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ABSTRACT: In this article a novel approach to spatial fil-
tering of electroencephalographic (EEG) signals – Adap-
tive Spatial Filtering (ASF) is proposed. The goal of ASF
is to enhance the components of EEG signals that are spe-
cific to the spatial location of analyzed electrode, while
at the same time to reduce the influence of components
originating from distant sources of brain’s bioelectrical
activity. For that purpose an approach is utilized, where
electrodes uncorrelated with analyzed electrode are used
as noise input for the multichannel Adaptive Noise Can-
celling algorithm. Proposed method is evaluated and
compared with most popular approaches to spatial filter-
ing: Common Spatial Patterns and its Filter Bank exten-
sion. Influence of compared algorithms on the classifica-
tion accuracy of motor imagery tasks is tested on the data
from ‘Dataset IVa’ provided for the ‘BCI Competition
III’ and ‘EEG Motor Movement/Imagery Dataset’ pro-
vided by the BCI2000 group. During all performed tests
ASF outperformed reference methods achieving 94%,
84% and 82% mean classification accuracies.

INTRODUCTION

Interpretation of the electroencephalographic (EEG) data
often involves speculation about the possible locations
of the sources inside the brain that are responsible for
the observed activity on the scalp [1]. Since it is diffi-
cult to interpret recorded EEG signals in terms of the site
of the underlying neuronal process, determining the re-
lationship between different signals recorded at various
scalp locations is required. It is desirable to eliminate or
account for the possible linear relation resulting from the
volume conduction [2]. This relation can be represented
in a form of weighted combination of some or all mea-
surement channels inside a defined neighbourhood of the
channel of interest. Such approach is often related to as
spatial filtering. It has gained a great popularity for EEG
processing problems in Brain-Computer Interface (BCI)
applications [3, 4]. In theory, use of spatial filters should
either lead to decomposition of the EEG data into com-
ponents containing activity related to specific sources or
elimination of the overlapping signals originating from
sources other than those in the direct neighbourhood of
the measurement electrode. The Common Spatial Pat-
tern (CSP) method represents one of the most popular

approaches to the spatial filtering. Is is a technique used
for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. For that
purpose it provides the set of spatial filters in form of
the transformation matrix. One of the drawbacks of the
CSP is that it’s performance is highly dependent on the
selected frequency bandwidth in which signals are ana-
lyzed. Thus, the theoretical assumption that the analysed
signals have been bandpass filtered to the most discrimi-
native frequency range for both classes [3]. An effective
solution to this problem was presented as the Filter Bank
CSP (FBCSP) [5]. In this method the EEG signals are first
bandpass filtered into few frequency subbands. Then, the
CSP algorithm is applied independently to each subband.
Since its introduction, FBCSP has become a state-of-art
approach for the spatial filtering of EEG signals contain-
ing motor imagery related tasks [5, 6].

In this article use of the Adaptive Noise Cancelling
(ANC) techniques for the elimination of source overlap-
ping effects from EEG recordings presented as a novel
algorithm - the Adaptive Spatial Filtering (ASF) is being
examined. The general idea of the proposed approach
is based on the assumption that signal measured by each
electrode consists not only of component that contains
information specific to the location of that electrode, but
also of unwanted ones that originate from sources closer
to other electrodes available in the experiment. There-
fore, signals recorded by these distant electrodes can be
used as a noise reference for any multichannel algorithm
of adaptive filtering. In theory, signal achieved as a re-
sult of such filtering will be free from the influence of
electrical sources that are distant from the analysed elec-
trode. At the same time, this decoupled recording will be
a reliable representation of the neuronal activity occur-
ring in the close localization of the measurement point.
Use of adaptive filters is a known practice in the process-
ing of EEG signals. Such algorithms are widely used for
the removal and correction of artifacts that, due to their
amplitude and shape, are clearly distinguishable from the
background EEG activity (e.q. eye blinks, muscular arti-
facts, electrode movement) [7]. In these classical applica-
tions some additional reference recording of noise signal
(i.e. electrooculogram) must be provided for the adap-
tation algorithm. Since such signal is not always avail-
able, a focus of researchers have been already drawn to
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the problem of utilizing EEG recordings for that purpose
[7]. However, to the best knowledge of the Author of this
article no research has ever been conducted on the use of
such approach for the problem of elimination of source
overlapping in EEG.

