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ABSTRACT:  
A fully implanted Brain-computer Interface was 

recently applied in a locked-in patient allowing for a 

one-dimensional control of a spelling board on a 

computer. The patient attempts to move her hand in 

order to generate a ‘click’, which is used to select 

letters. The optimal parameters to generate an accurate 

click were estimated from a cursor control task where 

the control signal was used to control the y-velocity of a 

cursor on the screen. However, the set of parameters 

used for the cursor control task was not accurate enough 

to be used for clicks. In order improve accuracy, three 

filters were designed to add features, smooth and z-

transform the signal before conversion to a click, in 

order to provide a more reliable communication channel 

that has less false positive events. 

 
INTRODUCTION 

 

People with severe paralysis who have lost the ability 

to communicate have only limited options to regain this 

ability. Since the 1990‘s Brain-Computer Interfacing 

(BCI) has been proposed as an assistant technology to 

reestablish this lost communication [1]. For optimal 

usability in daily life at the homes of the target 

population, such a system should be accurate and 

intelligent (i.e., it incorporates smart decoding 

algorithms that dynamically adjust to e.g. slow signal 

changes), fully implantable (i.e., permanently available 

and invisible), safe, stable, easy and comfortable to use 

[2]. However, even though technology advances fast, 

many of these requirements have not been met so far. 

Recently, a fully implantable BCI communication 

system [3] (Utrecht NeuroProsthesis, UNP, Figure 1) 

was implemented, which translates neuronal activity 

elicited upon attempted hand movements into a binary 

control signal for selection of characters in spelling 

software running in ‘switch-scanning mode’, where so-

called ‘brain-clicks’ can be used to select characters, or 

groups of characters, that are highlighted automatically 

and sequentially by the computer. The UNP system was 

implanted in a locked-in patient with late stage 

Amyotrophic Lateral Sclerosis, with a four-electrode 

strip covering the hand sensorimotor cortex. The bipolar 

pair to use for BCI control was chosen based on the 

highest correlation to a motor localizer task, where the 

patient alternated between trials of attempted hand 

movement and rest. The patient gave informed consent 

to this study, which was approved by the ethics 

committee at the University Medical Center Utrecht in 

accordance with the 2013 provisions of the Declaration 

of Helsinki. 

 

Extraction of good parameters 

A standard Cursor Control task (CCT, in BCI2000 

[4]) was used to estimate the optimal signal processing 

parameters for a one-dimensional continuous control 

signal. In this task the subject controlled the y-velocity 

of a ball on the screen (Figure 2), while the ball moved 

at constant speed on the x-direction in attempt to hit one 

of two targets displayed on the right hand side of the 

screen. The subject attempted to move her hand to move 

the ball up and relaxed to move it down. 

Across several months the average CCT performance 

using high-frequency broadband power (80±2.5 Hz) 

was 90.73±6.42 % (N=70 runs), which is significantly 

above chance (50%, p<0.01). However, the high 

performance with this continuous signal did not predict 

performance using the same electrode pair and 

frequency band for a binary signal (above or below a 

fixed threshold) to generate brain-clicks. The threshold 

was initially based on the midpoint between the 

averaged high-frequency band power during the active 

and during the inactive states. This resulted in a lower 

than expected performance during spelling and a need 

for frequent calibration. Errors were mainly unintended 

clicks (false positives), although misses also occurred. 

Hence, we were interested in investigating how the 

continuous brain signal could be translated optimally 

into brain-clicks that were usable for high accuracy 

spelling, with a low false positive rate and without 

compromising the sensitivity to intended actions. Two 

hypotheses based on the acquired signals were defined: 

1) Many false positives (FPs) were caused by the 

noisy and spiky morphology of the signal, hence 

smoothing of the signals would decrease the FPs; 

2) The power signal was not stable over time, hence 
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normalization of the signal would improve 

performance. 

 

 
Figure 1: Utrecht NeuroProthesis (UNP) fully implanted 

brain-computer interface system. 

 

 

 

Figure 2: CCT design as implemented in BCI2000. 

The ball moves towards the target at constant speed 

while the subject controls the y-velocity of the ball 

towards the target. 

