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ABSTRACT: Motor Imagery based Brain-Computer 

Interfaces (BCI) have shown potential for the 

rehabilitation of stroke patients. In order to make BCI 

systems available in the clinical environment new 

processing stages that increase the number of patients 

that can use these systems must be developed. This 

work presents a novel processing stage for BCI systems 

using the Filter Bank Common Spatial Patterns 

algorithm for feature extraction and Particle Swarm 

Optimisation for feature selection. The proposed BCI’s 

processing stage performance was evaluated with 

electroencephalography data of six stroke patients, 

which performed motor imagery of their paralysed 

hand. Offline tests reached average classification 

accuracies of 75±8 %. For 4 out of 6 patients, the 

proposed method showed a statistically significant 

higher performance (p<0.05) than the Common Spatial 

Pattern method. Therefore, although a higher sample is 

needed to confirm the observations, it is possible to 

significantly improve hand motor imagery classification 

by selecting filter bank common spatial patterns features 

with particle swarm optimization.   
 

 

INTRODUCTION 

 
Stroke is the first cause of disability worldwide [1]. 

Approximately 400 patients receive neurorehabilitation 

therapy for stroke sequelae each year in the National 

Institute of Rehabilitation, located in Mexico City. Loss 

of motor function (known as hemiparesis) is one of the 

most disabling consequences of stroke, which usually 

affects both upper and lower limbs from one side of the 

body.  
Assistive technologies such as Brain-Computer 

Interfaces (BCI) provide an artificial communication 

channel between the brain and an external device such 

as a robotic orthosis [2, 3]. BCI systems based on motor 

imagery (MI) of affected limbs have shown great 

potential as a tool for brain plasticity enhancement [4, 

5]. MI is a mental rehearsal of movements of a limb, for 

example the hand or foot, without muscle activation [6, 

7, 8]. MI elicits distinctive patterns in the electrical 

activity of the sensory-motor cortex, mainly in the 

frequency bands known as mu (8-13 Hz) and beta (14-

30 Hz) [6, 9]. A MI-based BCI system is comprised of 

four stages: acquisition, pre-processing, feature 

extraction and classification. Most BCI acquire 

electroencephalography (EEG) since is a non-invasive 

technique, has a good time resolution and is easy to 

accept by patients. Linear Discriminant Analysis (LDA) 

is the most used classification technique reported in BCI 

publications [10, 11]. One of the most effective feature 

extraction methods is the Common Spatial Patterns 

(CSP) algorithm, which computes a set of spatial filters 

that optimally differentiate two classes of MI. To 

achieve good classification performances using the CSP 

algorithm, the temporal filtering of the EEG signal must 

be performed on a specific frequency band, usually this 

band is comprised by the mu and beta frequency range. 

Two other parameters that need to be set up are the time 

interval from which features are going to be extracted, 

and the subset of spatial filters involved in the feature 

extraction process [12].   

The performance of CSP can be enhanced by selecting 

subject-specific parameters. Therefore, modifications to 

the original CSP method have been proposed to include 

this aspect. One of such modifications is known as 

Filter Bank Common Spatial Patterns (FBCSP); this 

method performs an automatic frequency band selection 

for temporal filtering of the EEG [13]. FBCSP 

algorithm employs a filter bank that decomposes the 

EEG into 9 different frequency bands covering the 

range of 4 to 40 Hz. Each of these 9 frequency bands is 

spatially filtered using the CSP algorithm; afterwards 

the extracted features for each band are selected with 

either the Mutual Information-based Best Individual 

Feature (MIBIF) or the Mutual Information-based 

Rough Set Reduction (MIRSR) algorithms. 

Classification is performed only with the selected 

features [13,14]. Feature selection is an important stage 

of the FBCSP algorithm, since it lowers the number of 

frequency bands needed for MI classification, and at the 

same time increases the classification performance of 

the BCI system. Feature selection is in fact an 

optimisation problem, and therefore artificial 

intelligence techniques, such as Particle Swarm 

Optimisation (PSO), could be used for finding a 

solution for it. PSO was originally proposed by Shi and 

Eberhart, inspired by the social behaviour of bird flocks 
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while searching for food. PSO performs a search in the 

space of the problem, with the aid of a population 

(called swarm) of individuals (called particles). Each 

particle executes a search based on its current position 

and velocity in the search space. In each iteration 

(called generations), the position and velocity of the 

particles are updated according to their best previous 

position (local search) and the best position of the 

swarm (global search) [15]. To the author’s knowledge, 

there are few studies that describe the use of PSO as a 

feature selection algorithm for BCI systems [16,17].  

