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ABSTRACT: We consider the case of a noisy binary EEG-
based brain-computer interface where a human attempts
to generate two discriminable control signals but the re-
ceived signals are noisy and the optimal classification
boundary (or decoder) is not known or changing. In such
situations, it is common for the computer to accumulate
evidence over time before performing an action. Inter-
mediate feedback can be given to inform the user of the
current decoding along the way. Under these conditions
we have shown via Markov chain analysis that the infor-
mation transfer rate is higher when the user and computer
attach the responsive (to the intermediate feedback) mean-
ings of "continue/good" and "change-direction/bad" to the
two classes of noisy signals they generate instead of direct
commands "left" and "right". In this paper, we analyze
the first step of these systems and show that when there
is not yet a computer-interpreted response to respond to,
the "right/left" commands are most informative and that
a system where a first "right/left" step is combined with
future "good/bad" interactive commands gives the highest
information transfer rate. Finally we show that this hybrid
approach can be seen as a natural game-like interface.

INTRODUCTION

We consider the case of a human-controlled interface to a
computer where the received signals are noisy and not per-
fectly classifiable. Such signals arise in EEG-based brain-
computer interfaces (BCIs) but could also arise in other
noisy interfaces such as gesture recognition or speech
recognition in noisy environments or in some clinical pop-
ulations. For this paper, we restrict analyis to the binary
control case, where humans are trying to generate one
of two signals as is commonly used in motor-imagery
EEG-based brain computer interfaces.
For concreteness, we consider the scenario of a user using
an EEG-based motor-imagery brain-computer interface
with the goal of selecting one of two targets on the right
and left of the screen. Subjects require a certain level of
selection accuracy (e.g. 70% [5]) for performance to be
considered acceptable, and there are applications where it
is costly to output the wrong answer [11]. For these rea-
sons, it is common to accumulate evidence, and feedback
can be given to the subject over time. A common method
is to have the cursor move a step every processing window
(processing windows are usually 500ms to 1 second long).
The number of steps between the two target endpoints can
be varied to trade off accuracy and selection speed or can

be set to optimize information transfer rate (ITR) for a
given discriminability between the distributions of signals
for the two classes [2]. In text and figures below, we refer
to the number of possible cursor positions (NCP) which
is equal to twice the number of steps from the center to a
target plus one.

While EEG signals are high dimensional, after standard
signal processing [9, 1, 7] the signals are reduced to a
lower dimensional space, and it is common to approximate
them as Normal/Gaussian distributions and use simple lin-
ear classifiers in this projected space [10, 9, 8]. Once a
classifier is defined, the critical variable for classification,
is the side of the classification boundary (or more generally
the signed perpendicular distance from the classification
boundary). This is represented as the (single-step) one-
dimensional probability distributions diagrammed on the
right side of Figures 1, 2, 3, and 8. and given by the blue
dashed curves in Figures 4, 6, 7.

In any noisy machine learning problem with finite data, a
classifier will not be able to find the exact optimal classi-
fication boundary between the distributions. In problems
with non-stationary data such as EEG [3, 10], this issue
is especially true. In these cases, we have shown that by
changing the meaning of the single-step signals generated
by the humans, the information transfer rate can be in-
creased by changing the meanings of the two signals that
the user generates to “continue” and “change direction”
instead of “left” or “right” [2]. What this means is that
the same signals that the user generates are given different
semantics in the communication strategy. So for example,
right hand imagery could be used to mean “change direc-
tion (I am disatisfied with the current movement)” and left
hand imagery used to signal “continue (I am satisfied with
the current movement direction)”. This changes the com-
munication protocol from direct commands to interactive
commands that respond to the current interpretation as re-
flected by the feedback of the cursor movement. We have
shown that when a control signal is used “that depends in-
timately on what has already been transmitted, interpreted,
and received”, a much more robust communication system
results [2]. In particular the information transfer rate is
demonstrably higher with the interactive communication
system than with the standard direct communication sys-
tem when the classification boundary is not in the optimal
position. As in [2], we will refer to the direct method of
controlling with “move right” and “move left” signals as
an R/L control system and the interactive method of con-
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trolling with “change-direction/bad/Dissatisfaction” and
“continue/good/Satisfaction” as a D/S control system.
We examine the mathematics for single step systems
(where a target is reached in one step or NCP=3), and
based on this analysis propose a new hybrid approach,
where the starting cursor direction is fixed and known but
D/S commands are used. We show that in this case the
first step is equivalent to a “Right/Left” commanded step,
and the system makes less processing demand of the user
and results in a higher information transfer rate than the
previously proposed D/S method in [2] using random start
direction.

