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ABSTRACT: In previous studies we have introduced a 

brain-computer interface (BCI) system based on 

movement related cortical potentials (MRCP). The 

performance of this system was shown to be 

significantly affected by the users’ attention state. In the 

current study, we analyzed MRCP features (low 

frequencies) and features extracted at higher frequencies 

to determine the effect of variations in user’s attention 

on EEG. Attention was modulated by a combination of 

auditory and visual stimuli that served as external 

distractors from the main task, which was a simple 

dorsiflexion. Time and frequency analysis was 

performed on EEG signals recorded from twenty-eight 

channels. The amplitude of the peak negativity and the 

slope of the negative deflection of the MRCP decreased 

and pre-movement variability increased with the 

distractors. Moreover, spectral analysis revealed an 

increment of theta power and alpha power due to 

attentional shifts. These results have implications for the 

design of real-life BCI systems, potentially allowing an 

increased robustness and adaptability with users’ 

conditions.  

 

INTRODUCTION 

 
BCI systems provide a bi-direction interface with the 

human brain and can be used to modulate neural activity 

for rehabilitation (1, 2). For this purpose, the user’s 

attention has an impact on the system performance.  The 

effect of attention levels by the user was previously 

investigated for synchronous BCIs, where a cue was 

used as a source of information for the task execution 

(3, 4). However, the performance of asynchronous (self-

paced) BCI in relation to attention variations remains 

unclear.  

External stimuli can play the role of attention distractors 

and therefore drift the attention away from the target 

task (5, 6). Different types of attention activate various 

locations of the brain. While visual attention influences 

the parietal and occipital areas (7), auditory stimuli are 

directed to temporal and frontal locations (8).  

Attention level modulates electroencephalography 

(EEG) signals. Event-related cortical potentials, steady–

state evoked potentials and event-related 

(de)synchronization have been the most common types 

of signal modalities for the investigation of attention in 

BCI (9-11). In our previous work, we used features of 

the MRCP for detection of attention variations. We 

showed that temporal features of the MRCP are 

influenced by attention distractors (3).   

In this study, temporal and spectral features of EEG 

signals were used for detection of attention variations. 

The main aim of this analysis is to make BCIs more 

robust for attention detection. Additionally, we aimed to 

identify which brain locations were more influenced by 

using each group of features.     

 
MATERALS AND METHODS 

 
Experimental set up 

Nine healthy participants (4 females, 5 males) without 

hearing or visual impairments took part in the 

experiments. The experimental procedures were 

approved by the local ethical committee for the region 

of Northern Jutland (N-2016006).  

EEG signals were recorded from twenty-eight channels 

by using an active EEG electrode system 

(g.GAMMAcap
2
, Austria) and two synchronized 

g.USBamp amplifier (gTec, GmbH, Austria). EEG 

channels corresponded to AF3, AFz, Af4, F3, F1, Fz, 

F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, 

CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2 and P4 of the 

international 10-20 system. Two electromyography 

(EMG) electrodes were placed on the tibialis anterior 

(TA) muscle of the dominant foot to get information 

about movement execution.   

 

Paradigm and task  
Participants were asked to sit on a comfortable chair 

placed approximately one meter away from a computer 

screen, which showed the visual oddball task. An 

auditory oddball was played from a conventional 

headphone. 

The experiment consisted of two phases.  
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Control Level (CL): Participants were asked to perform 

60 repetitions of self-paced ankle dorsiflexion divided 

into two blocks, each with 30 repetitions. They were 

instructed to perform the movement rapidly and 

forcefully and to hold the position for approximately 2 s 

after which they were asked to rest for 5-10 s. 

Diverted Attention Level (DAL): participants had to 

focus on the oddball stimuli and count the number of 

target sequences while performing the same movements 

as in the first phase (dual-tasking).  

The oddball used in this experiment was a combination 

of visual and auditory oddballs. For the visual oddball, 

two Gabor masks with an orientation of 60º and 30º, 

each with a probability of 25%, were used. For the 

auditory oddball, two auditory tones with frequencies of 

1200 and 1900 Hz (middle and high pitch), each with a 

probability of 25%, were applied. All stimuli were 

randomized with an inter-stimulus interval of 1-2 s. 