In this work, a novel signal processing stage comprised 

of FBCSP for feature extraction, PSO for feature 

selection and LDA for classification was implemented 

as part of a BCI system. The proposed algorithm was 

evaluated offline with data of patients with subcortical 

stroke diagnosis.  

 
MATERIALS AND METHODS 

 
     Participants: The sample for this study comprised 6 

patients diagnosed with stroke (Mean = 55.8 ± 12 

years). In order to be considered for inclusion in the 

study, patients had to have a first stroke event of 

subcortical localisation, confirmed by a neurologist by 

means of neuroimaging studies (Magnetic Resonance or 

Computed Tomography); total or partial paresis of one 

of their hands; without clinical history of any other 

previous neurological or psychiatric diseases; right 

handed; with normal or corrected to normal vision and, 

with a normal performance in the subscales of digit 

detection and visual detection of the neuropsychological 

test NEUROPSI (this test has been validated for 

Spanish-speaking populations) [18]. The subscales 

evaluate the ability to follow instructions and 

concentrate in repetitive tasks. Subcortical stroke 

patients were selected since their brain damage does not 

involve the brain cortex and, therefore, they were less 

likely to present significant cognition impairments. 

Patients’ data are shown in Tab. 1. 

 

 

Table 1: Clinical and Demographic data of patients 

Patient Age Gender Hemiparesis Evolution 

1 50 Male Right 7 months 

2 57 Female Right 36 months 

3 58 Male Left 2 months 

4 79 Female Left 1 month 

5 46 Male Left 3 months 

6 45 Male Left 3 months 

 

 

     EEG acquisition: A g.USBamp biosignal amplifier 

from g.tec was used for EEG acquisition. EEG was 

acquired with 24-bits of resolution and sampling rate of 

256 Hz. Active EEG electrodes were used for 

acquisition, with 11 electrodes placed over the scalp of 

the patients, in positions C3, C4, Cz, T3, T4, F3, F4, Fz, 

P3, P4 and Pz of the international 10-20 system. Ground 

placement was set in the AFz position, and the reference 

electrode was placed in the right earlobe. To verify that 

no real movements were elicited during MI, 

Electromyography (EMG) was recorded from the deep 

flexor and superficial muscles of the fingers of both 

hands. For each patient, four recording sessions were 

performed in consecutive days, with 120 trials recorded 

in total. Recordings were performed in 4 days to avoid 

patients’ exhaustion, and all trials recorded per patient 

were included in the analysis. Patients were instructed 

to sit in a comfortable armchair, with a computer 

monitor placed at 150 cm in front of them. Visual cues 

shown in the monitor directed the patients to perform 

both rest with eyes open and MI from their paralysed 

hand. EEG acquisition was performed using a similar 

strategy as the one followed by the Graz paradigm [19]. 

Fig. 1 shows that the rest interval of the trials lasted 3 s 

and the MI interval lasted 5 s.  

     Implementation of the FBCSP+PSO algorithm: A 

one-second length window was extracted from 1.5 s to 

2.5 s to obtain the rest information for each trial. 

Another window of one-second length was extracted 

from the 3.5 to 4.5 s time interval of each trial, to obtain 

the MI information of the trials, as observed in Fig. 1. 

These time windows were selected based on previous 

studies which show that differentiation between MI and 

REST classes is higher in these time intervals [20]. The 

FBCSP algorithm encompassed the processing stage of 

the BCI system, and PSO was used for feature selection 

(named FBCSP+PSO). A diagram of the algorithm’s 

implementation is shown in Fig. 2.   

 

 

Figure 1: Illustration of the experimental paradigm. 

Dotted lines show the time windows extracted from 

EEG signals. 

 

 

 

Figure 2: Diagram of FBCSP+PSO implementation 
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EEG data were filtered in order to obtain 6 frequency 

sub-bands, each 4 Hz broad, and with 1 Hz of 

overlapping in order to avoid loss of information. 

Encompassing both alpha and beta frequency bands as 

follows: 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24-28 

Hz and 28-32 Hz. A 60 Hz band-stop filter was also 

applied to the EEG signals. All filters were FIR filters 

of 20th order, selected for their linear phase features.  