METHODS

The standard R/L method of control where the user gener-
ates one signal (e.g. right hand motor imagery) to mean
“Move the cursor to the Right” and another discriminable
signal (e.g. left hand motor imagery) to mean “Move
the cursor to the Left” can be shown to be modeled by
a Markov chain as shown in Figure 1 [2] whereas the
interactive D/S method of control that uses the same un-
derlying signals of right and left hand motor imagery can
be modeled by a Markov chain shown in Figure 2. In
this case, the state of the system contains the position and
cursor direction information.
If the system does not use multiple steps to reach the goal
(in other words, if NCP=3. See Figures 1,2,3), then the
interactive nature does not come into play. We can still
consider how a D/S control system might work in a one-
step system. In a D/S system the cursor would appear
moving in one direction (or simply appear as an arrow
instead of a circular cursor, and the user would generate
a "continue" (if they like that direction) or "change di-
rection" (if they don’t) signal which would influence the
one and only step. It might seem that the most natural
method would be to have the initial cursor direction be
drawn randomly from right/left as in [2] (and shown in
Figure 2 by the 0.5 probabilities for each possible starting
state). In this case, the accuracies are actually the same as
a function of the classification boundary for the D/S and
R/L system. However the error-rates when considered sep-
arately for the left and right classes can be quite different
as the boundary is moved from the crossing points of the
distributions. In the R/L system, if the boundary is offset
so "Right" is output more than it should be, the error rate
for the Left class will be higher than the error rate for the
right class. This is shown in Figure 4.
However for the D/S system, if the classification boundary
is not at the crossing point of the distributions, it will be
more likely to output "continue" or "change-direction". If,
the start direction (to which continue or change-direction
are responded to) is chosen randomly and the two classes
have equal prior probabilities, then the error-rate for the
left and right classes will be equal, as whatever happens
to the left class when the cursor starts in the left direction
will be matched by what happens to the right class when
the cursor starts in the right direction and what happens to

the left class when the cursor starts in the right direction
will be matched by what happens to the right class when
the cursor starts in the left direction. This can be seen in
Figure 4.
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Figure 1: This figure shows the Markov chain model for
the R/L control method for one step (NCP=3).
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Figure 2: This figure shows the Markov chain model for
the original D/S control method for one step (NCP=3)
with random start direction (RS). Notice that this model
is different from the Markov chain for the one step R/L
control method.
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Figure 3: This figure shows the Markov chain model for
the D/S control method with one step (NCP=3) and con-
stant left direction start (CS). The node and connections
with dashed lines represents states and transitions that are
not possible but are possible in the random start model.
Note how this Markov chain is equivalent to that of the
one step R/L control method with transition probabilities
given only by a and b.

Note, however, that if the cursor always starts in the left
direction, the one-step D/S method of control is equivalent
to the R/L method of control (with continue equivalent
to left and change-direction equivalent to right). (This is
shown in Figure 3). (Similarly if the cursor always starts
in the right direction, the one-step D/S method of control
is equivalent to the R/L method with continue equivalent
to right and change-direction equivalent to left.)
The number of steps (one in this case) are the same for
either starting strategy with the D/S method, but because
the accuracies are different for the two classes for the R/L
control and the D/S (random start), the information trans-
fer rate (ITR) ends up being different for the two systems.
As our classification rates can differ for the right and left
classes, we use the general equation for computing the
ITR.
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Figure 4: This figure shows the probability distributions
for two classes (bottom) and the error rate for the left and
right classes as a function of the classification boundary
(top). Note that with the R/L control method the error rate
is different for right and left trials whereas for the D/S
control system with random start direction, the error rates
are the same for the two classes as discussed in the text.
At the possible classification boundary given by the dotted
vertical line, the R/L control accuracy for the left class is
61.8% and the accuracy for the right class is 88.5%. The
accuracy for both left and right classes for the D/S control
(random-start) is the average of these two (75.14%) Also
shown in the bottom of the figure are the variables used
in the mathematical analysis of the one-step system. Note
that b and c will change as a function of the classification
boundary.

