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Abstract
Performance variation is one of the critical issues to be resolved in brain-computer 
interface field. Subjects exhibit different performances from session to session and even 
across trials. To overcome this issue, three strategies have been commonly proposed, 
including extraction of robust features, adaptation methods, and monitoring and 
rejection of bad trials. In this work, we suggest a new multi-classifier strategy using trial 
data shuffling. This strategy generates different classifiers according to various noise 
states. Our proposed strategy showed an improvement in classification performance of 
approximately 3 percent, and a trial-wise quality measure facilitated to monitor bad 
trials. This seems a promising method to improve the reliability of the BCI system.

1 Introduction
Brain-Computer Interface (BCI) suffers from performance variation. Within subjects, the non-

stationary properties of brain signals are considered to be a major cause of this problem. Existing 
strategies can be categorized as follows: 1) extraction of robust features (Cho et al., 2012), 2) 
adaptation of feature or classifier (Krusienski et al., 2011; Shenoy et al., 2006; Satti et al., 2010), and
3) monitoring and rejecting bad trials (Ferrez and del R Millan, 2008). Brain signals yield both 
meaningful (which is used to decode a user’s intention or thought) and non-relevant information 
(background noise). We focused primarily on the first type of information under the assumption that 
meaningful information is the same over trials. Therefore, most studies have assumed that features are 
extracted well and reflect task-related information. In practice, however, noise varies over time; this 
variation influences the overall signal property, which degrades the performance of the feature 
extractor. Thus, noise information should be considered carefully. Moreover, a user may change the 
way s/he conducts a mental task or may not be in a proper mental state. Therefore, these trials may 
violate the assumption above, thus calling into question the use of the methods in Strategies 1 and 2.
Grosse-Wentrup and Schölkopf (2012) demonstrated that the prediction of poor mental state, in which 
a user is not likely to generate a motor imagery-related signal, is possible before the user begins the 
imagination task. It is remarkable that BCI can predict a user’s condition in advance; therefore, the 
system enables us to deal more readily with the potentially unreliable state of a user. In this study, we 
propose a new multi-state driven (MSD) method that deals with the problem of fluctuations in BCI. 
The concept of this MSD strategy is described in Section 2. Materials, evaluation and results are 
presented in the subsequent sections. Finally, we discuss related ideas and our future work.
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2 Methods and materials

2.1 Multi-State Driven method
Typically, every trial obtained in the calibration phase is used to construct one classifier. However, 

this is likely to overlook two points. First, why is the entire trial dataset used simultaneously in order 
to construct a classifier? In general, a classifier depends heavily on the given dataset. Thus, 
performance will vary over the datasets used. Second, why is only one classifier used? As reported in
(Lotte et al., 2007), a multi-classifier method gives better and more stable results. The use of one 
classifier is risky, as its performance may vary greatly over trials. To reduce this risk, we may separate 
one dataset into multiple sub-datasets containing a small number of trials and use those to generate 
multiple classifiers (one per sub-dataset). Finally, a decoder is constructed with a reasonable 
combination of these classifiers. Given trial dataset T, it is assumed that each trial of dataset T consists 
of the sum of s (task-involved information) and noise n. With just several trials, a classifier can be 
constructed through a function associated with preprocessing, and a variety of filtering and feature 
selections. Therefore, Strategy 1 focuses on extracting the signal s only, while Strategy 2 considers s +
n simultaneously. If noise variability over trials is high and sub-dataset D � T has its own unique
noise state N (= � ��� ), these will influence classifier construction and classification is likely to work 
poorly for trials not contained in D. We defined this unique noise property as state N. This noise state 
N definitely varies over sub-datasets and some sub-datasets may contain noise, as well as information 
unrelated to the task that is caused by a user. Thus, we expect that such a variable noise state may 
become involved in the construction of various classifiers; we call this idea a MSD strategy. Any type 
of pre-processing and feature selection can be applicable to this MSD strategy. Many ideas may exist 
with respect to generating a decoder that considers outputs from these multiple classifiers. In this 
study, a “voting” method (Lotte et al., 2007) was introduced and a single value was used as a quality 
score for each trial. By introducing MSD, multiple outputs (one output per classifier) coming from 
many classifiers are generated when a trial is given as input. These multiple outputs may be used to 
evaluate the measure of quality for a given input trial. The number of class labels classified is counted 
from multiple outputs and the probability for each trial is estimated. This probability shows how well 
each trial is discriminated and thus we used this trial discriminant score (DS) to monitor bad trials in 
order to confirm the improvement in accuracy.

2.2 Motor imagery experiment
The following experiment was approved by the Institutional Review Board at Gwangju Institute of 

Science and Technology. All subjects were informed of the experimental process and purpose before 
the experiment and signed letters of consent were collected from every subject. With four subjects, we
recorded electroencephalographs (EEG) through a Biosemi active2 (64 channels, sampling rate: 512 
Hz). Three sessions were conducted with each subject and each session consisted of offline and online 
experiments. In the offline experiments, a trial began with a blank screen; the instruction bar appeared 
on the left, right or bottom side of the screen after 2 sec. Subjects were instructed to imagine 
movement of a body part for 2 sec when a ball was presented. After another 2 sec, the ball moved in
the instructed direction. 1st and 2nd runs consisted of 30 trials, as these two runs were used to identify 
the best pair of motor imagery (i.e., left and right hand, and foot movement imagination). At the end 
of the 2nd run, we estimated cross-validated accuracy from 60 trials for three conditions through 
Common Spatial Pattern (CSP) and Fisher Linear Discriminant Analysis (FLDA). Here we applied 
bandpass filtering (8-30 Hz) and the temporal interval was selected manually after examining event-
related (de)synchronization patterns. For the 3rd and 4th runs, subjects conducted twenty trials per 
condition. Therefore, this yielded forty more trials per condition. Finally, we collected sixty trials for 
each condition in a two class motor imagery experiment. From these trials, we constructed a classifier 
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using invariant Common Spatio-Spectral Pattern (iCSSP) and FLDA, as in (Cho et al., 2012). This 
classifier was applied in the online experiment. Subjects conducted 150 trials for two conditions (75 
trials for each) over 3 runs. A feedback trial similar to the trials in the offline experiment was designed.
However, in the feedback trials, we gave a classified result and moved the ball in that direction.