MATERIALS

Dataset IVa: One of two datasets used for the eval-
uation of proposed method was the ’Dataset IVa’ pro-
vided for the ’BCI Competition III’ organized by the
Berlin Brain-Computer Interface group which took place
in 2005 [4, 8]. All available signals were recorded using
BrainAmp amplifiers with 118 EEG channels with 1000
Hz sampling frequency and 16 bit accuracy, band-pass fil-
tered to the 0.05 ÷ 200 Hz range and then downsampled
to 100 Hz. The measurement electrodes were positioned
with regard to the extended 10-20 montage system. Data
was recorded from five healthy subjects denoted as aa,
al, av, aw, ay. For each subject 280 trials of either right
hand or foot movement imagination were available. Vi-
sual cues indicated for 3.5 s which of the motor action the
subject should imagine [4]. Detailed information about
used dataset can be found in [8].

EEG Motor Movement/Imagery Dataset: Second
dataset used in this research was ’EEG Motor Move-
ment/Imagery Dataset’ (EEGMMI) provided by the
BCI2000 group [9] and contributed to the PhysioNet plat-
form [10]. Signals were recorded using 64 electrodes
placed accordingly to the 10-10 montage system with
160Hz sampling frequency. The EEGMMI consists of
data recorded from 109 subjects. Each of whom was
asked to perform specific tasks organized in the follow-
ing sessions (either 7 or 8 repetitions per task): right vs.
left hand movement, imagination of right vs. left hand
movement, both hands vs. feet movement and imagina-
tion of both hands vs. feet movement. Each session was
repeated 3 times and lasted approximately 2 minutes. As
a result between 21 and 24 trials per class were obtained.
Duration of one trial was about 4-s long. In this research
only sessions with tasks involving motor imagery were
used. Additionally, since this work is focused on the two
class problems, sessions involving Left vs. Right hand
motor imagery were treated separately from the Hands
vs. Feet sessions. As a result, two different validation ex-
periments could be performed on the EEGMMI dataset.

Validation and parameter tuning: To test the pro-
posed ASF algorithm the following validation procedure
was performed. For ’Dataset IVa’ all trials were divided
into two sets depending on their class membership. Then
trials in each set were sorted chronologically. 70% of
consequent trials from each class were used to create a set
used for the classifier training and parameter tuning pur-
poses. The remaining samples formed a test set, which
was used only once, to evaluate algorithm’s accuracy.
Both sets were designed in way so that both classes were
represented equally. In order to assure that the results
achieved during the experiment are statistically meaning-

ful such validation was repeated 7 times. The new folds
were created by selecting consecutive 70% of trials be-
ginning from a different trial each time. These starting
trials were evenly distributed across all examples, so that
the best data coverage was provided. Consistency of the
data was achieved by implementing the circular buffer
idea in cases where the length of the training window ex-
ceeded the total data length. Organization of sessions in
the EEGMMI dataset allowed to approach the problem of
creating the data folds in a slightly different way. Since
there were 3 repetitions of both Left vs. Right and Hands
vs. Feet sessions (each containing 7 − 8 trials per class)
a more natural division was possible. In this research
one complete session of specific motor imagery tasks was
used as an independent test set, while remaining two ses-
sions containing the same mental actions were used for
training and parameter tuning purposes. That way it was
ensured that both classes will be represented by a similar
amount of examples. Additionally, such way of dividing
data guarantees that trials used for testing were recorded
during the same time window and that both test and train
examples maintain some kind on continuity. Described
validation procedures implemented for both datasets al-
low to take into consideration not only the order of sam-
ples from each trial but also the chronological order of the
trials. Proposed approach resembles a real life case where
training trials for the BCI calibration are recorded conse-
quently during specified time frame. Such examples will
share some common characteristics, that might differ for
trials recorded in later stages (i.e. during the operation of
the system). The resemblance of the proposed procedure
of data partitioning to the real applications is a signifi-
cant advantage over random choice of trials or individ-
ual samples. For most of the spatial filtering approaches
presented in the METHODS section to perform on a sat-
isfactory level, some parameters need to be properly se-
lected. The method of parameter tuning used in this work
requires that the data dedicated for training purposes is
divided accordingly to the procedure described for the
’Dataset IV’ earlier in this section. As a result two sub-
sets of the training set are created, which will be referred
to as subtraining and subtest. Then, the EEG signals are
processed with the different values of the tuned parameter
of specific spatial filtering method, the classifier is trained
on a subtraining dataset and the accuracy on the subtest
set is obtained. This is repeated 7 times and the param-
eter which achieved the highest median accuracy is se-
lected for the specific validation session. It must be noted
that the training data of the current validation session re-
mains uninvolved in the parameter tuning process. Since
Author of this article prioritize the research on the real-
time BCI applications, instead of classifying each trial as
a whole, the classifier output was provided for every sam-
ple tagged as containing imagination of motor movement
and belonging to the assumed region of interest. Due to
the nature of the experiment, the reaction time of the sub-
ject could potentially become a variable in the process
of evaluation of system’s accuracy. Since such influence
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is an uncontrollable factor, it is desirable to diminish or
remove it’s impact on the results. In this research, this
problem was avoided by selecting and classifying only
samples that appear after 0.5 s from the moment tagged
as a start of the trial.

