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Abstract 
Various complex oscillatory processes are involved in the generation of the motor 

command. The temporal dynamics of these processes were studied for movement 
detection from single trial electroencephalogram (EEG). Autocorrelation analysis was 
performed on the EEG signals to find robust markers of movement detection. The 
evolution of the autocorrelation function was characterised via the relaxation time of the 
autocorrelation by exponential curve fitting. It was observed that the decay constant of 
the exponential curve increased during movement, indicating that the autocorrelation 
function decays slowly during motor execution. Significant differences were observed 
between movement and no moment tasks. Additionally, a linear discriminant analysis 
(LDA) classifier was used to identify movement trials with a peak accuracy of 74%.  

1 Introduction 
Neural correlates of movement have been increasingly explored for applications in brain-computer 

interfacing (BCI) as they enable very intuitive control [1]. Previous studies have suggested the 
possibility of the involvement of various complex oscillatory processes in motor command generation 
[2]. Most research focuses on the spectral domain of the EEG for detecting movement [1]. This 
project takes a different approach on understanding the motor commands by studying the temporal 
dynamics of the EEG using novel features.  

The principle of Event Related (De)synchronization (ERD/S) corresponding, respectively, to 
attenuation and increase predominantly in mu power and beta power [3], is widely used for detecting 
movements. Single trial analysis is important for online BCI implementation. Although these spectral 
features are able to reliably detect the motor command, they   may not completely describe all aspects 
of motor command generation available in the EEG and do not indicate how one part of the EEG 
depends on another. Moreover, it is challenging to compute accurate instantaneous frequency 
distributions without compromising the temporal resolution and inducing delays in the motor 
command detection. Utilizing EEG signals’ high temporal resolution, we have developed a novel 
method of detecting motor commands on a single trial basis by performing time domain analysis. 
Continuous autocorrelation analysis has been used for extracting temporal features from EEG.     

In this study, different correlation based time domain analysis methods were explored for 
understanding the neural basis of motor command generation. Previous studies report that the first 
zero-crossing time, the time at which the autocorrelation function crosses 0, increases before and 
during voluntary movement [2]. Autocorrelation analysis was motivated by looking at temporal 
dependencies in the EEG. This approach was expanded by considering the evolution of the 
autocorrelation function over time and studying changes in relaxation time of the decay of the 
autocorrelation.    
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2 Methods 

2.1 Experimental Paradigm 
EEG was recorded from three participants. All the participants were males (2 right handed and 1 

left handed) with ages 25, 23 and 29 years. An experimental paradigm was developed for recording 
self-paced index finger tapping of the right and left hand using tools from the BioSig toolbox [4]. A 
fixation cross was displayed on the screen placed at eye level for 2 sec at the beginning of each trial 
and followed by a textual cue for right or left hand finger tapping or resting. Participants were asked 
to perform a self-paced single finger tap at a random time of their choice within the 10 sec window 
following the cue. Each trial was followed by a random break of 1 to 1.5 sec. The experiment was 
broken down into separate runs of 12 trials with 4 cues per class displayed in random order to avoid 
pattern learning by the participants. The experimental setup is illustrated in Figure 1. 

A bespoke tapping device was developed using a programmable microcontroller to record the 
tapping signals from both the fingers. In order to mark the exact onset of the movement in EEG, both 
EEG and finger tapping signals were recorded simultaneously and co-registered using tools developed 
as part of the TOBI framework [5]. EEG from 19 electrodes (impedances kept below 8kΩ) was 
recorded using a Deymed TruScan amplifier with a sampling frequency of 1024 Hz. Forty trials for 
each of the three conditions were recorded for each participant.  

2.2 EEG pre-processing and Artifacts removal 
Signal pre-processing was done using a fourth-order Butterworth filter. DC offset in the signal was 

removed using a high-pass filter with a cut-off frequency of 0.5Hz. Power line noise was filtered 
using a notch filter at 50Hz. Finally, high frequency noise was eliminated using a low-pass filter with 
a cut-off frequency of 60Hz.  

Independent Component Analysis [6] was used to remove artefacts from the recorded signals. 
Independent components (ICs) with artefacts were identified manually. Artefact-free EEG was 
reconstructed by eliminating these ICs. EEG was then segmented into individual trials. Trials of 
length 6 sec were obtained by extracting 3 sec before and 3 sec after the onset of movement.    

2.3 Autocorrelation analysis based on exponential decay 
In order to examine the time development of the relaxation time of brain activity before, during, 

and after the movement, the autocorrelation function was calculated to extract the relaxation. The 
autocorrelation function shows the degrees of un-correlation as a function of time from initial state.  

