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Abstract

In this study we report on the improvement of classification accuracy in an auditory
P300 paradigm, by using stepwise linear discriminant analysis (SWLDA) with an increased
number of channels and analytic shrinkage-regularized LDA (sLDA) as classifier. The
investigations were evaluated on recordings of 10 healthy subjects and 12 patients in a
minimally conscious state. The results for healthy subjects were promising, significant
improvements could be found by increasing the number of channels using SWLDA, as well
as, for using sLDA instead of SWLDA. Single trial classification accuracies up to 85.1%
could be achieved for healthy subjects. For the patients the results were less promising.
However, for one patient improvement reaching up to an accuracy of 71.3% could be
achieved.

1 Introduction

A promising approach, when considering the application of Brain-Computer Interface (BCI)
systems to patients diagnosed with minimally conscious state (MCS), is the use of single-switch
BCIs (ssBCIs) [6]. Such an ssBCI can be based, for example, on motor imagery or on re-
sponses to visual, tactile or auditory stimulation. However, while the visual ability might be
considerably impaired in such class of patients, the auditory pathway is usually preserved.
Therefore, the auditory system might be one of the last remaining channels usable for BCI-
based communication [3]. Recently we proposed the concept of a novel auditory single-switch
BCI and investigated the transition of a paradigm from healthy subjects (HS) to patients (PA)
in MCS [4]. The paradigm was evaluated in 10 HS and applied to 12 PA. In 8 of the 10 HS
significant single-trial classification accuracies up to 77.2 % could be reached using stepwise
linear discriminant analysis (SWLDA). However, for MCS patients only a small number of
classification results were above chance level and none of the results were sufficient for commu-
nication purposes. We speculated that the inclusion of all recorded channels instead of only
three pre-selected channels might yield better classification results.

In the present work, we investigated this issue by using all recorded channels for SWLDA
classification in HS and PA. However, due to the low number of trials available from patient
measurements, there is a risk of overfitting the data when using all channels for classification.
Therefore, we also used analytic shrinkage-regularized LDA (sLDA) which clearly outperforms
SWLDA at low trial to feature ratios [1].
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2 Methods

Subjects, Experimental Paradigm and Data Recording: We used the data of the 10
HS (mean age 27.6 ± 3.0 SD years) and 12 PA (45.8 ± 18.2 years) in MCS, recorded in our
previous study, using an auditory based P300 BCI [4]. Briefly summarized, two tone streams
(low, LTS, at 396 Hz, and high, HTS, at 1900 Hz) with infrequently appearing deviant tones
(297 Hz for the LTS and 2640 Hz for the HTS) at random positions were presented. The tones
of both streams were intermixed (LHL LHL , L..low tone, H..high tone, ..silent gap; for details
and a schematic illustration see [4]). As in this way the LTS was twice as fast as the HTS, the
percentage of deviant tones was different (20% for HTS and 10% for LTS) to generate the same
absolute number of deviants in both streams. For the experiment, subjects were instructed
visually, for HS, or auditory, for PA, to focus attention on one of the streams during one run.
For the HS 80 runs (40 runs for each stream; with 4000/400 (standard/deviant) tones in the
LTS and 1800/400 in the HTS) were recorded. Taking into account the reduced attention span
of the patients, one to two sessions, each with 20 runs (10 for each stream), were recorded. In
HS the EEG was recorded at 15 positions with a sampling rate of 512 Hz (filter setup: 0.5–100
Hz) using active electrodes. For PA recording a reduced channel set (9 positions) was used to
facilitate measurements in a clinical environment. For the electrode setup see [4].

Data Analysis and Classification: Data recorded from HS and PA were analyzed in the
same way. Raw signals were filtered with a 3rd order Butterworth low-pass filter (cut-off
frequency at 10 Hz) and down-sampled to 64 Hz. In our previous work three EEG channels
(Fz, Cz, Pz) were used for classification (SWLDA, with 10x10 cross-validation; for details
see [4]). Only time points between 200 and 800 ms after tone onset were used as features.