METHODS

Adaptive Spatial Filtering: The idea behind the Adap-
tive Spatial Filtering of EEG signals proposed in this
work stems from the concept of Adaptive Noise Can-
celling [11]. In this methodology an auxiliary (reference)
input from at least one sensor is used in process of the
elimination or attenuation of the noise present in the pri-
mary input s. Let us assume that the analyzed signal s
consists of two additive components d0 and n0. There-
fore, it can be represented as s = d0 + n0, where d0
denotes the desired part of the s and n0 is a noise that
is not correlated with d0. Additionally, present is an
auxiliary signal n which also is not correlated with d0,
but in some unknown way correlates with the noise n0.
Such signals are often called reference and should be
recorded at noise field locations where the signal of inter-
est d0 is weak [11]. Providing more than just one refer-
ence input to the ANC algorithm can improve it’s perfor-
mance in scenarios where one source of noise is present
[11]. Moreover, if there are many sources of noise com-
ing from different locations, increased number of auxil-
iary signals recorded by specific sensors can be very ef-
fective [11]. In such cases n will consist of N signals
recorded by different sensors at varying locations. This
can be noted as n = {n1, n2, . . . , nN}. For applications
where N > 1 the algorithm is often referred to as Mu-
tichannel Adaptive Noise Canceller. If each of the input
reference signal components nk (k = 1, . . . , N ) could
be transformed (filtered) so that the their summed output
y =

∑N
k=1 yk would resemble the unknown noise com-

ponent n0 it could then be subtracted from the analyzed
signal s. Assuming that the signal nk after the transfor-
mation is denoted as a yk, described operation can be pre-
sented as in Eq. 1. As a result the estimate of uncorrupted
desired signal e ' d0 will be achieved. Signal e can also
be treated as the error of adaptation.

e = d0 + n0 − y (1)

In an ANC applications said transformation of recorded
noise input n is realized by an adaptive filtering. An adap-
tive filter automatically adjusts its own impulse response
through an algorithm that responds to an error signal e
[11]. If nk(t) ∈ RM is a segment of signal nk a time
index t consisting of M discrete samples with indexed
[t −M + 1, . . . , t − 1, t], then the output of a adaptive
filter at discrete moment t can be calculated as in Eq. 2.

yk(t) = nk(t)
Twk(t) (2)

The coefficients wk(t) ∈ RM of the filter are being ad-
justed individually for every input with each new sample.

The adaptive algorithm used for that in this work is the
Normalized Least Mean Squares (NLMS). If algorithm’s
error at index t is denoted as e(t) ∈ R and calculated ac-
cordingly to the Eq. 1, then the formula for updating the
filter coefficients for t+ 1 sample is presented in Eq. 3.

wk(t+ 1) = wk(t) + µ(t)e(t)nk(t) (3)

The NLMS guarantees a better stability than the classical
Least Mean Square algorithm thanks to the normalisation
of the fixed adaptation step µ0 with the power of input
[12]. The purpose of γ parameter is to prevent situations
where the denominator of that expression approaches 0.

µ(t) =
µ0

γ + nTk (t)nk(i)
(4)

It should be particularly emphasized that the described
Multichannel ANC algorithm satisfies all the causality re-
quirements and therefore is suitable for the real time ap-
plications. The block diagram of the described algorithm
is presented in Fig. 1.

Figure 1: Block diagram of a Multichannel ANC filter.

