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ABSTRACT: In the past few years, there has been
an increasing interest among the Brain-Computer Inter-
face research community in classification algorithms that
respect the intrinsic geometry of covariance matrices.
These methods are based on concepts of Riemannian ge-
ometry and, despite demonstrating good performances on
several occasions, do not scale well when the number of
electrodes increases. In this paper, we evaluate two meth-
ods for reducing the dimension of the covariance matrices
in a geometry-aware fashion. Our results on three differ-
ent datasets show that it is possible to considerably reduce
the dimension of covariance matrices without losing clas-
sification power.

INTRODUCTION

In recent years a new trend of algorithms using concepts
from Riemannian geometry have demonstrated remark-
able performance on classification of BCI signals, often
superior to the current state of the art. As shown in a
recent literature survey [1], such results gave rise to a
new generation of Brain-Computer Interface (BCI) sys-
tems that is becoming each year more popular among the
research community.
In BCI classification we are given a dataset containing
short-time recordings of EEG, each associated to a condi-
tion (or class). The goal is to train an algorithm on an en-
semble of trials with known labels and use it to correctly
classify a set with unknown labels. The usual approach is
to select certain features describing the trials and use sta-
tistical models to classify them [3]. A useful feature one
may consider when working with EEG signals is their
spatial covariance matrix, since different classes are ex-
pected to have different patterns of correlation between
electrodes. The core idea behind algorithms using Rie-
mannian geometry is to manipulate covariance matrices
in the manifold of symmetric positive-definite (SPD) ma-
trices and use them directly as features in a classifier that
respects their intrinsic geometry.
The computational complexity of algorithms based on
this premise is of concern for high-density EEG data.
This happens because Riemannian algorithms rely on
eigendecompositions, whose number of operations is on
the order of n3, where n is the number of electrodes.
Also, due to very low eigenvalues in the spectrum of
high-dimensional covariance matrices (mainly associated

to noise), logarithmic maps used by Riemannian algo-
rithms may encounter numerical difficulties. Further-
more, classifiers using high-dimensional covariance ma-
trices as features are prone to overfitting because of the
curse of dimensionality and the limited number of trials
usually available in BCI datasets [3].
Fortunately, the very nature of EEG recordings allows
us to consider only a subspace of the data without los-
ing much information. This is possible because of the
strong statistical correlation between signals recorded
from close positions and the small number of indepen-
dent sources that are active during brain activity. By ex-
ploring this redundancy, we can reduce the dimensions of
spatial covariance matrices and use Riemannian geomet-
ric algorithms more efficiently.
The literature of dimensionality reduction (DR) is very
rich and many methods already exist. Some are general-
purpose algorithms, like principal component analysis
(PCA) and multi-dimensional scaling (MDS), others are
specific to the analysis of EEG signals, such as common
spatial patterns (CSP). However, none of these alterna-
tives take into account the intrinsic geometry of the co-
variance matrices to reduce their dimensions in a princi-
pled manner.
Recently, in the computer vision literature, Ref. [4] pre-
sented two geometry-aware methods for reducing the di-
mensions of SPD matrices, a supervised and an unsuper-
vised approach. Both algorithms are based on the the-
ory of optimization on manifolds [7] and demonstrated
good results on image and video databases. Shortly after,
Ref. [5] applied the unsupervised dimensionality reduc-
tion described in [4] to datasets of Motor Imagery (MI)
BCI and obtained encouraging results.
In this work, we apply both algorithms given in [4] to the
context of BCI signals. We extend the results from [5] by
considering datasets with several subjects and test the al-
gorithms not only on MI but also on the P300 paradigm.
We examine the sensitivity of the classification algo-
rithms to the choice of the reduced dimension and inves-
tigate the conditions in which a DR would be advisable
or not. This paper continues with a section on Materials
and Methods, where we give a brief presentation of con-
cepts of Riemannian geometry and an overview of meth-
ods for geometry-aware dimensionality reduction. We
also present the datasets and the classification pipelines
used for assessing the quality of each dimensionality re-
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duction proposal. We continue with a section of Results
and Discussion and leave final comments to the Conclu-
sions section.