IT R =

(
C

∑
j=1
−p(y j) log2(p(y j))

+
C

∑
i=1

C

∑
j=1

p(xi)p(y j|xi)log2(p(y j|xi))

)
/T

where p(y j) = ∑
C
i=1 p(xi)p(y j|xi) and xi represents in-

tended class i and y j represents decoded class j. (For
our example C = 2). T is the total time (including over-
head/set up time) for the full trial to select either target.
Figure 6 shows by analysis of the Markov chain model
[2] that for the one-step system, the ITR is better for
the R/L (and equivalent D/S same-start) control than the
D/S random start method. We now prove this mathemat-
ically. For the purposes of the proof we will consider
the probabilities under the pdfs given by the distributions
in Figure 4. For R/L control the class on the left corre-
sponds to “Left trials” and the class on the right “Right
trials” and thus for R/L control P(y1|x1) = a,P(y1|x2) =
c,P(y2|x1) = 1−a,P(y2|x2) = 1−c. For the one-step D/S
system with random start (RS) the distributions actually
represent the “Continue” and “Change Direction” distri-
butions. In order to determine P(“Left”|le f t) we must
compute the expected value over both right and left start
directions. If the cursor starts right, then the accuracy is
given by the area under the change direction distribution
on the correct side of the boundary (i.e. 1− c). If the

cursor starts moving left, then the accuracy is given by
the area under the continue distribution on the correct side
of the boundary (i.e. b). So for equal probability of each
starting direction P(“Left”|le f t) = .5a+ .5(1− c). Like-
wise P(“Right”|right) = .5a+ .5(1− c). That is the error
rates are equal for the right and left classes and equal to
c+(1−a)

2 .
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Figure 5: Graphical view of the entities in ITRS and ITCS.
The magenta asterisks show H(x) and the Green circles
show G(x,∆) where ∆ = 1−a−c

2 . ITRS Subtracts the lower
magenta asterisk from the higher one (at x=.5). ITCS sub-
tracts the lower green circle from the higher one (at x=.5).
As H(x)−G(x,∆) (the difference between the magenta
asterisks and the green circles (a subset is shown by the
red curve near the bottom of the Figure)) has a minimum
at 0.5 on (0,1), ITCS ≥ ITRS. When ∆ = 0 (c = 1− a) ,
ITCS = ITRS.

ITRS =
2

∑
j=1
−p(y j)log2(p(y j))

+
2

∑
i=1

2

∑
j=1

p(xi)p(y j|xi)log2(p(y j|xi))

=H(.5)−H
(

c+1−a
2

)

where H(p) =−p log2(p)−(1− p) log2(1− p) is the dis-
crete entropy function for a Bernoulli random variable
with probability of one class given by p (and probability
of the other class given by (1− p)).

For the one-step D/S system with consistent left start (CS)
similarly assuming equal number of class 1 and class 2
patterns, the error rates are different for the right and left
classes (and are identical to an R/L system) and are re-
spectively given by 1−a and c we have:
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ITCS =
2

∑
j=1
−p(y j)log2(p(y j))

+
2

∑
i=1

2

∑
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p(xi)p(y j|xi)log2(p(y j|xi))

=−
(

a+ c
2

)
∗ log2

(
a+ c

2

)
−
(

1− a+ c
2

)
∗ log2

(
1− a+ c

2

)
+ .5(1−a)log2(1−a)+ .5(a)log2(a)

+ .5(c)log2(c)+ .5(1− c)∗ log2(1− c)

=H
(

a+ c
2

)
− .5H(a)− .5H(c)

=.5H(.5− 1−a− c
2

)+ .5H(.5+
1−a− c

2
)

− .5H(
1−a+ c

2
+

1−a− c
2

)

− .5H(
1−a+ c

2
− 1−a− c

2
)

=G
(
.5,

1−a− c
2

)
−G

(
c+1−a

2
,

1−a− c
2

)
where we define

G(p,∆) =
H(p+∆)+H(p−∆)

2

for ∆ = 1−a−c
2 and we use H(x) = H(1−x) for x ∈ (0,1).

