglectable difference in total cor-
relation and density distribution indicate that MTL and
group mean essentially trained the same weights. This
conclusion is supported by the lack of correlation dif-
ferences at clear brain regions shown in the topographic
maps. We analyzed the MTL training process and found
that the prior quickly converges within a few iterations.
A possible explanation for the quick convergence may
arise from the rather low dimensionality of the feature
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space compared to the large amount of data points for
training. Hence, the resulting MAP estimates are mainly
based on the data likelihood and do not need to rely much
on the prior regularization. It is further worth noticing
that the MTL adaptation process to calibrate with session
specific artifacts does not increase performance over the
MTL prior. The covariance prior was also analyzed and
showed structure captured across artifacts (see Figure 4),
which implies general spatial feature directions for train-
ing. However, the captured structure did not seem to be
of relevance in case of EOG artifacts, as the final prior
ultimately converge to the group mean and could not be
improved through calibration. A solution to this problem
may have been to not only consider eye blinks, but further
horizontal and vertical saccades.

CONCLUSION

This work presented a probabilistic interpretation of arti-
fact correction that unifies inter-subject linear models and
session-specific calibration. The introduced method com-
bines influence distributions of artifact sources on EEG
channels within a Bayesian MTL framework in which in-
dividual artifacts across sessions and subjects constitute
the tasks. However, the final model ultimately converges
to a group mean of the weight matrices, implicating that
there was no additional session-specific structure across
EOG artifacts that further improved performance of the
model. The MTL framework has already proven to work
well in the case where tasks have few data points com-
pared to the feature dimensionality. In this sense, promis-
ing follow up work is the evaluation of this approach for
other tasks, artifacts and data sets that may contain ex-
ploitable structure across artifact tasks. Further promis-
ing future work may investigate and interpret the influ-
ence structure captured by the covariance matrix. Such
an analysis is likely to give further insights into the be-
havior of artifacts across sessions or subjects and may aid
the development of new models for artifact correction or
regression techniques on EEG signals.
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