In the present work, we performed two classification approaches: Firstly we used the data of
all recorded channels for SWLDA classification. Secondly we investigated also the performance
of sLDA instead of the SWLDA. In general, the classification performance of an LDA crucially
depends on accurate estimates of the class means and the common covariance matrix. If enough
data are available, an accurate estimate is unproblematic. However, in cases where insufficient
data are available or the data are contaminated by outlier (e.g. during PA recordings), con-
ventional estimation of the covariance matrix fails. In those cases, the covariance matrix is
ill conditioned. One can improve the conditioning of the covariance matrix by regularization.
An efficient regularization method is analytic shrinkage. This so-called analytic-shrinkage-
regularized LDA (sLDA) is computationally very efficient and outperforms other methods at
low trial to feature ratios [1]. For both approaches the classification was carried out as follows:
1) To detect the P300 the deviant tones were classified against the standard tones for each
target stream separately, and 2) to investigate the attentional modulation of the P300, the
target deviant tones were classified against the non-target deviant tones for each stream sepa-
rately. By performing the second investigation, it should be possible to infer which stream was
attended. For the first investigation random subsampling with 100 iterations was applied to
account for the very different numbers of deviant and standard segments. Classification results
were compared with the real level of chance [2] to identify random results.

3 Results

Results are shown for P300 and attentional modulation detection. Figure 1 depicts the averaged
(mean ± SD) classification accuracies for P300 and attentional modulation detection, using
either SWLDA with 3 channels (SWLDA3), all channels (SWLDAall), or sLDA classifier with
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all channels (sLDAall) for both groups (HS,PA). The results are shown for LTS and HTS.
Table 1 summarizes the subject specific SWLDA and sLDA classification results of all 10 HS.
The values in the table represent the mean accuracies over all cross-validation folds.

P300 Attention

Subj. SWLDA 3 SWLDA all sLDA all SWLDA 3 SWLDA all sLDA all

LTS HTS LTS HTS LTS HTS LTS HTS LTS HTS LTS HTS

HS01 57.3 61.2 58.0 62.5 64.0 68.2 55.2 57.8 55.8 56.0 58.6 59.3

HS02 70.7 61.8 73.5 63.6 76.7 65.2 62.6 62.8 61.9 62.9 65.3 69.4

HS03 77.2 72.0 78.2 73.3 85.1 77.7 69.5 70.4 70.9 69.2 75.9 74.8

HS04 62.2 57.2 64.3 57.9 67.2 61.4 56.9 53.5 59.4 57.4 61.1 61.2

HS05 63.9 60.7 65.2 61.5 69.2 65.8 63.5 61.0 65.4 65.5 67.2 71.2

HS06 71.5 64.4 78.7 75.0 81.3 79.7 65.5 65.5 71.6 76.7 76.5 78.8

HS07 61.9 54.4 62.9 55.6 67.2 59.8 53.3 55.6 54.1 54.6 56.7 58.1

HS08 67.2 59.7 74.0 65.1 80.7 72.1 58.9 60.2 61.0 62.2 65.9 69.3

HS09 56.8 55.4 59.6 57.6 62.6 58.6 52.8 52.1 53.4 53.0 54.7 55.9

HS10 56.0 52.6 60.9 53.6 64.4 56.7 51.4 50.6 51.4 53.4 57.0 60.3

Mean 64.5 59.9 67.5 62.6 71.8 66.5 59.0 59.0 60.8 61.1 63.9 65.8

SD 7.1 5.6 7.8 7.1 8.3 7.9 6.1 6.3 6.7 7.7 7.7 7.9

Table 1: SWLA and sLDA classification accuracies (in %) for the HS for P300 and attentional
modulation detection using either 3 or all channels. All results significantly better than random [2]
(α = 1%) are indicated in italic. Highest subject specific accuracies are indicated in bold.

