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ABSTRACT: Rapid serial visual presentation (RSVP) 

can prove useful as a reading technique when text is 

presented on small screens. Optimal text presentation 

speed for text reading depends on the reader himself, 

context and features of the text. Readability is a measure 

which estimates the ease with which a reader can 

understand a written meaningful text.  

The presented study investigated whether a passive 

Brain-Computer Interface (pBCI) can be used to 

distinguish between texts of distinct levels of readability 

presented at different presentation speeds. A predictive 

model was trained on EEG data derived from a cognitive 

load paradigm. The model was then applied to data 

collected while participants read easy and difficult texts 

at a self-adjusted speed and at an increased speed level.  

Results suggest that predictions made by the predictive 

model could be used as an estimate for categorization and 

adaptation of longer text passages, though its robustness 

and potential for the use in neuroadaptive reading 

applications should be further investigated. 

 

INTRODUCTION 

 
Reading is the written form of a language and serves 

communication and information sharing in societies. 

Textual information nowadays is distributed as digital 

media presentations on electronic displays (e.g., 

monitors, mobile phones, eReaders, etc.) and is 

accessible in a broad and fast way through advanced 

communication technology. With decrease in size of 

mobile devices, smaller screen sizes are a consequence 

and constitute challenges for the way text material can be 

presented. Scrolling and paging in text presentation can 

be bothersome and inconvenient for the reader [1]. Hence 

new forms of text presentation for mobile devices 

recently have emerged and are developed.  

Rapid serial visual presentation (RSVP) is a popular 

approach to build a text presentation method appropriate 

for reading on (very) small displays. In this presentation 

form, words of a text are presented sequentially one word 

at a time at a fixed screen location [2]. It was claimed that 

in contrast to traditional left to right text body reading, 

texts can be read faster at constant comprehension levels 

[3]. It is suggested that a reduction of saccades, small and 

rapid eye movements to fixate the next word, due to a 

constant fixation point while reading, leads to an increase 

of overall reading speed in RSVP reading methods [4].  

Over the past years claims like these have been subjected 

to several studies examining RSVP reading effects on 

text comprehension and reading speed [5, 6]. It emerged 

that reading comprehension and efficiency depend on 

nuanced features of the textual information to be read, 

such as text difficulty, length, and reading speed. 

Readability is a measure of the ease with which the 

meaning of a text can be comprehended. Readability 

ratings traditionally are obtained using readability 

formulas such as Flesch-Kincaid Grade Level [7] or the 

Flesch Reading Ease [8]. Most readability formulas are 

based on a combination of easily countable features such 

as word length and sentence length. 

Recently commercial speed reading applications were 

made available for RSVP reading on electronic devices. 

Reading speed in these applications is regulated 

manually and stays static if the user does not alter it 

throughout the reading process. Here a less intrusive 

form of presentation speed regulation would prove 

useful, especially if features of the read text material, e.g., 

text readability, differ over time. Then the cognitive load 

of the reader might change according to different levels 

of text difficulty.  

Passive Brain-Computer Interfaces [pBCIs, 9] are a 

technology which uses neurophysiological signals to 

distinguish between different cognitive states [10]. Data 

recorded by Electroencephalography (EEG) while 

different cognitive states are evoked in a person, can be 

used to train a BCI to distinguish between these different 
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states and evaluate new data when it is recorded. This 

evaluation of a BCI then can be used to generate a signal 

to change the state of a system. In the process the user 

does not need to actively generate a signal towards the 

machine, but her cognitive state is monitored and 

interpreted continuously. A reader would not be required 

to pay attention and conscious effort to generate a signal 

to change e.g. the reading speed appropriate to her 

current state. Such an automatic adaptation to a user’s 

current cognitive state through the application of a pBCI 

would be a realization of neuroadaptive technology [11]. 