MATERIALS AND METHODS

This section begins with a brief introduction to concepts
of Riemannian geometry on SPD matrices. Then, we cast
dimensionality reduction as an optimization problem and
consider two cost functions encoding different criteria.
Finally, we describe the datasets in which we applied our
classification pipelines.
We denote by Xk 2 Rn⇥T the recording of T samples
on n electrodes of the kth trial in an ensemble of K trials
and yk the class associated to Xk. The spatial covariance
matrix Ck of Xk is a n⇥ n matrix estimated using

Ck =

1

T � 1

XkX
T
k . (1)

Riemannian geometry of SPD matrices: Given
enough samples, a covariance matrix estimated with (1)
is symmetric positive definite (SPD), which means that
all of its eigenvalues are strictly positive. Matrices with
such property form a manifold M, a set of points with the
property that the neighborhood of each x 2 M can be
mapped to an Euclidean space, also known as its tangent
space T

x

M. When associated to a metric, M becomes
a Riemannian manifold and fundamental geometric no-
tions are naturally defined, such as geodesics (shortest
curve joining two points), distance between two points
(length of the geodesic connecting them), the center of
mass of a set of points, etc.
We denote the manifold of SPD matrices by S++

n and
endow it with the affine-invariant Riemannian metric.
This metric induces a distance between any two matrices,
as [6]

�(Ci, Cj) = k log(C�1/2
i CjC

�1/2
i )kF , (2)

offering a more appropriate distance in the SPD space as
compared to the Euclidean distance. In fact, it is pos-
sible to show that S++

n is a manifold with nonpositive
curvature [6], so concepts from Euclidean geometry do
not necessarily apply. For instance, the sum of angles in
a triangle is different than 180 degrees (see Figure 1).
The center of mass M according to distance (2) of a set
of covariance matrices {C1, . . . , CK} is defined as [1]

M = argmin
M2S++

n

KX

k=1

�2(M,Ck). (3)

Note that M is the point in the manifold minimizing the
dispersion (variance) of the set of matrices. When n = 1

(Ck is a strictly positive scalar), M corresponds to the
geometric mean of the Ck’s.

Figure 1: The manifold S++
n is portrayed as a surface

with nonpositive curvature. The distance between any
two elements is the length of the geodesic.

This explains why many researchers adopt the term “ge-
ometric mean” to refer to the center of mass of a set of
covariance matrices. The geometric mean of two SPD
matrices is the half-way point of the geodesic that con-
nects them. For K > 2, there is no closed form solution
for M , so one has to resort to iterative algorithms [2].
The above definitions suffice for the intents of this paper.
The interested reader will find a thorough treatment of the
subject in the book of R. Bhatia [6].

Dimensionality reduction: Our approach for dimen-
sionality reduction determines a map that takes a set of
matrices {Ck} in S++

n to a new set {C#
k} in S++

p (p < n)
and keeps a maximum amount of information (under
some criterium) from the original matrices. To do so,
we search for a p-dimensional subspace of Rn containing
the most relevant features spanned by the columns of the
original Ck’s. This subspace is represented by a matrix
W 2 Rn⇥p whose columns form a basis for the subspace.
We use W to select linear combinations of electrodes in
Xk via

X#
k = WTXk,

which is the same as calculating

C#
k = WTCkW 2 Rp⇥p. (4)

Without loss of generality, we impose W to be an or-
thonormal matrix. Note that because W is full rank the
dimension-reduced matrices are guaranteed to be positive
definite.
The procedure for choosing W is cast as an optimization
problem,

minimize L(W ),

subject to WTW = Ip,
(5)

where L is a loss function that encodes the criteria for
reducing the dimension of the covariance matrices. One
possible criterium is that of making sure that the distances
of points Ck to a given “landmark” L do not change very
much for the dimension-reduced matrices in S++

p . This
can be written formally as

Lu(W ) =

KX

k=1

⇣
�2(Ck, L)� �2(WTCkW,WTLW )

⌘
.

If we choose L to be the geometric mean of the set of ma-
trices C, the loss function Lu is the one proposed in [4].