If we compare the ITCS with consistent start to the ITRS
with random start,

ITRS− ITCS = H(.5)−G
(
.5,

1−a− c
2

)
−

H
(

c+1−a
2

)
+G

(
c+1−a

2
,

1−a− c
2

)
To see whether ITCS is larger or smaller than ITRS we check
how H(x)−G(x,∆) varies as a function of x. Looking at
the first derivative of the function. H(x)−G(x,∆), we
have

d(H(p)−G(p,∆))
d p

=− log2(p)−1+ log2(1− p)+1

− .5(− log2(p+∆)+ log2(1− (p+∆)))

− .5(− log2(p−∆)+ log2(1− (p−∆)))

which equals 0 at p = .5.
The second derivative:

d2(H(p)−G(p,∆))
d p2 =− 1

p
− 1

1− p
+

.5
(p+∆)

+
.5

(1− p−∆)
+

.5
(p−∆)

+
.5

(1− p+∆)
> 0

is positive for p ∈ (0,1) and ∆ = 1−a−c
2 by the concavity

(Jensen’s inequality [4]) of 1
x . Therefore H(x)−G(x,∆)

where ∆ = 1−a−c
2 has its minimum for x ∈ (0,1) at x =

0.5 and therefore ITRS ≤ ITCS (and equality only when
c = 1− a at the optimal crossing point). That is more
information is transferred in the single step system using
the standard R/L control method and consistent start D/S
method than the random start D/S method. Note that by
symmetry, the direction of the start does not matter; it just
matters that it always starts in the same direction.
Following the results of [2] showing that in the multi-step
case, an interactive D/S control method is preferable to
the standard R/L control method for improved ITR in
the presence of noise, the one-step result showing that
the consistent start D/S control (equivalent to R/L con-
trol on the first step) is better than the random start D/S
control might be somewhat surprising, but the reason for
improved performance of interactive commands in the
multi-step D/S systems is because the user is responding
to the computer’s classification error. However in the one-
step systems, the user response is to a randomly generated
direction, not the result of the computer’s interpretation of
the user’s command, and so does not provide the benefit
of revealing the computer’s bias.
As the first step in a multi-step system (NCP>3) is equiva-
lent to a one-step system we conclude that for multi-step
systems it is also better to start with a consistent direction.
For reasons discussed below, we will consider the start
direction to be left. This new suggested control strategy
is shown in Figure 8. The ITR curves computed from
the Markov chain analysis [2] for chains with NCP=7 are
shown in Figure 7. The plots show that there is an ITR
benefit to having a consistent start direction, though the
effect is less with the models with more NCPs as should
be expected with a change that only changes the first step.
The difference is larger on the side when “continue” is
more likely to be output (on the right side of the figure) as
that is when fewer steps are taken, and an effect from the
first step will have a greater effect.

DISCUSSION

While for systems with larger NCPs the ITR difference
is not large between the random-start and same-start D/S
systems, there are also other human factors considerations.
When the original D/S control method was introduced,
there was a concern that the control system would require
more time for the user to process each step as they would
need time to determine whether to give a “change” or
“continue” command [2]. Thinking about each step com-
pared to constantly generating a “right” or “left” command
requires more processing and is less automatic. However,
starting the cursor movement in the same direction allows
the user responses to be more automatic. For instance if
the user knows that the cursor will always start moving
left and the change direction command is given by right
hand motor imagery, then for right targets, the user will
start with right motor imagery and will continue right im-
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agery until the cursor changes direction at which point
they will switch to left hand motor imagery (see Figure 9).
In this way, the user feels like they are pushing the cursor
(moving the hand that the cursor is moving away from).
If the subject desires the left target, he will start with left
motor imagery and again only change imagery when the
cursor changes direction. In this mode (left target), the
user feels like they are trying to bat the target back and
forth (moving the hand that the cursor is moving towards).
The user does not need to think about which hand is con-
tinue or change direction, they simply have to start with
the motor imagery of the hand in the desired direction (e.g.
left hand imagery for left target) and change whenever the
cursor changes direction.
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Figure 6: This figure shows the probability distributions
for two classes and the information transfer rate for the
R/L and D/S (random start (RS) and left/consistent start
(CS)) control methods with NCP=3 (the one-step systems).
Note the R/L and D/S left start curves are on top of each
other.
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Figure 7: This figure shows the probability distributions
for two classes and the information transfer rate for the
R/L and D/S (random start (RS) and left/consistent start
(CS)) control methods with NCP=7. The orange curve
shows the results with D/S control with consistent left-
moving start. The thin purple line, gives the result for D/S
control with random start direction, and the thick black
line shows the result using the standard R/L paradigm.