This technology enhances the interaction between user 

and machine as it provides knowledge about the 

situational user state to the machine. A neuroadaptive 

reading application could make the reading process more 

pleasant and efficient. Additionally, the generated 

information about the user state could be used to generate 

an assessment of the user’s individual text difficulty 

levels and readability skills. Such a measure detecting the 

relation between the user’s current level of cognitive load 

and a text of a given level of difficulty could be useful in 

learning contexts to generate personalized learning 

content. Here, the pBCI could be utilized to find 

appropriate learning material which can be optimized to 

fit the learner’s current needs and abilities.   

The aim of the presented work was to examine whether a 

pBCI can be trained to distinguish between different 

levels of text difficulty while reading with a speed 

reading application. Moreover, the effects of reading 

speed on this measure were investigated. As connections 

to other words become more complex with the position 

of a word within a sentence, it was also investigated 

whether this relationship is reflected in the output from 

the pBCI. Moreover, long sentences should be more 

difficult to understand than short ones as they are more 

complex in structure and relations between words. 

Therefore, is was also investigated whether the average 

output of the pBCI shows a difference between short and 

long sentences. The outcomes were interpreted according 

to their applicability in neuroadaptive technologies. 

 
MATERALS AND METHODS 

  

     Participants: Eight participants, five female, took part 

in the experiment. The mean age was 29 years (SD = 3.2 

years). All participants had normal or corrected-to-

normal vision and their native language was German. 

Prior to the experiment participants gave their written 

informed consent to participate in the study and were 

paid thirty euros as expense allowance. 

    Speed Reading Application: The speed reading 

application applied in this study was Spritz. The Spritz 

Application programming interface (API) was provided 

by Spritz™ (spritzinc.com/) for the use in this study. 

Together with Psychophysics Toolbox extensions [12] 

the experimental paradigm was computed in MATLAB.  

     Stimuli: Texts used in the investigation were extracted 

from the GEO/GEOlino Corpus [13]. The corpus is a 

collection of 1066 German texts taken from the German 

magazine GEO, which covers topics related to nature, 

culture and science, and the magazine GEOlino, which 

deals with similar topics, but is targeted at children aged 

between 8 and 14 years. The texts from GEO therefore 

are generally more complex than those from the GEOlino 

magazine. Six texts were chosen from each magazine, all 

covering similar topics about animals and their habits. 

Overall the average number of words per text was 493 

(SD = 34.6 words). GEO texts had an average word count 

of 472 words (SD = 23.1 words) and GEOlino texts of 

514 words (SD = 31.7 words). GEO texts had an average 

Flesch reading ease index of 45.1 (SD = 2.4), which is 

equivalent to difficult texts on college level. The Flesch-

Kincaid grade level of GEO texts was 10.9 (SD = .29). 

For GEOlino texts, the average Flesch reading ease index 

was 62 (SD = 1.38) which corresponds to a readability 

suitable for 13 to 15 years old students. These texts had 

an average Flesch-Kincaid grade level of 7.9 (SD = .24). 

     EEG system and software: During the experiment 

brain activity was recorded from 64 active Ag/AgCl 

electrodes (ActiCap, Brain Products, Munich, Germany) 

applied to an elastic cap according to the extended 

international 10/20 positioning system. The ground 

electrode was placed at position AFz and the reference at 

FCz. All electrodes were connected to a BrainAmp 

amplifier (Brain Products GmbH, Munich, Germany), 

which was connected to a laptop through a universal 

serial bus (USB) 2.0. Electrode impedances were kept 

below 5 kΩ. Data was recorded using the BrainVision 

Recorder, BrainVision RDA (Brain Products GmbH, 

Munich, Germany) and LabRecorder [14]. The sampling 

rate was set to 500 Hz. The experimental paradigms were 

run in SNAP [15] and in MATLAB, using the 

Psychophysics Toolbox extensions. Data was analyzed 

with the MATLAB embedded EEGLAB toolbox [16]. 

For classification and BCI model application the open 

source toolbox BCILAB [17] was used.  