Participants were asked to count the number of Gabor 

30º followed by the middle pitch sound or the number 

of high pitch sounds following the Gabor 60º mask.  

 

Signal analysis    

The correlation of EMG envelopes in each block was 

computed to quantify the consistency of movement 

execution. EMG signals were rectified and low-pass 

filtered (10 Hz) to extract the envelopes. The correlation 

between averaged envelopes was calculated among 

trials of each block. In addition, the movement onsets 

were computed in each block with using a threshold for 

EMG signals to provide information about the timing of 

movement execution. 

EEG signals were filtered in the bandwidth [0.05 10] Hz 

using a 2
nd

 order Butterworth filter. MRCPs were 

extracted in the time interval [-3 3] s with reference to 

the movement onset, as estimated from the EMG 

signals.  

Ten temporal features were extracted from the MRCPs: 

amplitude and timing of the peak negativity (APN and 

TPN), first derivatives (slopes) for the time intervals [-2 

0] s, [-2 -1] s, [-1 0] s, and [0 1]s, and the standard 

deviations of the signal amplitude in the same time 

intervals. Figure 1 illustrated these features on a 

representative case. 

Sixteen spectral features were extracted from the 

spectrogram of EEG signals in the delta [0 3] Hz, theta 

[4 8] Hz, alpha [8 13] Hz and beta [15 31] Hz bands, 

and at the four time intervals T1= [-1 -.6] s, T2= [-.8 -

.4], T3= [-.6 -.2] s, and T4= [-.4 0] s.  

 

Statistics 

Three-way ANOVA was applied to compare the 

temporal or spectral features among the two attention 

levels (CL and DAL) and channel placement. The fixed 

factors were ‘attention level’ with two states (CL and 

DAL), ‘channel lobe’ with six levels (Anterio-frontal, 

Frontal, Centro-frontal, Central, Centro-parietal and 

parietal lobes), and ‘channel hemisphere’ with three 

levels (Right, midline and left). Wilcoxon matched-pair 

sign rank test was used to analyze the differences in 

EMG envelopes between two attention levels. 

Significant was set to p<0.05.  

 

 
 

Figure 1: Schematic of temporal features extracted from 

single-trial MRCPs. ‘D’ indicates the range of time 

domains for slope and variability extraction. D21 shows 

[-2 -1] s, D10 represents [-1 0] s, D20 means [-2 0] s 

and D01 is for [0 1] s. 

 

RESULTS 

 

EMG Analysis 

The EMG envelope and the time interval between 

movements were not significantly different between CL 

and DAL (p>0.05). The duration between movements 

was also greater in the diverted attention level (CL: 

9.9s, DAL: 11.5s) but not significantly different. 

 

Temporal Features 

APN, slope and variability in the range of [1 0] s (S10 

and Var10) were significantly different between CL and 

DAL. Table 1 shows the values for these variables and 

the associated significance levels based on the three 

independent factors. 

APN and S10 were significantly reduced from CL to 

DAL (APN: F(1,412)= 6.4, p=0.01; S10: F(1,412)= 37.3, 

p<0.001). Figure 2 illustrates the average MRCP signals 

across all subjects and each channel for both conditions. 

Both the MRCP amplitude and slopes were reduced 

from CL to DAL for most channels. 

APN was significantly different between the three 

channel hemispheres (F(2,412)= 7.9, p<0.001). The 

Bonferroni post-hoc test revealed that the midline 

locations were significantly different compared to the 

right (p= 0.03) and left channel placements (p=0.001). 

Var10 was increased significantly from CL to DAL 

(F(1,412)= 125.2, p<0.001) although it did not show 

statistical differences with regards to the channel lobe or 

channel hemisphere. 
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Table 1: Three temporal features of MRCPs as a function of the three independent factors, with corresponding p values.  