The idea behind the interactive communication method is
to allow a user to compensate for inaccuracies or biases in
the classification boundary that are inevitable with noisy
and non-stationary systems. This is similar to the idea

used in [11] where Wolpaw and colleagues required users
to activate two commands on opposite sides of a possibly
biased classification boundary. Notice in the multi-step
D/S control method, the forces pushing the cursor in each
direction are caused by transitions from each side of the
classification boundary (e.g. a and d cause transitions in
the same direction as do b and c in Figures 2, 3, and 8.)
It is also similar to the way that humans naturally change
to a more interactive style when giving directions to a
non-native speaker. If the person does not understand, we
don’t repeat the same sentences but attempt to give the
same instructions with different words. We also monitor
understanding and change our directions to react to their
understanding. Some HCI systems have a feature like
this; when performing a risky computer operation that
may have been incorrectly activated (e.g. delete a file),
the interface does not ask you to press the same button
that was originally (possibly mistakenly pressed), but to
respond to “Are you sure? (Yes/No).”
There are other practical advantages to the D/S control
system for many modalities of signal generation. In EEG,
for example, emotional, error, and frustration, responses
are combined with any signal the user is actively trying to
generate. Frustration with loss of control has been shown
to induce non-stationarity in EEG [3]. It has been shown
that some of these signals are in the same frequency bands
as the signals to be actively detected and are difficult to
separate [6]. By using the D/S control method, these un-
conscious signals actually add to the discriminability of
the signals rather than subtracting from them. This may
also be true in gesture-based systems where a person who
is happy with the progress may make more animated, or
otherwise somewhat different, moves than when unhappy.
Similarly in speech-based systems, affect is generally re-
flected in people’s speech signals.
We see this work as important for considering the human
and computer as cooperative agents. While the human
may be limited by the discriminability of the signals they
can generate and the computer is limited in its ability to
learn the best classification boundary (given finite data),
the two together can have greater information transfer
(from human to computer) by changing the semantics of
the signals the human generates.

CONCLUSIONS

To conclude, we have analyzed the first step and revealed
that the direct R/L control is better for this first step (where
the feedback is random and can’t provide the computer’s
interpretation of the user’s signal). Through incorporation
of this knowledge to restrict the intial cursor direction in
a D/S system, we have further improved the information
transfer rate of the D/S interactive control method over the
standard direct R/L control method. At the same time, this
change reduces the real-time processing requirements of
the user and reduces the task to a more reactive task requir-
ing less conscious effort. The change in how the first step
is handled maintains the other advantage of the D/S in-
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Figure 8: This Figure shows the Markov chain model for the new proposed D/S control method with constant left start
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Figure 9: This figure shows the commands a user would
use after specific cursor movements with the D/S control
method (LEFT) and R/L control method (RIGHT). The
hand icon on the right/left side of the drawn screen rep-
resents right/left-hand motor imagery. The T represents
the desired target location/direction and the arrow repre-
sents the direction of the last cursor movement. Note that
with the D/S control the user changes command when the
cursor changes direction and that right hand targets can
be viewed/felt as the user performing a pushing behavior
giving the imagery of the hand that the cursor is moving
away from (as if to push it away). When the user desires
the left hand target, the user performs a batting back and
forth behavior where they perform imagery of the hand
that the cursor is moving towards (as if to bat it back).
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