     Pre-test: Six participants took part in a pre-test to 

examine whether an increase of 40 percent in text 

presentation speed would lead to an increase of perceived 

workload. The participants’ mean age was 27.2 years (SD 

= 3.8 years), five were male, all had normal or corrected-

to-normal vision and their native language was German. 

Participants read the twelve texts in blocks of three at a 

self-adjusted reading speed with the speed reading 

application. Half of the texts from each difficulty class 

(easy vs. difficult) were presented at a self-adjusted speed 

plus 40 percent. After each block, participants filled out 

a Raw-Task Load Index (RTLX) [18], a modified version 

of NASA-TLX [19], a standardized questionnaire 

assessing perceived workload on a Likert scale along six 

dimensions. A two-way repeated measures ANOVA 

revealed a significant main effect of presentation speed, 

F (1,5) = 6.758, p = .048. Workload of texts presented in 

normal speed was rated lower (M = 45.7, SD = 16.9) than 

for texts represented with 40 percent increase in speed (M 

= 53.58,  SD = 17.1). There was no significant main effect 

of text difficulty, F (1,5) = 1.371, p = .294. The 

interaction of the factors was also not significant, F (1,5) 

= 0.255, p = 0.635. From these results, it was concluded 

that an increase of individual reading speed by 40 percent 
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was sufficient to increase the subjective workload for 

participants while reading the texts later used in the main 

study. 

     Experimental procedure: In the main experiment, 

participants first completed an experimental paradigm, 

which was applied to induce two different levels of 

cognitive load [20]. This so-called ‘sparkles’ paradigm 

was developed by Team PhyPA (TU Berlin) [21]. In 

several experiments the classifier trained on the data 

obtained from this paradigm was tested while 

participants completed not only arithmetic assignments, 

as during data collection, but tasks from other task 

domains. It was used, e.g., while the participant verbally 

described a complex context or solved anagrams, where 

the classifier could reliably distinguish between phases 

of high and low workload. Due to its applicability to 

multiple domains the classifier can be seen as a form of 

task-independent classifier for cognitive load. 

During half of the paradigm the participant saw colorful 

spots moving around slowly on an otherwise black 

screen. In this phase, the participant was supposed to 

relax and simply focus on watching the spots flying 

around with eyes open. This part of the paradigm was 

supposed to induce low workload. To induce higher 

workload, from time to time an arithmetic subtraction 

assignment appeared at the center of the screen. At its 

appearance the participant was supposed to silently 

subtract the number standing on the right side (range 

between 6 and 20) iteratively from the number on the left 

(range between 200 and 1200). After some time, the 

arithmetic assignment disappeared again, whereat the 

participant stopped subtracting and turned towards 

watching the spots again. Overall 40 trials of low or high 

induced workload were performed with a length of 10 

seconds per trial.  

 

 

Figure 1: Screenshot of the workload (‘sparkles’) 

paradigm. The arithmetic assignment is presented in the 

center of the screen. Colorful dots are moving around 

the black background at a slow pace. 

                                                                                   

After completion of the workload paradigm participants 

familiarized with the speed-reading application. They 

read passages of a German novel and incrementally 

adjusted the presentation speed to a level they felt 

comfortable reading with.  

Then participants read all twelve texts in blocks of three. 

All texts of a block were either easy or difficult texts and 

presented in the self-adjusted reading speed or with an 

increase of 40 percent (as determined in the pre-study). 

After each text, participants answered three questions 

regarding literal text comprehension. Under each 

question four possible answers were displayed, of which 

one was the right choice. If, e.g., the text had read ‘The 

warm sun hatches the eggs in the sand’, the question 

could have been: ‘Who hatches the eggs of the turtle?’, 

then of the possible answers a) the father, b) a cormorant 

c) the sun and d) the mother, c) would have been the right 

choice. Participants selected their answer by key press. 

Each participant answered 3x12 literal comprehension 

questions, a total of 36 questions.  