The general idea of proposed ASF approach is based on
the assumption that signal recorded by each electrode
consists of desired component which contains informa-
tion specific to the location of that electrode and un-
wanted, noise that originates from sources closer to other
electrodes available in the experiment. Additionally, un-
defined measurement noise and artifacts (i.e. muscular)
are in some way present in all recordings measured by all
electrodes. With simplification it can be assumed that as
the distance of the electrical signal from its bioelectrical
source increases, its amplitude decreases [2]. However, it
must be emphasized that said assumption does not state
that activity originating from the source closest to the
electrode will be the strongest one present in the raw EEG
recording [13]. Nevertheless, the introduced assumption
leads to an observation, that for the electrode labeled ch
signals recorded by electrodes from some subset elec-
trode labels Lch = {L \ ch} can be used as a noise refer-
ence for the multichannel ANC algorithm described ear-
lier in this section. In this scenario, L denotes the set of
all electrode labels that are available in the experiment. In
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theory, signal achieved as a result of such adaptive filter-
ing would be free from the influence of electrical activity
of sources that are distant from the analysed electrode ch.
At the same, this decoupled recording will be a reliable
representation of the neuronal activity occurring in the di-
rect localization of the measurement point. To guarantee
a satisfactory performance of the ASF, a proper selection
of the subset of electrodes used as the multichannel noise
reference must be ensured. According to the basic princi-
ples of the ANC algorithms, signals used for that purpose
cannot be correlated with the filtered signal [11]. There-
fore, for the analyzed electrode ch ∈ L adaptation is per-
formed only on the subset of electrodes Lch for which
the Pearson’s correlation coefficient r(ch, l) (∀l∈L) with
signal from ch is lower than some user-defined parameter
Tr. To maintain the compatibility with previously intro-
duced symbols, in this scenario, the secondary input to
the Multichannel ANC filter n will be composed of sig-
nals recorded by the electrodes whose labels belong to
the subset Lch. Therefore, proposed ASF algorithm re-
quires for a few parameters to be specified, such as the
number of filter coefficients M , initial adaptation step
µ0, parameter γ and the Pearson’s correlation threshold
used for selecting the reference electrodes Tr. During the
experiments performed for the purpose of this work, the
following, exemplary parameters were chosen for both
datasets: M = 3, γ = 0.01, Tr = 0.6. To ensure
the improved stability and effectiveness of the ASF algo-
rithm the µ0 was selected individually form the set of val-
ues µ0 = {0.0001, 0.0005, 0.001, 0.005, 0.01} for each
test with respect to the parameter selection approach de-
scribed in the MATERIALS section of this article. Dur-
ing the experiment the ASF algorithm was applied to the
raw EEG data. The subset of electrodes used as the ref-
erence Lch was selected individually for each analysed
electrode. The Pearson’s correlation values r(ch, l) were
calculated only on the basis of time segments containing
the interesting brain activity (i.e. during motor imagery
periods) from training sessions. Therefore, Lch was not
updated after the training stage. The signal power fea-
tures were extracted directly form the filtered data. All
of them were passed to the classification algorithm (no
feature selection stage was implemented). No artifact
correction or bandpass filtering was applied for the ad-
ditional processing of the EEG signals.

Reference methods: The influence of the proposed
ASF algorithm on the accuracy of classifying various
mental activity tasks was compared with three classical
approaches. First method used as the reference during
the comparison does not involve any spatial filtering and
will be referred to as the basic approach. Here, the raw
data is only bandpass filtered to the frequency range from
8 to 30Hz. This specific band was selected as it is often
associated with brain activity related to the planning of
movement [3, 14]. The bandpower features are then ex-
tracted directly from the filtered data. No additional steps
like feature/channel selection are used in this approach.
The Common Spatial Pattern method is a technique used