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-16



Note that Lu is based on an unsupervised criterium, since
it does not assume knowledge of the labels yk of each co-
variance matrix. In the supervised case, W can be cho-
sen to enforce the separability of classes in the reduced-
dimension manifold, as in the function

Ls(W ) =

KX

i=1

KX

j=1

Aij�
2
(WTCiW,WTCjW ),

where the Aij’s encode a measure of affinity between ma-
trices Ci and Cj , so that

Aij = gw(Ci, Cj)� gb(Ci, Cj),

with

gw(Ci, Cj) =

(
1, if Ci 2 Nw(Cj) or Cj 2 Nw(Ci)

0, otherwise
,

and

gb(Ci, Cj) =

(
1, if Ci 2 Nb(Cj) or Cj 2 Nb(Ci)

0, otherwise
,

where Nw(Ci) is the set of nw nearest neighbours of Ci

with the same label as yi and Nb(Ci) contains the nb

nearest neighbours whose labels are different from yi.
With this definition, Ls tries to preserve the distances
between each pair of matrices in the dimension-reduced
space while at the same time enhancing the class sepa-
rability: for large positive values of Aij (within class)
the dimension-reduced matrices are encouraged to come
closer to one another, while for small negative values (be-
tween classes) their distances tend to increase. Figure 2
illustrates the two aforementioned criteria.

Figure 2: Illustration of the priorities for each type of di-
mensionality reduction. In the unsupervised case, the dis-
tances to a landmark point are preserved, while for the su-
pervised approach the intra-class distances decrease and
the inter-class distances tend to augment.

We should mention that the computational cost for calcu-
lating Lu and Ls is not comparable. In the unsupervised
case the number of operations increases linearly with K
since all distances are calculated with respect to a single
landmark. In the supervised algorithm the number of op-
erations scales quadratically with K, a rather problematic
aspect when working with large datasets.
Problem (5) has a special structure and can be solved as
an optimization problem on manifolds, a branch of ap-
plied mathematics with a considerable amount of recent
research [7] and excellent computational tools available
online, such as the Python package pymanopt [9] used
in this work. In particular, we use a version of the con-
jugate gradient algorithm adapted for manifold optimiza-
tion and solved (5) considering the W matrices as ele-
ments of a Grassmann manifold. We will not delve into
more the details of these procedures, but the interested
reader will find more information in [4] and [7].

Classification pipeline: We classify each trial Xk via
the minimum distance to mean (MDM) algorithm. It de-
termines the geometric mean of the covariance matrices
in each class of the training set and then assigns to each
matrix in the test set the class to which the distance to the
mean is the smallest [8].
We compare three different pipelines for classification:

MDM: No dimensionality reduction (DR) and
classification using the MDM algorithm.

unsDR + MDM: Unsupervised DR with Lu as cost
function and landmark L fixed to the geometric
mean of the dataset. Classification using MDM.

supDR + MDM: Supervised DR with Ls as cost
function, nw always fixed to the minimum number
of elements in each class and nb chosen via cross-
validation. Classification using MDM.

The performance of each pipeline is assessed via a 10-
fold cross-validation procedure and compared by their
AUC (area under the receiver operating characteristic
curve).

Datasets: We carried out our analysis on three
datasets, two from MI experiments and one using the
P300 paradigm. The first MI database comes from the
BCI Competition III – Dataset IV [10] and contains
recordings from 5 subjects with 118 electrodes. We
applied our classification pipelines on 140 trials corre-
sponding to tasks of left and right imagined hand move-
ments (70 for each class). The second MI database is
available at the Physionet website [11] and comprises
recordings on 64 electrodes from 109 subjects. We only
used the data from tasks of imagined hands and feet
movement, which corresponds to approximately 44 tri-
als per subject (22 for each class). The P300 dataset
comes from experiments performed in our laboratory on
the P300-based game Brain Invaders [12]. We used data
from 32 electrodes on 38 subjects with 720 trials each
(120 target and 600 non-target).
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The data from each BCI paradigm were processed differ-
ently. For MI we filtered the EEG signals in the 8-30 Hz
band and considered each trial as a segment from 0.5 to
2.5s after each trial onset. We estimated the spatial co-
variance matrices using (1). For the P300 data we used
filters from 1 to 20 Hz and considered each epoch with a
duration of one second and starting just after a flash. We
used the approach described in [13] to estimate a special
form of covariance matrices capturing signals of interest
in event-related potentials.