After each of the four text blocks participants were 

handed a RTLX questionnaire to assess subjective ratings 

of perceived workload. Overall each participant 

completed the RTLX four times. 

     Analyses: Individually adjusted presentation rates 

were averaged over participants from the pre- and main 

study. Ratings collected in the RTLX questionnaire were 

converted to workload scores according to NASA-TLX 

procedures. The workload scores of all eight participants 

were subjected to a two-way repeated measures ANOVA 

with the within-subject factors presentation speed 

(normal vs. plus 40 percent) and text difficulty (easy vs. 

difficult).  The numbers of correct answers to literal text 

comprehension questions of each participant within each 

of the four text blocks were added. These scores per 

block then were subjected to a two-way repeated 

measures ANOVA with within-subject factors 

presentation speed (normal vs. plus 40 percent) and text 

difficulty (easy vs. normal).  

Due to a recording software problem, only data from 

seven of the eight participants was used for classification. 

For feature extraction, a filter bank common spatial 

patterns (fbCSPs) approach [22] was used. Two 

frequency band (4-7, expected increase with increasing 

workload and 7-13, expected decrease with increasing 

workload) Hz was selected and epochs of 5 seconds 

length starting at stimulus were extracted. Linear 

discriminant analysis (LDA) regularized by shrinkage 

[23] was used as a classifier and a (5x5)-fold cross-

validation was employed. 

For each participant, the individual predictive model 

trained on data from the workload paradigm was applied 

to text reading data. The BCILAB built-in function onl-

simulate was used to apply the predictive model to the 

raw data from all twelve texts, resulting in a predictive 

value between 0 and 1 for each word of a text. An output 

with a value of 0 would indicate low load and a value of 

1 high load.  

Predicted values from each predictive model were 

subjected to permutation tests with 50000 permutations 

per test. All predictions from one group of texts 

according to text difficulty (easy vs. difficult) and 

presentation speed (normal vs. fast) were tested within 

and between the two factors. Tests were one-tailed as the 

assumptions were that easy texts should result in lower 

predictive values than difficult texts. Also within one text 

difficulty category, predictions of texts presented at 

normal speed were expected be lower than predictions of 

texts presented at an increased speed. Easy texts 
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presented at normal speed were assumed to have lower 

predictive values than difficult text which were presented 

fast. Finally, for predictions in easy texts which were 

presented fast against predictions from difficult texts 

presented at normal speed, no assumption regarding 

difficulty was made.  

It was further assumed that longer sentences would have 

an overall higher difficulty as word relations within a 

longer sentence regularly become more complex in 

structure than in short sentences. To test if this 

assumption was manifested in the predictions made by 

the applied predictive models, predictions within each 

sentence were averaged. The averaged predictive values 

alongside with the word count of the respective sentences 

were subjected to linear regression analysis. Regression 

analysis was performed once for all sentences of easy 

texts presented in normal speed and again for sentences 

from difficult texts presented at normal speed. Moreover, 

it was performed for all participants together and again 

for each individual participant. 

Another assumption was that predictive values could 

reflect an increase of complexity of relations towards a 

word caused by an increase of the word’s position within 

a sentence. To test this assumption words and their 

predicted values were sorted by their position within 

sentences. All predictive values for the occurred sentence 

positions were subjected to a linear regression analysis. 

Again, the analysis was only performed for easy and 

difficult texts presented at normal presentation speed, for 

each participant and also for data from all subjects 

together. 

 

RESULTS 

 

Individually adjusted presentation rates from the overall 

13 participants of the pre-test and the main experiment 

ranged between 175 and 600 words per minute (wpm). 

The average adjusted reading speed was 308 wpm (SD = 

130 wpm). 