 Attention Level Hemisphere placement Lobe Placement 

CL DAL P Left Midline Right P AF F FC C CP P P 

APN -20.1 

µV 

-17.2 

µV 

0.01 -17.8 

µV 

-21 

µV 

-19 

µV 

<.001 -19.6 

µV 

-19.9 

µV 

-18.4 

µV 

-19.8 

µV 

-18.8 

µV 

-19.2 

µV 

0.9 

S10 -10.5 

µV/s 

-4.1 

µV/s 

<.001 -9.6 

µV/s 

-9.2 

µV/s 

-7.5 

µV/s 

0.2 -9.9 

µV/s 

-9.1 

µV/s 

-9.8 

µV/s 

-9.4 

µV/s 

-9.9 

µV/s 

-9.5 

µV/s 

0.7 

Var10 0.013 0.016 <.001 .014 .014 .015 0.4 .015 .014 .015 .014 .014 .014 0.2 

 

 

 
Figure 2: Grand average of the MRCP signals in 

different channel locations based on the two attention 

levels. CL is shown as a solid black line and DAL as the 

dotted black line. Data are the average across all 

subjects (n=9). 

 

Spectral Features 

The alpha and theta range had more variations in 

specific time windows. Alpha power was increased 

statistically in T1 ([-1 -.6]) s between the CL and DAL 

condition (F(1,412)= 4.7, p= 0.03). In addition, channel 

lobe had a significant effect on alpha power distribution 

in four time intervals (T1[-1 -.6]: F(5,412)= 4.6, p<0.001; 

T2[-8 -.4]: F(5,412)= 3.6, p= 0.03; T3[-.6 -.2]: F(5,412)= 2.8, 

p= 0.02; T4[-.4 0]: F(5,412)= 3.1, p= 0.009). The Post-hoc 

test revealed that the Parietal and Anterio-Frontal lobe 

channels led to significantly different features compared 

to the other lobes. 

Theta power was also increased in the time interval [-1 -

.6] for CL versus DAL condition (F(1,412)= 32.3, p< 

0.001). Similar to the alpha power, the factor ‘lobe’ had 

a significant effect on theta power distribution (T1[-1 -

.6]: F(5,412)= 16.8, p<0.001; T2[-.8 -.4]: F(5,412)= 15.8, p= 

0.03; T3[-6 -.2]: F(5,412)= 12.4, p= 0.02; T4[-.4 0]: 

F(5,412)= 9.8, p= 0.009). The factor ‘channel hemisphere’ 

revealed a significant effect in T1[-1 -.6] (F(2,412)= 6.8, 

p= 0.001) and T2[-.8 -.4] (F(2,412)= 8.3, p< 0.001). The 

post-hoc test indicated that channels located on the 

midline led to different features compared to those 

located in the other two hemispheres. Figure 3 shows 

the topographic plots of the power distribution in T1 [-1 

-.6] for one representative subject. Regarding to all 

subjects, the signal power increased in the theta and 

alpha range, particularly in the channels placed on left 

hemisphere, with attention diversion.           

 

 
 

Figure 3: Power distribution in four frequency ranges 

for T1 [-1 -.6] with respect to the dorsiflexion onset. 

Data are for n=1. 

 

DISCUSSION 

 

We studied time and frequency features of EEG signals 

with attention variations. The results suggest that among 

ten temporal features, the amplitude of peak negativity 

and pre-movement slope in the late negativity phase 

before movement onset decrease in DAL by comparison 

with CL. Our previous studies support that by dividing 

the attention (dual-tasking), the EEG signal associated 

to movement preparation is reduced in amplitude and 

thus detection of movement intention delayed (3). One 

of the possible reasons for this effect is a reduction of 

attention to the main task in dual-task conditions in 

comparison with the single task. Therefore, the majority 

of attention is diverted to the secondary task and causes 

a reduced motor cortex excitability for the main 
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movement preparation and execution (12). Nonetheless, 

the movement execution was not significantly 

influenced, as quantified by EMG activity.  

Moreover, we observed significant increases in theta 

and alpha power with reduced attention. Although theta 

power enhancement particularly in the frontal lobe 

suggests an increment in the working memory or 

focused attention to the target task, in this study it is 

presumably due to an increased task demand in the 

dual-task conditions (13-15). This supports previous 

studies which revealed an inverse relation between 

attention demand in multi-tasking and alpha power (16) 

and the same relation between task demand and alpha 

power in the frontal, central and parietal lobes (17, 18). 

 

CONCLUSION 

 

For designing robust and reliable BCI systems, it is 

important to adapt the system to the users’ attention 

variations. Here we demonstrate that attention 

influences the temporal and spectral features of EEG 

signals. These results may have potential application in 

the design of systems for detecting the attention level 

from EEG features. 
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