 

 

MATERALS AND METHODS 

 

General description of the system 

The UNP system (Figure 1) consists of four 4-electrode 

ECoG strips, from which one strip is placed over the 

hand region of primary motor cortex. The subcutaneous 

amplifier and transmitter device, placed subclavicularly, 

transmits power signals to an antenna attached to the 

clothing, every 200ms (5 Hz) for one bipolar pair. As a 

first step to improve the reliable conversion of 

continuous brain activity into a ‘brain-click’ control 

signal, instead of only using the high-frequency band, 

we used a filter (linear classifier filter) that summed two 

frequency bands (Low Frequency Band, LFB, 

20±2.5Hz, weight -1; and High Frequency Band, HFB, 

80±2.5 Hz, weight +1) of the same bipolar pair (FHFB - 

FLFB). For more details about the motivation behind this 

filter see [3]. The resulting control signal was then 

thresholded through a threshold filter and converted into 

a binary signal, where 1 represents the samples above 

the threshold and 0 otherwise (Figure 3). Finally, this 

binary signal was converted into a click signal in the 

click translator filter, which defined a click when more 

than 5 samples (1 s) exceeded the threshold (Figure 3). 

The click was then sent to a spelling program where 

rows of characters, or individual characters, could be 

selected with a brain-click (Figure 4). Additionally, in 

order to address the two hypotheses, we tested and 

implemented two additional filters.  

 

 

Figure 3: The threshold filter converts the control 

signal (FHFB - FLFB) into a binary signal, whereas the 

click translator filter converts the binary signal in a 

click signal. 

 

 

Figure  4: Spelling program used during online 

research runs to spell 5 or 7-letter words. The 

computer automatically highlights each row or item 

sequently, looping from top to bottom and left to right, 

respectively. Each row of characters, or individual 

characters, can be selected with a brain-click. 

 

Addressing hypothesis 1: The Smoothing filter 

To tackle the problem of noisy and spiky signals 

intrinsic to neuronal recordings, a smoothing filter was 

designed to smooth each feature signal (FLFB and FHFB) 

independently (Figure 5). In the design of real-time 

feedback BCI systems the use of future samples to 

ITI (1s)

Target appearance (1-2s)

Cursor appearance

Cursor control (2-6s)

Score feedback (0.5s)
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smooth the signal is not possible. Therefore the 

smoothing function here implemented averages each 

incoming sample with the previous 5 samples (i.e., 1.2 s 

smoothing window). 

 

 
 

Figure 5: Smoothing filter averages each incoming 

sample (red square) with the previous 5 samples (black 

circles). The smoothing filter is applied to each feature 

signal (FLFB and FHFB) independently.  

 

 

Addressing hypothesis 2: The Z-Transform filter 

Another property of the signal that is crucial for 

accurate performance is the stability of the signal over 

long periods of time, i.e., the minimization of slow 

amplitude trends of the signal. A constant signal 

amplitude allows for the use of constant parameters, 

such as the threshold, across sessions. For that, 

normalization to a z-score can be used to diminish 

signal variability. Furthermore, when adding two 

different feature signals, their separate z-transformation 

allows for a straightforward combination for the signals 

(weights -1 for LFB and +1 for HFB, see [3] for more 

details). Hence, a z-transform filter (Figure 6) was 

implemented, by subtracting each incoming sample (of 

each feature signal FLFB and FHFB) with the mean of a 30 

s calibration window and dividing it by the standard 

deviation of the same window.  

 

 
 

Figure 6: The z-transform filter subtracts from each 

incoming sample (S) the mean of a 30s calibration 

window and divides the resulting value by the standard 

deviation (std) of the calibration window.  

 

 

Hypotheses testing 

Click-performance during online copy-spelling runs 

(see Figure 4 for an explanation of the speller 

application) was compared before and after the filter 

implementation, which also includes the addition of the 

LFB feature. An overview of the implemented filters 

can be found in Figure 7.  

Performance was assessed by means of false positive 

(FP) rate and true positive (TP) rate of the online runs. 

The patient performed a total of 35 copy-spelling runs 

before (words with 7 letters) and 69 after filter 

implementation (words with 5 letters). The number of 

FP, TP, true negatives and false negatives were 

determined automatically from the data recorded during 

online runs and visually inspected by two independent 

observers. Please note that no offline (post-hoc) 

processing was applied to the recorded data. 