The two-way repeated measures ANOVA performed on 

ratings from the RTLX questionnaire from the eight 

participants revealed significance for the main factor text 

difficulty, F (1,7) = 8.75, p = .021. Difficult texts (M = 

68.4, SD = 26.2) received higher ratings than easy texts 

(M = 59.1, SD = 18.4). Results for the main factor 

presentation speed were significant as well, F (1,7) = 

11.10, p = .012. Texts presented at the normal (M = 56.4, 

SD = 17.3) self-adjusted reading speed received lower 

RTLX ratings than texts presented with a speed increase 

of 40 percent (M = 71.1, SD = 25.7). The interaction 

effect was not significant, F (1,7) = 1.22, p = .306. 

The ANOVA performed on correct answers given to 

literal text comprehension questions revealed neither 

significant main effects, nor an interaction effect of 

significance, all ps > .258. On average participants 

answered 6.2 (SD = .48) questions out of nine per text 

block correctly. An average of 6.9 (SD = 1.96) correct 

answers was given for easy texts and 6.0 (SD = 1.31) for 

difficult texts presented at normal speed. For texts blocks 

with an increased presentation speed, questions on easy 

texts were answered 5.8 (SD = 1.28) times correctly and 

difficult texts 6.25 (SD = 1.67) times. 

The average cross validation error rate was 23.7 percent 

(SD = 6.7 percent). See Table 1 for individual 

classification errors. 

 

Table 1: Classification results of the workload paradigm. 

Obtained error rates (ER) in percent and standard 

deviations (SD) are reported. 

participant ER (SD) 

1 14.1 (3.2) 

2 28.5 (14.7) 

3 14.8 (4.9) 

4 14.5 (2.5) 

5 44.3 (7.8) 

6 18.9 (4.1) 

8  8.3 (1.5) 

average 20.5 (5.5) 

 

Almost all performed permutation tests were highly 

significant (all ps < .0001). Only for the test of 

predictions in easy texts which were presented fast 

against predictions from difficult texts presented at 

normal speed, results were not significant (p = .961). It 

must be noted though that absolute values of observed 

differences between classes (M = -.077, SD = .032) were 

smaller in all tests than variances within classes (M = 

.086, SD = .008). Effect sizes therefore were small to 

medium (M = .266, SD = .116). 

For linear regressions, no significant equations were 

found for average word predictions in sentences with 

different length. Analysis results were neither significant 

for data from all participants taken together (all ps > .632) 

nor on subject level (all ps > .072). 

No significant regression equation was found when data 

of all seven participants was collapsed for analysis 

performed on predictions for word positions within a 

sentence, all ps > .053. On single subject level, four 

regression analyses were significant. Half of the slopes 

for significant equations were negative while the other 

was positive, ranging between -.003 and .006.  

 

DISCUSSION 

 

Individually adjusted text presentation rates showed a 

strong variation and an average of 308 wpm. The strong 

individual variation in adjusted speeds might be caused 

by differences in preference for the RSVP reading 

method, as some participants may have felt unconfident 

with the new reading technique, while others felt more 

comfortable using it. Such strong variations in preference 

with speed reading applications were shown before [24]. 

The average adjusted speed of 308 wpm lies above the 

average speed for traditional reading, which lies between 

250 and 300 wpm [25]. This effect of faster reading with 

speed reading applications is found in most literature on 

speed reading applications. Results from the RTLX 

revealed that perceived load was higher for difficult texts 

than for easy texts. Cognitive load was also higher for 
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texts presented with an increased reading speed than 

when presented at an individually adjusted speed. Since 

no differences in literal comprehension emerged between 

different text difficulties and presentation speeds, it can 

be concluded that an increased presentation speed did not 

lead to less comprehension. On average two thirds of 

questions within one text block were answered correctly. 