For the EEG data filtered in each sub-band, spatial 

filters were computed with the CSP algorithm. CSP 

performs a linear transformation on the EEG data, in 

order to obtain features whose variances are optimal for 

classification of two classes of MI, in a specific 

frequency band. Details of the CSP implementation can 

be found in the works of Blankertz et al. [21], and 

Ramoser et al. [22]. Spatial filters were computed using 

the MATLAB command 𝑊 = 𝑒𝑖𝑔 (𝑆1, 𝑆1 + 𝑆2) as 

suggested in the above-mentioned works. 𝑊 is the 

matrix containing the spatial filters, 𝑆1 and 𝑆2 are the 

covariance matrices of MI and rest computed from the 

EEG data of each filtered frequency sub-band. In the 

implementation of the original CSP, only the first and 

last 𝑚 columns of the 𝑊 matrix (𝑚 is generally 2) are 

used to generate the feature vector used for 

classification. With the goal of having a greater chance 

of finding the optimal sub-band for each patient, in this 

work all possible features were extracted with CSP. The 

feature vector generated for each trial 𝑖 is comprised as 

follows: 

 

𝑓𝑖 = [𝑓1,𝑖 , 𝑓2,𝑖 , 𝑓3,𝑖 , 𝑓4,𝑖 , 𝑓5,𝑖 , 𝑓6,𝑖] (1) 

 

Therefore, CSP features computed for the training set 

comprised by 𝑛𝑡 trials are: 

 

𝐹𝑇𝑟𝑎𝑖𝑛 = [𝑓1; 𝑓2; 𝑓3; 𝑓4; … ; 𝑓𝑛𝑡],       𝐹𝑇𝑟𝑎𝑖𝑛 ∈ ℝ𝑛𝑡×66   (2) 

 

Where 66 are the 6 frequency band features 𝑓 extracted 

for each of the 11 recorded electrodes. For feature 

selection, PSO was used for selecting a subset of 

features from 𝐹𝑇𝑟𝑎𝑖𝑛 in order to decrease both the 

classification error and the number of selected features. 

PSO was computed by solving two equations: 

 

𝑣𝑖
𝑛+1  =  𝑤 ∙ 𝑣𝑖

𝑛  +  𝑐1 ∙ 𝑟1 ∙  (𝑃𝐵𝑒𝑠𝑡𝑖
𝑛 – 𝑥𝑖

𝑛) +  𝑐2 ∙

𝑟2 ∙ (𝐺𝐵𝑒𝑠𝑡𝑔
𝑛 – 𝑥𝑖

𝑛)                                              
(3) 

 

                                 𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1 (4) 

 

Where 𝑥𝑖
𝑛+1 and 𝑣𝑖

𝑛+1 are the position and velocity of 

the 𝑖th particle of the 𝑛th generation. For PSO 

implementation 50 particles and 50 generations were 

used. 𝑤 is the inertial weight of PSO which linearly 

descends from 1 to 0 as generations of PSO are 

computed. 𝑐1 and 𝑐2 are positive constants set to 1. 𝑟1 

and 𝑟2 have random values between 0 and 1, which 

coupled to 𝑐1 and 𝑐2 set the local and global search 

properties of PSO. 𝑃𝐵𝑒𝑠𝑡𝑖
𝑛 is the best position reached 

by the 𝑖th particle in the 𝑛th generation. 𝐺𝐵𝑒𝑠𝑡𝑔
𝑛 is the 

best position (𝑔) reached by the entire swarm in the 𝑛th 

generation. The maximum position value that a particle 

could reach was 1 and the minimum was 0. Maximum 

speed of each particle was set to 1 and minimum speed 

to 0. In this work, the search space of PSO was 1𝑥𝐷 , 

where 𝐷 equals 66, and was comprised of the 66 

features that can be selected from the FBCSP algorithm. 

Each computed solution with PSO is a subset of the 

selected features. Solution values are in the range from 

0 to 1. If the value of an element of the solution was 

higher or equal to 0.5, then the corresponding feature 

was selected. The original CSP algorithm states that 

selected features must be paired, so complementary 

features of the selected ones were also included, in case 

they were not originally selected by PSO. Selected 

features from the training set were used for designing an 

LDA classifier. PSO fitness value was computed with 

the following equation: 

 

𝑣𝑎𝑙𝑢𝑒 = (𝑒𝑟𝑟×2) + (𝑛𝑠𝑒𝑙𝑒𝑐/66) (5) 

 

Where 𝑒𝑟𝑟 is the computed classification error from the 

training set. 𝑛𝑠𝑒𝑙𝑒𝑐 is the number of selected features. 