For a given signal A(t), the auto-correlation is defined by C(∆t) = <A(t)A(t-∆t)>, where <…> 
represents the average over time. At the initial time, C(0) = <A2>, and after infinite time, the signal is 
completely uncorrelated, giving C(inf) = <A>2. How the signal becomes uncorrelated as a function of 
time may be described by C(t) =   <A2> e(-t/ τ)  to describe the general trend of the relaxation process 
when the average of the signal <A>=0. If the auto-correlation is normalized, C(t) =  e(-t/ τ)  where τ  
represents the relaxation time of the signal and is an indicator of the relaxation process.  

 Autocorrelation functions were derived for the 30Hz low-pass filtered EEG. A windowing 
approach was used for determining instantaneous autocorrelation. Windows of length 1sec and shifted 
by 100ms were extracted. Normalised continuous autocorrelation was performed on each window at 
all lags with non-zero values.  

The exponential curve y=K.e(-t/τ) was fitted to the local maxima of the positive lags of the 
autocorrelation function obtained from each window of the trial and the decay constant τ  of the fitted 
curve was extracted as a feature (see Figure 2).The constant K was set to 1.  The τ values for all the 
windows for each trial were plotted (see Figure 3).  
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2.4 EEG analysis and classification 
The 9 EEG channels around the motor cortex (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) were 

analysed. Before beginning further analysis and classification with the novel time domain method, to 
assess the quality of data, EEG was validated for the presence of ERD using event-related spectral 
perturbation. To observe ERD, average spectrograms of resting state trials were subtracted from 
average spectrograms of movement trials. Figure 4 shows the decrease in mu power around 
movement onset.  

To analyse the results obtained by plotting τ for single trials, element-wise 2 sample t-test were 
performed to identify statistically significant differences between right tap vs. rest and left tap vs. rest 
on 9 EEG channels. A Linear discriminant analysis (LDA) classifier was used for classification. LDA 
was applied in a sliding window (length 1s, step size 0.1s).  A 10x10 cross-fold validation scheme was 
used with binary classification of right/left tap vs. no tap and the best channel was selected manually.  

3 Results 
Increases in the value of τ around the onset of movement were clearly observed in most trials. 

The τ values of the resting state trials appeared stable throughout the trial Features around the onset of 
the movement showed statistically significant differences between tap vs. rest conditions (see Figure 
5). The most responsive channels for right and left hand tap differed between participants. Using the 
autocorrelation function decay constant movement could be detected from single trials.  

 
LDA classification accuracies for all the participants were plotted for the classification of 

movement of right vs. rest and left vs. rest. The accuracy obtained was considered statistically 
significant at p<0.05. A peak accuracy of 74% was achieved for participant 3 (shown in Figure 6). 

 
Figure 1: Experimental Setup 

 
Figure 2: Exponential Curve 

The fitting represents 
autocorrelation relaxation for 

right tap trial on C3 

 
Figure 3: Plot of changes in τ 

in a single right tap trial on C3. 
Time is reported relative to 

movement onset. 

Figure 4: ERD on channel 
C3 for participant 1, 2 and 3 

 
Figure 5: t-Test for left 

hand trials, participant 3 in Fz. 
The horizontal line indicates 
statistical significance (p<0.05). 

 
Figure 6: Classification 

accuracy for left hand, 
participant 3 in Fz. The 
horizontal line indicates 

statistical significance (p<0.05). 
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Table 1 shows classification accuracies for all the participants. Significant accuracies were obtained 
for all the participants, except for participant 1 right hand tapping condition. It’s interesting to note 
that participant 3, who exhibited the smallest ERD response, gave the best results using this method.  

Participant Right hand tapping 
classification accuracy (%) 

Left hand tapping 
classification accuracy (%) 

1 58.0 68.4 
2 66.0 69.0 
3 68.0 74.0 

  Table 1: Movement classification accuracies. Statistical significance (p<0.05) is indicated in bold. 

4 Conclusions and future work  
A novel approach to extract features from the temporal dynamics of brain oscillations on a single 

trial basis was used to study the neural mechanisms of movement. This time domain single trial 
analysis has great potential for online BCI. Oscillations of a wide frequency range were taken into 
account without limiting the feature search into pre-determined frequency bands. This has led to the 
novel discovery of the behaviour of the autocorrelation function during voluntary movement. The 
autocorrelation function decays slower during movement as compared to rest. When there is no 
movement, decreases in the autocorrelation function are sharp. This suggests that during rest, the 
oscillatory processes and relaxation process of the autocorrelation function are distinct. However, 
during movement, coupling occurs between relaxation and oscillatory processes. Thus, the relaxation 
time of autocorrelation is a measure of temporal dependency in EEG.  

Since the study performed was very novel, initial analysis was done on only three participants to 
validate the proposed hypothesis. There is large scope for further work. To validate and confirm the 
robustness of this method, EEG analysis will be done on more participants and a comparison will be 
made to ERD based classification of movement. The system will be adapted for use in online BCI.  
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