It could have been possible that too high reading speeds 

would lead to an overextension of participants who 

become less attentive to understanding the text as a 

consequence. However, this was not the case and results 

from literal comprehension questions indicate that 

participants read all variations of texts attentively at 

similar levels of literal comprehension. 

pBCI classification for cross validation on data from the 

workload paradigm was on average around 20% and 

hence acceptable. Permutation tests performed on 

predictions made by the predictive model showed that 

difficult texts had significantly higher predictive values 

than easy texts. Moreover, predictions for texts presented 

with an increase of 40 percent in reading speed had 

significantly higher values than texts shown at the 

individually adjusted speed. However, effect sizes for all 

tests were very small, as prediction variances within text 

and speed groups were higher than the observed 

differences between groups in the permutation tests. The 

results obtained from permutation tests of predictive 

suggest that that the cognitive load classifier could be 

used to distinguish overall difficulty differences between 

longer passages of texts. This applies for difficulty 

changes induced by presentation speed and text 

readability level. 

It was assumed that averaged prediction values of words 

within a sentence would increase with a rise of sentence 

length due to rising structural complexity of word 

relations. In regression analysis, no significant equations 

were found. The results suggest that classifiers trained on 

the cognitive load paradigm are not suitable to reflect 

possible effects of higher structural complexity in longer 

sentences. Predictions from the predictive models 

therefore cannot be used as an estimate of single sentence 

difficulty. 

Regarding the position of a word within a sentence it was 

assumed that words appearing later in a sentence would 

receive higher predictive values. Regression analysis of 

predictions was only significant on single subject level. 

Several significant equations were found, but half of the 

slopes were positive while the others were negative. 

These ambiguous results indicate that predictions derived 

from the predictive models trained in this study are not 

suitable as predictors for single word difficulty based on 

the complexity of relations the word stands in. 

Altogether results showed that the trained BCI models 

were not applicable for measuring single word or 

sentence difficulty within texts. Only when all 

predictions for whole texts are regarded together, the 

predicted values can be used to distinguish between 

levels of readability and reading speed. RTLX had shown 

that perceived workload was higher for difficult texts as 

well as for reading at increased presentation rates. 

Results suggest that predictions made for broader text 

passages contain and reflect this information. For much 

shorter passages, like single sentences or even single 

words, immediate changes seem to be absent or are not 

detectable by the model employed in this study. 

 

CONCLUSION 

 

Broader changes of activity in frequency bands employed 

in the workload classifier were found to correspond to 

differences in text readability and presentation speed. 

Such changes are detectable when single word 

predictions made for larger text passages are examined 

together. These results add text readability and 

presentation speed in RSVP reading to the domains 

where the task-independent workload classifier can 

distinguish between levels of cognitive load. 

Complex texts also contain many easy words which may 

prevent classification on sentence or word level, as long 

as linguistic information about word difficulty is not 

accessible for integration to the classifier. The results 

suggest though that the effects on cognitive load are 

highly responsive and that the employed predictive 

model is sensitive enough to detect these changes. 

For future research the robustness and potential for 

application of the classifier to full texts should be 

examined further. The predictive model should be 

applied to a larger variety of text material of different 

readability level and text length. The predictive model 

trained in this study could already be used as an estimate 

for user modelling in educational practice, e.g., in online 

tutoring systems, to choose appropriate texts as learning 

material matching the learner’s individual readability 

level. In speed reading it could also be used to modify the 

presentation speed after a sufficient amount of text has 

been read. The presentation speed could then be de- or 

increased according to classifier output. 

To obtain more fine-tuned information about difficulty 

levels of single sentences or texts, other measures than 

investigated in this study need to be found. A 

neuroadaptive system capable of detecting levels of text 

readability in real time on a word by word basis could 

perform text simplification [26]. It would be able to 

individually adapt to its user to improve reading 

comprehension, which could be well applied in future 

learning scenarios. Speed reading applications are seen 

as especially suitable for reading short texts on mobile 

devices with small screens [27]. Oblinger and Oblinger 

[28] describe the so-called net generation, who grew up 

using mobile devices, are used to instant information 

access and not reading large amounts of text. Moreover, 

mobile computer-supported collaborative learning is 

regarded as a promising approach to support and 

facilitate learning interactions between students [29]. 

Neuroadaptive features on the side of technology and 

devices would be a further enrichment to such 

approaches to future learning. 
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