Variables 𝑒𝑟𝑟  and 𝑛𝑠𝑒𝑙𝑒𝑐/66 have values ranging from 

0 to 1. Both parameters 𝑒𝑟𝑟 and 𝑛𝑠𝑒𝑙𝑒𝑐/66 are 

summed, so that PSO can perform a reduction of both 

classification error and the number of features used for 

classification. The  value 𝑒𝑟𝑟 is multiplied by 2, so that 

the optimization priority of PSO is the reduction of the 

classification error over the selection of a lower number 

of features. The stop criteria used for PSO was either 

achieving 0% of classification error, or 50 generations. 

Fig. 3 shows a block diagram depicting the 

implemented PSO algorithm. 

 

 

Figure 3: Block diagram describing the implementation 

of the PSO algorithm 

 
With the final selected features (𝑥) and the training set, 

a LDA classifier was designed, which was later 

evaluated with the testing set. Features selected with 

PSO in the training stage were the same as the ones 

used for the testing stage of the classifiers. LDA 
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performance was measured by computing the 

percentage of classification accuracy (%CA). 

     Cross-Validation: A stratified cross-validation of 

10x10-Fold was used in order to avoid bias in the 

computation of %CA. Classifiers were tested using 

totally different datasets than the ones used for training. 

For each fold and repetition, the FBCSP+PSO algorithm 

was calculated. The 100 values of %CA obtained from 

this procedure were used to compute the average %CA 

for each patient.  

For comparison purposes, the performance of the 

FBCSP+PSO method was compared with that of the 

original CSP using the same training and test subsets, 

and applied to a frequency band of 8 to 32 Hz.  

     Statistical Analysis: In order to assess the reliability 

of the BCI system, both %CA and the practical level of 

chance were computed. The practical level of chance for 

each experiment was not 50%, since its value needs to 

be computed by means of a confidence interval as 

explained by Muller-Putz et al. [23]. Practical level of 

chance was computed with a binomial distribution using 

a 95% confidence interval, with 120 trials 

encompassing the data of each class. The computed 

%CA were compared with the practical level of chance 

in order to assess if a patient could control the BCI 

system.  

A paired t-test (α=0.05) was performed for comparing 

the %CA obtained with the proposed FBCSP+PSO 

method, and the original CSP (with a frequency band 

ranging from 8-32 Hz).  

      Computational cost: The averaged execution time of 

the proposed algorithm’s training stage for each 

patient’s cross validation was used to estimate its 

computational cost. All computations were performed in 

a PC with a 2.5GHz Core i7 processor and 12GB of 

RAM.  

 

RESULTS 

 

Tab. 2 shows the number of selected features by the 

FBCSP+PSO algorithm for each patient. This number is 

the mode from the 100 values computed from the 

10x10-Fold cross-validation with the train set. On 

average, for each patient, 10 features were selected by 

PSO. The most selected frequency band for all 

experiment’s repetitions is also shown: for 5 of the 6 

patients it was from 8 to 12 Hz, which comprises the mu 

rhythm, while for the other patient the selected 

frequency sub-band was 12 to 16 Hz. Tab. 3 shows the 

%CA obtained with FBCSP+PSO and the ones obtained 

with CSP with a frequency band from 8 to 32 Hz are 

shown. These percentages are the offline MI and rest 

recognition capabilities of the BCI. 

It is important to remember that the number of selected 

features with the CSP algorithm was always 4 (2×𝑚). 

An asterisk (*) was used to indicate if a statistically 

significant difference (p<0.05) was found between both 

methods. FBCSP+PSO showed better performance than 

CSP for the 6 patients. For 4 of the 6 patients, 

differences were statistically significant.  

Table 2: Feature selection performed with PSO. SD 

refers to standard deviation. 