 

 

RESULTS 

 

For comparison of click-performance before and after 

the filter implementation the FP rate and true positive 

(TP) rate during online runs (where the patient was 

asked to spell dictated words) were computed. Notably, 

we observed that many events classified as FPs were in 

fact intended clicks that were slightly too early or too 

late in time. For this reason a FP-rate-corrected was 

calculated, which did not include these timing mistakes. 

Timing mistakes were identified and marked by visual 

inspection of all runs performed by two independent 

observers. 

 

Performance before filter implementation 

There were on average 2.06 FP/min (N=35 7-letter 

words), yielding a FP rate of approximately 9%, a FP 

rate-corrected of 6% and a true positive (TP) rate of 

84% (Figure 8).  

 

Performance after filter implementation 

Regarding the smoothing filter, the optimal smoothing 

window (number of samples used to average each 

incoming sample) was optimized together with the 

threshold via a heat map (see supplementary material in 

[3] for more details), where the highest performance 

region was mapped in a two-dimensional matrix. For 

that the offline classification accuracy of recorded runs 

replayed with different smoothing window and 

threshold was computed. Within the hotspot, multiple 

sets of parameters were chosen and tested by the patient 

(compromise between effort and accuracy of the 

system) and the optimal ones (1.2s smoothing window 

and 0.85 threshold) were used for spelling [3]. This 

resulted in a score of 1.02 FP/min (N=69, 5-letter 

words), and a significant decrease in FP-rate and FP 

rate-corrected to 7% and 2%, respectively (p<0.001). 

True positive rate (TPR) also decreased significantly 

(p<0.05) to 76% (Figure 8), mainly due to an increase 

of False Negatives (FNs, i.e. a miss to click), which the 

user prefers over FPs because they do not require 

spelling correction (back-space).  
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Figure 8: FP rate and FP rate-corrected before and after 

the filter implementation. True positive rate before and 

after filter implementation, where mean FN is indicated 

as MFN. **p<0.001; *p<0.05. 

 

 

DISCUSSION AND CONCLUSION 

 

In our previous article [3], we demonstrated for the first 

time that a fully implanted BCI (UNP system) could be 

used to control a spelling program on a computer by 

converting brain activity into a one-dimensional ‘click’.  

Here we address in more detail than in our previous 

publication, the filter pipeline implemented to convert 

the continuous brain signal to binary brain-clicks, for 

control of a spelling program on a computer. As a first 

approach the settings used to produce a click were 

derived from the optimal settings of a standard Cursor 

Control task. However, this set of parameters was sub-

optimal for a reliable click production. Besides 

implementing a filter that combines two feature signals 

with a certain weight (FHFB - FLFB), the motivation for 

which can be found in [3], we implemented two filters 

to overcome the unstable characteristics of the signal: a 

smoothing filter and a z-transform filter. Combined, 

these three filters allowed for a more stable signal and a 

significant improvement of the performance of the 

system. The FP rate and FP rate-corrected for timing 

mistakes were significantly reduced after filter 

implementation. At the same time, the TP rate also 

reduced, mainly because of the increase in FN, which 

the patient preferred over FPs, because they do not 

require spelling correction. 

Finally, one note for the calibration window used for the 

z-transform filter. After actual implementation, this 

calibration window was recorded for multiple runs and 

the mean and standard deviation across runs showed to 

be consistent. These values were then used for z-

transformation, without need for repeated calibration 

and without a continuous adaption. Due to the 

normalization of the signal, the combination of feature 

signals with different amplitude ranges (i.e., FLFB and 

FHFB) was possible, and allowed for the setting of a 

constant threshold (to convert the control signal into a 

click) for over 9 months. During this period, user 

satisfaction of the UNP system was high or very high on 

all items of a modified QUEST2.0 user satisfaction 

questionnaire and the user used the system at home for 

communication without any technical staff present. 
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Figure 7: Filter pipeline implemented on the BCI2000 platform. The recording unit (gray block) streams power 

signals every 200 ms. Two frequency bands, LFB and HFB, are recorded, smoothed, z-transformed and summed  

(linear threshold classifier) with -1 and 1 weights, respectively. The resulting control signal is then thresholded 

and converted into a click. The latter was used to select rows or itens on a spelling program. Figure adapted from 

[3]. 
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