for the analysis of multichannel EEG recordings with two
classes of different EEG phenomena present [3]. As a
result of CSP the variance of the transformed signals is
maximized for examples from one class, while at the
same it is minimized for the other class. For that pur-
pose it provides the set of optimal spatial filters in form
of the transformation matrix. In general, only a few pairs
of filters from both ends of eigenvalue spectrum carrying
a discriminant information are used [3]. Therefore, a fea-
ture selection step is often required in order to maximize
the effectiveness of CSP decomposition. In this work,
the best number form between 1 and 8 of the consecu-
tive CSP filter pairs were selected for each subject and
each validation session during parameter tuning stage.
Since performance of the CSP method is highly depen-
dent on the selection of frequency bandwidth in which
signals are analyzed, they were bandpass filtered to the
frequency range from 8 to 30Hz befor the applying CSP.
Third method used for the comparison in this research is
the FBSCP [5]. In this method the recorded EEG signal is
first bandpass filtered into B, small and consequent fre-
quency subbands. In this research the same B = 9 sub-
bands as in the original paper of FBCSP were selected:
[4−8] Hz, [8−12] Hz, [12−16] Hz, [16−20] Hz, [20−24]
Hz, [24−28] Hz, [28−32] Hz, [32−36] Hz, [36−40] Hz
[5]. After filtering, the CSP algorithm is applied indepen-
dently to each frequency band. Then, for each CSP trans-
formation aC = 3 pairs of filters were selected and band-
power features were calculated for each sample. As a re-
sultF0 = 2×C×B = 54 features were extracted for each
time index in the region of interest. To avoid overfitting
of the classifier to the training data, the FBCSP requires
for the feature selection step to be performed. Authors of
this method have validated it with multiple feature selec-
tion algorithms [5]. According to the results of the men-
tioned study, the Mutual Information-based Best Individ-
ual Feature (MIBIF) method works very effectively with
the FBCSP. Based on the MIBIF only F1 best features
from the original subset of F0 is chosen for the further
analysis. In this work the number F1 was selected in-
dividually for each subject and each validation session
from the subset F1 ∈ {1, 2, 3, 4, 5} during the parameter
tuning stage. It must be noted that due to the pairing of
the CSP features, the corresponding feature from the pair
had to be additionally included if it was not selected by
the MIBIF algorithm.

All spectral filtering operations in this research were per-
formed with the Finite Impulse Response (FIR) filter of
order 364. Coefficients of the used filters were designed
using the Kaiser window. Linear phase characteristics of
the FIR filters make them ideally suited for the process-
ing of biomedical signals. On the other hand, the delay
introduced by such filtering may significantly influence
the quality of the BCI systems in terms of real-time per-
formance. Since the focus of this research was mostly
placed on the evaluation of the proposed spatial filtering
method it was decided that the filter’s delay should be ne-
glected. Therefore, the zero-phase filtering was applied
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during offline processing. This was achieved by a recur-
sive filtering of the original signal both forward and back-
ward in time [15]. As a result, a perfect frequency filtering
could be assumed in the performed experiment. This op-
eration was applied to all of the reference methods used
in the experiment. It must be noted that such approach
favours slightly these approaches as in the normal sce-
nario their output would be delayed resulting in worse
classification accuracy and generally decreased perfor-
mance of the BCI system.

Machine learning: The characteristics of the signals
achieved after their processing were described by the log-
arithm of their power in specific frequency ranges. To en-
sure the causality of the feature extraction step only the
analysed time index and those that precede it were taken
into consideration. In this research the 0.5 s-long time
window was used. The features were extracted for ev-
ery sample during each trial and provided as an input to
the Linear Discriminant Analysis (LDA) classifier. This
simple classifier has been successfully used in many BCI
systems and has generally produced a satisfactory results
[16]. One of the main motivations for the choice of LDA
classifier in this experiment was it’s simplicity and trans-
parency in data processing. Thanks to these features, the
participation of the classification algorithm in the feature
engineering process has been restricted. Thanks to that,
the results achieved in this research will not be biased by
the quality of cooperation between spatial filtering algo-
rithm and classifier in extracting features of the data.

RESULTS

In Tab. 1 presented are the mean accuracies obtained af-
ter 7 cross-validations performed for each subject from
the Dataset IVa. For each sessions used in this test the
best set of parameters was selected for each method. This
was achieved with accordance to the parameter tuning ap-
proach described in the METHODS section of this work.

Table 1: Dataset IVa - mean accuracies
Method Avg aa al av aw ay

ASF 0.94 0.93 0.95 0.89 0.96 0.96
FBCSP 0.81 0.78 0.92 0.66 0.86 0.84

CSP 0.79 0.71 0.90 0.67 0.85 0.84
basic 0.70 0.62 0.82 0.57 0.71 0.76

A more informative summary of the experiment per-
formed on the Dataset IVa can be found in Tab. 2. The
statistics used for the description of the achieved results
were the first quartile Q1, mean value, third quartile Q3

and standard deviation σ calculated from the accuracies
of all tests performed on all subjects for each method.
Therefore a more complex and profound overview of the
experiment was achieved.