Patient 
FBCSP+PSO 

Features Frequency Band (Hz) 

1 10 8-12 

2 8 12-16 

3 8 8-12 

4 10 8-12 

5 10 8-12 

6 12 8-12 

Mean(SD) 10(2) - 

 

 

Table 3: Performances of FBCSP+PSO and CSP. An 

asterisk (*) means that statistically significant 

differences (p<0.05) were found between both methods. 

SD refers to standard deviation. 

Patient 

FBCSP+PSO 

% Classification 

accuracy (SD) 

CSP 

% Classification 

accuracy (SD) 

1 83 (2) 82 (1) 

2 85 (2) 84 (1) 

3 68 (2)* 66 (1) 

4 65 (3)* 58 (2) 

5 76 (2)* 69 (1) 

6 74 (2)* 63 (1) 

Mean(SD) 75(8) 70(10) 

 

The average computational cost of FBCSP-PSO training 

stage across all patients was 3.6 s (SD=0.04 s).  

 

DISCUSSION 

 

The presented novel processing stage was comprised by 

the FBCSP algorithm for feature extraction and PSO for 

feature selection. Test results were compared to those 

from the original CSP algorithm with a frequency band 

from 8 to 32 Hz. The proposed method was designed in 

order to increase the BCI’s MI classification 

performance of the paralysed hand of stroke patients. 

Offline performances of the proposed processing 

algorithm achieved better performances than the 

original CSP. It is important to mention that for 4 out of 

6 patients, these performance differences were 

statistically significant. These results are different from 

the ones presented by Ang et al., who performed an 

offline evaluation of the FBCSP that employed the 

MIRSR feature selection algorithm. They performed 

their test with a public database comprised of 9 healthy 

subjects. In their work, it is shown that FBCSP using 

the MIRSR algorithm had better performances for 6 out 

of 9 subjects than CSP (using a 7 to 35 Hz band), but 

none of the performance differences were statistically 

significant [14]. Therefore, the FBCSP+PSO method 

seems to be a better option for automatic frequency 

band selection of each patient.  

The average offline performance computed for each 

patient is similar to the one reported by Ang et al. in a 

study which analysed the performance of 46 stroke 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-11



patients which achieved an average of 74% of correct 

classification. In order to acquire MI from the patients’ 

paralysed hands, authors recorded 27 EEG channels. 

The processing stage comprised the FBCSP using 

MIBIF as feature selection algorithm [24]. In the 

present work, similar offline performances were 

obtained, however only 11 EEG channels were 

recorded. PSO is an optimisation method for which 

extensive research has been conducted in order to 

ensure better convergence and to reduce stagnation of 

the search space. The heuristic nature of PSO implies 

that the method performance will not be limited by 

statistical features of the search space, since the method 

does not need to compute inverse matrices or other 

computations which often present restrictions, 

especially for high dimensional search spaces. 

Consequently, PSO can be easily adapted for feature 

selection in MI-based BCI with setups involving a high 

number of EEG electrodes; however, one of the main 

disadvantages of PSO optimisation is the high 

computational cost required for its training phase. In 

this work, computational cost was not an issue since a 

relative low number of EEG channels were recorded 

and processed. Offline performances of the BCI system 

show that PSO implementation for feature selection of 

FBCSP allows this method to have better performances 

than CSP. This performance is achieved by setting a 

multi-objective optimisation for the PSO algorithm, 

which is computationally efficient since it only required 

computing the LDA performance and the number of 

selected features. It is important to mention that, in 

order to achieve better performances, higher importance 

was given to the LDA’s classification performance than 

to the number of selected features in the fitness 

function. 

One of the limitations of the present study was that 

scalp location of the selected features was not analysed. 

However, all the recorded electrodes were placed over 

the sensorimotor cortex and, therefore, in an online BCI 

aimed for neurorehabilitation no maladaptive changes 

during neural re-organization would be elicited by the 

feedback. 

 

CONCLUSION 

 

This work presents a novel processing stage for BCI 

systems. The proposed processing stage comprised of 

FBCSP+PSO combined with LDA showed good 

performances for classification of MI from the 

paralysed hand of stroke patients. PSO as a selection 

algorithm for FBCSP features allows reducing the 

problem’s dimensionality and achieving better 

classification performances, compared to those obtained 

if only the original CSP is used. The next developing 

stage of the system will be to perform tests involving 

direct EEG acquisition from patients. An online 

implementation of the proposed algorithm must be 

assessed to further confirm its feasibility for stroke 

patients’ rehabilitation. 
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