RESULTS AND DISCUSSION

This section describes the analysis on each dataset and
discuss the obtained results.

BCI III-IV: We began our investigations on a dataset
where dimensionality reduction is of major concern, be-
cause of its 118 ⇥ 118 covariance matrices. We com-
pared the classification pipelines with different values of
p, the dimension of the reduced covariance matrices, and
nb, the number of neighbors considered in Nb(Ci) for
the supervised DR. The three values of p were chosen in
the following way: obtain the geometric mean M of the
covariances of the dataset (all classes together) and com-
pute its eigenvalue decomposition. Sort the eigenvalues
in decreasing order and select the values of p for which
their cumulative sum equals to at least 80%, 95% and
99% of their total sum. For the BCI III-IV dataset this
corresponds to p = 4, 12, and 32, respectively.
The results in Figure 3 show that for p = 32 the AUC
of pipelines with dimensionality reduction were at least
equivalent to those using all 118 available electrodes.
This can be explained by the low-dimensional structure
of the subspace spanned by the columns of the spatial
covariance matrices. Consequently, most of the variance
of these matrices is associated to their first few principal
vectors. In contrast, reducing the dimensions to p = 4 de-
grades the classification performance on most subjects, a
consequence of the loss of discriminatory features in the
reduced matrices. Figure 3 also indicates that the param-
eter nb of supervised DR does not seem to have much
influence over the scores of the pipelines.

Physionet: In this second dataset we tested the per-
formance of classification pipelines on a wide range of
individuals. Having data from so many subjects allows
us to observe certain patterns and make general conclu-
sions that would be difficult otherwise. Figure 4 displays
the results on three subjects for multiple values of nb and
fixed p = 24. For certain choices of nb the score with
supervised DR was higher than the other pipelines, but
in general we did not observe any considerable improve-
ment. In fact, one could include a grid-search step to the
pipeline with supervised DR for choosing the best value
of nb for each subject. However, this would lead to a con-
siderable increase in processing time, since the quadratic
scaling of supervised DR makes it a quite expensive op-
eration by itself. With this in mind, we fixed nb = 10 in
all of the following analysis, accepting the compromise

that it might not be the optimal value for all subjects.

no reduction

(1) n = 118

(2) p = 4 
(3) p = 12
(4) p = 32 

unsupervised

supervised

  (5) p = 4,   nb = 2
  (6) p = 4,   nb = 5
  (7) p = 4,   nb = 10
  (8) p = 12, nb = 2
  (9) p = 12, nb = 5
(10) p = 12, nb = 10
(11) p = 32, nb = 2
(12) p = 32, nb = 5
(13) p = 32, nb = 10

Figure 3: AUC of the classification pipelines on five sub-
jects from dataset BCI III-IV. We considered pipelines
with p 2 {4, 12, 32}. For the supervised DR we fixed
nw = 70 and varied nb in {2, 5, 10}.

Figure 4: AUC of the classification pipelines with super-
vised DR on three subjects from the Physionet database.
We considered multiple values of nb and fixed nw = 22

and p = 24. Horizontal lines correspond to AUCs of
pipelines with no dimensionality reduction and unsuper-
vised DR.

Figure 5 compares the performances of the classification
pipelines on all subjects for different values of p and fixed
nb = 10. The curves in each plot correspond to the
AUC of each pipeline in decreasing order. We observe
the same behavior as before: on most subjects, when the
dimension of the reduced matrices (e.g. p = 4) is small,
the AUC of the pipeline with full matrices (64 ⇥ 64)
is higher as compared to both dimensionality reduction
methods. The score of all pipelines become close to one
another when p increases. Another important observation
from Figure 5 is that the classification performance of the
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pipelines varies smoothly with the choices of the dimen-
sion p of the reduced covariances. This is of great practi-
cal value because it demonstrates that we do not need to
choose a precise p for attaining good results; there exists
a certain range where all choices are equivalent.