Table 2 - Dataset IVa - statistics
Method Q1 Mean Q3 σ

ASF 0.88 0.94 1.00 0.08
FBCSP 0.74 0.81 0.87 0.10

CSP 0.71 0.79 0.86 0.09
basic 0.62 0.70 0.77 0.10

Since the EEGMMI dataset contains a large number of
subjects it was decided to omit the presentation of the av-
erage accuracies achieved for each of them. Instead, in
Tab. 3 the statistics calculated for Hand vs. Foot classifi-
cation task are shown. Likewise, same summary for Left
vs. Right hand discrimination task is presented in Tab. 4.
Values contained in both of these tables were obtained
analogously to those presented in Tab. 2.

Table 3: EEGMMI (Hand vs Foot) - statistics
Method Q1 Mean Q3 σ

ASF 0.78 0.84 0.90 0.08
FBCSP 0.54 0.63 0.69 0.11

CSP 0.58 0.66 0.74 0.11
basic 0.54 0.60 0.63 0.09

Table 4: EEGMMI (Left vs Right) - statistics
Method Q1 Mean Q3 σ

ASF 0.76 0.82 0.89 0.10
FBCSP 0.52 0.57 0.60 0.08

CSP 0.55 0.62 0.66 0.10
basic 0.51 0.56 0.60 0.08

DISCUSSION

Proposed in this work ASF algorithm significantly out-
performs classical spatial filtering methods like CSP
and FBCSP during tests performed on two class mo-
tor imagery-based BCI datasets. Statistics calculated for
the distributions of the achieved accuracies presented in
Tab. 2- 4 allow further assessment of the ASF perfor-
mance. It can be observed that for all three datasets the
mean accuracies of ASF are higher than for the reference
methods. Additionally, in all cases first quartile Q1 of
ASF is higher than third quartile Q3 of other methods
tested in this work. Although FBCSP and CSP achieved
expected mean accuracies on the Dataset IVa their per-
formance on the EEGMMI dataset is unsatisfactory. This
might be explained by a relatively small number of train-
ing trials for each validation session which ranged from
14 to 16 per class. As a result the number of training
examples provided for the CSP and its Filter Bank modi-
fication might be too small for them to achieve their full
potential. Training BCI systems with a limited number
of trials is a known problem which has been discussed in
the literature [4].
The tests to which the ASF and reference methods were
subjected to can be considered to be demanding not only
due to the high number of repetitions performed for each
dataset. The goal of providing the output for each sample
is generally considered to be more a more difficult task
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than the classification of the whole trial [6]. However,
since ASF was designed for the real-time BCI applica-
tions such approach to testing was necessary.
It must be noted that the due to their nature the adaptive
filters and ANC algorithms (such as ASF) are susceptible
to instabilities [12]. Therefore, selecting the proper adap-
tation step during the parameter tuning stage of the ASF
method was very important. The issue of stability of the
adaptive filtering algorithms used with the ASF method
should be a subject of further research. Due to the pre-
liminary character of this work the tuning of the channel
correlation threshold Tr was omitted in this work. This
shows that tuning of this parameter is not necessary for
the ASF to achieve a high level results. Nevertheless,
some future work must be devoted to the analysis of the
influence of this parameter on the effectiveness of ASF,
as it has the potential to additionally improve its perfor-
mance.

CONCLUSION

In this article a novel approach to spatial filtering of EEG
signals the Adaptive Spatial Filtering is proposed. The
algorithm has proved to significantly outperform the clas-
sic reference methods for two class BCI problems. The
fact that the ASF does not require providing the number
of classes present in the experiment is a great advantage
over CSP-based approaches. As a result it can be eas-
ily used with the multiclass problems without the need
of implementing strategies like One vs. One or One vs.
All. Additionally, adaptive properties of the algorithm
make it insusceptible to the changes of the EEG char-
acteristics which occurs with the passing of the exper-
iment time. Author of this work believes that the intro-
duction of the ASF algorithm can lead to an advancement
in the usable BCI technology capable of operating in the
real time. Future research regarding the ASF algorithm
will focus on its application to multiclass BCI problems.
Additionally, its performance with limited electrode con-
figurations (i.e. International 10-20 Standard) and with
feedback BCI systems will be evaluated.
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