In healthy subjects the P300 condition revealed a statistically significant difference in ac-
curacy depending on which classification method was used, χ2

(5) = 39.94, p < 0.001. Post hoc
analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied,
resulting in a significance level set at p ≤ 0.012. There were significant differences between
the SWLDA3 and sLDAall (LTS: Z = −2.805, p = 0.005; HTS: Z = −2.803, p = 0.005)
and SWLDAall and sLDAall (LTS: Z = −2.803, p = 0.005; HTS: Z = −2.803, p = 0.005).
The attentional modulation condition showed also a significant difference in classification
accuracies depending on the method used, (χ2

(5) = 38.11, p < 0.001) and the follow up
Wilcoxon signed-rank test showed significant differences between SWLDAall and sLDAall (LTS:
Z = −2.805, p = 0.005; HTS: Z = −2.803, p = 0.005) and between SWLDA3 and SWLDAall

(LTS: Z = −2.49, p = 0.012).

Figure 1: Mean (± SD) classification accuracies
(in %) for a) healthy subj. and b) patients (for
P300 and attentional modulation detection; sepa-
rated for LTS and HTS) using SWLDA and sLDA
classifier. Significant differences are indicated.

P300

SWLDA 3 SWLDA all sLDA all

LTS HTS LTS HTS LTS HTS

Mean 51.9 51.5 51.7 52.4 52.3 53.8

SD 4.0 3.9 4.1 4.2 4.6 5.6

Attention

SWLDA 3 SWLDA all sLDA all

LTS HTS LTS HTS LTS HTS

Mean 50.8 51.1 50.3 51.0 51.2 52.7

SD 5.6 4.4 5.6 4.4 5.1 5.3

Table 2: Mean (± SD) SWLDA and sLDA classi-
fication accuracies (in %) for the patient group for
P300 and attentional modulation detection using
either 3 or all channels.
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For the patients (see Table 2 for mean ± SD accuracies) the Friedman test reported significant
differences between the classification methods only for the P300 condition, χ2

(5) = 13.28, p =
0.021. The follow up Wilcoxon signed-rank test revealed no significant results. Nevertheless,
in one of the patients (PA09; CRS-r score: 18; Cause: Hemorrhagic stroke) a P300 could
be classified above chance level. In more detail, by using sLDA, the accuracy for the HTS
was improved up to 71.3% (SWLDA3: 63.0%; SWLDAall: 65.3%), which is significantly better
than random [2] (α = 1%). However, for the LTS all classification accuracies (SWLDA3: 64.8%;
SWLDAall: 65.0%; sLDAall: 65.2%) remained below chance level.

4 Discussion and Conclusion

For the HS group the classification accuracies could be significantly improved by using sLDA
and the inclusion of all recorded channels. However, unlike healthy subjects, for the patient
group the results were less encouraging. Although in some PA the single-trial classification
accuracies could be improved, they remained mainly below chance level. However, an accuracy
significantly better than chance level [2] could be reached in one subject (71.3%).

Concluding, as stated by Blankertz et al. [1], ”the use of a higher number of channels is
potentially advantageous for ERP classification” and improves the classification accuracy in HS
using either SWLDA or sLDA. For the PA recordings further studies should aim on investigating
the use of additional electrode positions (especially frontal/fronto-lateral [5]). Furthermore, as
concluded in [4], improvements on the used paradigm (e.g. include spatial information [5] if
possible) are still required to take into account the specific needs and capabilities of the patients.

5 Acknowledgments

Supported by European ICT Programme Project FP7-247919 and ”Land Steiermark” Project
(ABT08-22-T-7/2013-17). The text reflects solely the views of its authors. The European
Commission is not liable for any use that may be made of the information contained therein.

References

[1] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller. Single-trial analysis and classifica-
tion of erp components - a tutorial. Neuroimage, 56:814–825, 2011.

[2] G. R. Müller-Putz, R. Scherer, C. Brunner, R. Leeb, and G. Pfurtscheller. Better than random? A
closer look on BCI results. Int. J.Bioelectromag., 10:52–55, 2008.

[3] A. R. Murguialday, J. Hill, M. Bensch, S. Martens, S. Halder, F. Nijboer, B. Schoelkopf, N. Bir-
baumer, and A. Gharabaghi. Transition from the locked in to the completely locked-in state: a
physiological analysis. Clin Neurophysiol, 122(5):925–933, 2011.

[4] C. Pokorny, D. S. Klobassa, G. Pichler, H. Erlbeck, R. G. L. Real, A. Kübler, D. Lesenfants,
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