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Abstract

Calibration of brain-machine interfaces exploiting event-related potentials has to be
performed for each experimental paradigm. Even if these signals have been used in pre-
vious experiments with different protocols. We show that use of signals from previous
experiments can reduce the calibration time for single-trial classification of error-related
potentials. Compensating latency variations across tasks yield up to a 50% reduction the
training period in new experiments without decrease in online performance compared to
the standard training.

1 Introduction

Successful decoding of event-related potentials (ERP) for brain-machine interfacing requires
adequate models of the signal of interest. Considering the variability of EEG signals, calibration
of these models is done through the acquisition of a large number of trials. Therefore, a
considerable amount of time has to be spent before a system can be operated in online manner.
Different approaches have been proposed to overcome this issue by applying adaptive classifiers
[7] or using previous information from multiple subjects [5, 6].

Remarkably, the recalibration process has to be performed for every protocol, even if ERPs
elicited by the same cognitive processes have previously been used with other experimental
setups (e.g. different feedback stimuli or final application). Recent works have tried to exploit
ERP similarities in these cases [2, 4]. For instance, it has been shown that variations of error-
related potentials (ErrP) across different experimental protocols can be largely explained by
changes in their latency [2]. We claim that these variations can be compensated in order to
exploit available data from previous experiments for the calibration of new experimental pro-
tocols. This work reports an online evaluation of this approach, showing that it can effectively
reduce the calibration time with respect to the standard practice without degrading the online
recognition performance.

2 Methods

2.1 Experimental protocols

Twelve participants performed three experimental protocols of increasing complexity as shown
in Fig. 1. They were seated on a comfortable chair facing the visual displays of the protocols
approximately one meter away and asked to restrict eye movements and blinks to specific
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Figure 1: (Top) Experimental protocols. (Bottom) ErrPs at the FCz electrode obtained in
each experimental protocol. (Left) One-dimensional cursor movement (E1). (Center) Two-
dimensional movements of a simulated robotic arm (F2). (Right) Real robotic arm (E3).

resting periods. In all experiments they were asked to evaluate whether a device moves towards
a given target location. The device moved in discrete steps and the time between movements
was randomly chosen within the range [1.7 4.0] s. There was a probability of moving in the
wrong direction of about 30%. Experiments were always performed in the same order from the
simplest to the most complex one. The first experiment, F, consists of a cursor that moves
in discrete steps (either left or right) towards a target [1]. In the second protocol, E2, the user
monitors a simulated robotic arm that moves on a 2D plane (allowed movement directions were
left, right, up and down). The third experiment, Fs5, consists of the same task using a real
robotic arm. A detailed explanation of the protocols and methods is provided in [2].

Each experiment started by a calibration phase. This phase had a variable length depending
on the obtained performance. Calibration stopped whenever the mean accuracy (ten-fold cross-
validation) on the training data exceed 75%. Then the classifier parameters were fixed, and
performance was tested on an online phase lasting 400 trials.

EEG was recorded at 256 Hz with a gUSBAmp amplifier (gTec GmbH, Austria) with 16
active electrodes (Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
and CP4 according to the 10-10 system). Ground and reference were placed on the forehead
and the left earlobe. Data was notch filtered at 50 Hz, and zero-phase band-pass filtered at
[1, 10] Hz. Prior to classification, we applied common-average reference and downsampled the
signal to 64 Hz. Features from eight fronto-central channels were selected in the window [200
800] ms using a spatiotemporal filter [3]. On average 45 + 10 features were selected based on
their 72 score. Single-trials were classified as erroneous or correct using linear discriminant
analysis (LDA).

2.2 Training paradigm using latency-correction

As mentioned above, differences between ErrPs elicited in different experiments can be largely
explained by latency variations. These variations can be easily estimated by computing the
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Figure 2: (Left) Number of calibration trials (mean £ SEM) required to reach the calibration
criterion (*: p < 0.05). (Right) Mean classifier accuracy during the online control phase.

cross-correlation between the grand-average ERPs for each experiment. In brief, given a pre-
vious experiment Fj, from which data is available, and a new experiment E;, the ERP latency
variation dg, g; will correspond to the shift that yields the maximum cross-correlation. Then,
ERP data from E; can be shifted in time by dg, g, and used along the available (few) trials
from the new experiment F/; to train a classifier.

Complementing previous reports [2], we compare whether this latency correction mechanism
effectively reduces the calibration time. To that end, we defined two groups of participants
depending on the training procedure. The control group (N=6, one female, mean age 27.33+2.73
years) followed a standard calibration approach, i.e., based only on data from the current
experiment. The ezperimental group (N=6; two females, mean age 27.17 & 4.07 years) used
latency-corrected trials from the previous experiment to build the classifier for the current task.
That is, standard calibration was followed for E7, while data from that experiment was used
during the calibration period of Es. Similarly, during calibration for E3 the data from Es was
used. The latency between experiments was estimated based on the cross-correlation of the
difference ERP (error minus correct condition) of channel FCz within the window [0, 500] ms.

Mixed two-way ANOVAs (within factor: experiments; between factor: group of subjects)
were performed to test whether (i) the number of calibration trials in the experimental group
decreased across experiments; (ii) the number of calibration trials was significantly different
between groups; and (¢ii) the online accuracies of both groups were not different. Post-hoc one-
tailed Bonferroni-corrected t-tests were performed to assess statistically significant differences.

3 Results

The obtained ErrPs can be seen in Figure 1. Latency variations were about 60+ 25ms between
F4 and Fs, and about 41413 ms between E5 and E3 Figure 2 shows the number of calibration
trials needed in each experiment to reach the stopping criteria. The calibration period for the
control group was similar for all experiments. In contrast, the experimental group exhibit a
large reduction on the required calibration trials in E5 and E3 when previous information was
re-used. The ANOVA test revealed a significant interaction between the experiment and group
(Fy,20 = 8.65,p = 0.002). Post-hoc tests showed that significant differences were found between
groups in experiments 2 and 3 (one-tailed unpaired t-tests, p < 0.05), and also significant
differences within the experimental group between experiments 1 and 2 (one-tailed paired t-

Published by Graz University of Technology Publishing House Atticle ID 064-3



Proceedings of the 6th International Brain-Computer Interface Conference 2014 DOI:10.3217/978-3-85125-378-8-64

test, p = 0.004), and between experiments 1 and 3 (p = 0.004).

No significant difference was found in the accuracies for all the experiments and subjects
(p > 0.85). These results indicate that, provided data from previous experiments, knowledge
from these protocols can be transferred to the new task using the latency correction algorithm.

4 Conclusion

Our results confirm that compensating for latency variations across protocols allows the use of
previous data to shorten the calibration phase in new applications. In the reported experiments
the use of data from the first experiment enabled users to reach the training criteria for the
second one in about half of the trials required with the standard approach. Importantly, no sig-
nificant difference was observed between the two training paradigms in the online performance.
Similar reductions were also observed for the third experiment with the real robot.

The latency correction mechanism used in this work relied on a simple measure based on the
cross-correlation in a single channel. However, ERP variations across experiments may follow
more complex patterns both spatially (i.e. across channels) and temporally (i.e. individual ERP
components). Multiple factors affect the ERP waveforms including the feedback modality, the
inter-stimulus interval, as well as subject dependent variability. It remains to be validated how
suitable this correction mechanism is to other experimental paradigms and signals. Moreover,
further research is required to explore more sophisticated techniques to better model these ERP
variations (e.g. dynamic time warping).
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