Figure 5: AUC scores in decreasing order for classifica-
tions on all subjects from the Physionet database. We
fixed nb = 10 and nw = 22, and considered the values of
p indicated in the figure.

P300: The results for our investigations of the P300
dataset are displayed in Figure 6. We compare once again
the classification performance of a pipeline without di-
mensionality reduction (64 ⇥ 64 matrices) to classifiers
using either an unsupervised or a supervised approach.
We did all analysis with fixed nb = 10 and considered
multiple values of p. We observed the same behavior as
before for the performance of dimensionality reduction
algorithms: when p is too small the pipelines with DR
are clearly inferior, as seen for p = 8, whereas for higher
p the performances are all very similar.
The computing time for supervised DR in the P300
paradigm was excessively high, mainly because of the
large number of trials in the dataset. We tried using a
smaller set of trials, but in this case the classification per-
formance of all pipelines were lower. In fact, usually
P300 BCI systems are expected to improve their perfor-
mance when more trials are available, so having a dimen-
sionality reduction step that does not scale well with their
number is problematic.

Comparing all pipelines: Besides investigating the
conditions in which a dimensionality reduction would be
useful or not, we tested whether any of the methods had a
globally superior performance on the P300 and Physionet

datasets. In theory, we expect the supervised approach to
have better results because of the extra information it has
concerning the labels of each covariance matrix. To test
this hypothesis, we rearranged the results from Figures 5
and 6 into the plots in Figure 7, where each axis contains
the AUC of a different pair of pipelines.

Figure 6: AUC values in decreasing order for the three
pipelines applied to all subjects from the P300 database.
We fixed nb = 10 and nw = 120, and considered the
values of p indicated in the figure.

We estimated regression lines with intercept fixed to the
origin for each plot and used a F-statistic to test if we
could reject the hypothesis of its slope being equal to one.
None of the statistical tests rejected the null hypothesis
with type I error fixed to 5%, meaning that nothing can
be said about one pipeline being consistently better than
the others. This result indicates that the extra informa-
tion used by the supervised DR is not enough for improv-
ing its classification power. It also means that adding a
dimensionality reduction step to a classification pipeline
does not harm its performance, a very useful fact that
alleviates the computational burden of processing high-
dimensional features using Riemannian geometry.

CONCLUSION

In this work, we evaluated two methods for reducing
the dimension of positive-definite matrices and com-
pared their scores in classification tasks on different BCI
datasets. We observed that reducing too much the di-
mension discards important information from the origi-
nal high-dimensional space and degrades the classifica-
tion performance. Also, the choice of p showed a smooth
influence over the scores of the classification pipelines, a
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very useful result in practice.
Our statistical tests did not reject the hypothesis of each
pair of pipelines having equivalent performances, indicat-
ing that it is possible to reduce the dimensions of a spa-
tial covariance matrix without losing classification per-
formance. We should point out that we probably did not
obtain better results for the supervised DR because we
did not use a grid search for choosing the best nb on each
subject. However, if we had included this step the al-
gorithm would have become impractical, because of the
computational power that minimizing the loss function
Ls demands.

Figure 7: Scatter plots with the AUC scores of each pair
of pipelines in the axis. We used only the results for
p = 24 on both datasets. Coefficient m̂ is the slope of
a regression line with intercept fixed at the origin.

In comparison to [5], our investigations on BCI signals
were more thorough. We explored the effects of the
choice for the reduced covariance matrices, used a dataset
containing many more subjects and a BCI paradigm that
had not been considered until now. In future work, we
intend to explore new options for performing supervised
DR. The approach proposed by [4] does not scale well for
large datasets and we believe that there are better alterna-
tives. Also, we would like to explore more deeply the ef-
fects of reducing the dimensions of covariance matrices,
not only in terms of classification power but as a general

problem in Riemannian geometry. Finally, we should ex-
tend our comparisons to other proposals available in the
literature for reducing the dimension of EEG signals.
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