2.3 Evaluation
The purpose of this study was to evaluate our proposed strategy and compare it to the conventional 

strategy that uses whole trials for one classifier. For this evaluation, we fixed informative intervals as
8-30 Hz and 0.4-2.4 sec. for spectral and temporal filtering (Ahn et al., 2012). The evaluation was 
conducted through ‘in-phase’ and ‘phase to phase’ performances. To estimate performance in the 
calibration/feedback phase, we first applied cross-validation to check in-phase performance. Whole 
trials were divided into 10 groups and 7 groups were chosen as a training set, while the remaining 3 
groups were used as a testing set. CSP and FLDA were applied, such that 120 iterations yielded 120 
accuracy estimates; we assigned the mean accuracy to conventional (CV) performance. We also 
estimated MSD accuracy. In 10 groups of trials, we chose nine groups as training data and the 
remaining group was used as testing. From 9 groups in the training set, 7 groups were selected to 
generate a classifier; therefore, we were able to construct an MSD decoder consisting of 36 classifiers. 
This decoder evaluated each trial in the test data, and the process was repeated through 10-fold 
validation; thereafter, a trial-wise discriminant value was estimated and we calculated MSD accuracy. 
Finally, we obtained both CV and MSD accuracy for each calibration and feedback phase.
Conventional phase-to-phase performance is designed so that a classifier constructed by calibration 
data evaluates the trials in the feedback phase. We applied this conventional method for our 
calibration and feedback data through CSP and FLDA. In addition, MSD was implemented and 
applied. The MSD decoder constructed from calibration data was applied to discriminate the trials in 
the feedback phase.

MSD produces trial-wise discriminability from classifiers, which facilitates the evaluation of trial 
quality. It is possible to reject a bad trial that falls beneath a certain threshold. This was evaluated for 
phase to phase performance. The MSD decoder constructed using calibration data evaluated trials in 
the feedback phase and bad trials were rejected. For this evaluation, we used a 50% threshold, which 
means that the MSD decoder identified a certain class that received at least more than one evaluation. 
However, we applied different criteria to examine how the accuracy changed. Based on this criterion, 
we accepted trials showing higher probability than the threshold and the hit rate was calculated.

Table 1: Performance (%) comparison between conventional approach (CV) and MSD

Datasets In-phase (Calibration) In-phase (Feedback) Phase to phase
CV MSD CV MSD CV MSD

A1 85.0 87.5 72.9 80.7 75.3 78.7 
A2 92.8 95.8 58.9 62.0 75.3 75.3 
A3 86.6 90.8 65.8 71.4 70.7 75.7 
B1 80.6 84.2 94.1 95.3 70.0 71.3 
B2 88.5 89.2 80.5 83.3 80.7 80.7 
B3 80.9 85.0 84.8 87.3 69.3 75.3 
C1 89.4 91.7 76.5 79.3 77.3 81.3 
C2 81.8 86.7 62.9 66.0 58.0 61.3 
C3 60.2 60.0 51.6 51.3 51.3 56.0 
D1 60.8 61.7 61.7 62.0 50.0 51.3 
D2 75.3 78.3 87.1 87.3 72.0 76.0 
D3 85.7 87.5 94.7 94.0 92.0 93.3 

Mean 80.6 83.2 74.3 76.7 70.2 73.0 
Standard Deviation 10.5 11.3 14.3 14.0 12.1 11.7 

p value (*:<.01, **:<.005, ***:<.001) 0.00097656 (***) 0.0068359 (*) 0.0019531 (**)

Proceedings of the 6th International Brain-Computer Interface Conference 2014 DOI:10.3217/978-3-85125-378-8-10

Published by Graz University of Technology Publishing House Article ID 010-3



3 Results and conclusions
As shown in Table 1, MSD resulted in higher performance than CV accuracy showing the 

improvement 2.6% (calibration), and 2.4% (feedback). Wilcoxon signed rank tests revealed the
significance at p < 0.001 and p < 0.01, respectively. In phase to phase performance, the MSD was also
superior. The mean accuracy increased from 70.17% to 73.03% (p < 0.005). In the test of the 
applicability of the trial rejection method, we observed that, for most datasets, the accuracy increased as 
the criterion became stronger (Figure 1). Meanwhile, the number of trials accepted decreased steadily. 
This demonstrated that most datasets, except for C2, C3 and D1, generated reasonably good task-
related information. Thus, trial rejection might be a more efficient technique to apply. In this study, we
proposed a new strategy to make the BCI system more reliable. Our results showed notable 
improvement in performance. To overcome performance variation, further investigations of trial-wise
and session-wise data are required.  Our future studies will investigate this issue.

References
Ahn, M., Hong, J., & Jun, S. (2012). Feasibility of approaches combining sensor and source features 

in brain–computer interface. Journal of Neuroscience Methods, 204(1), 168 - 178.
Cho, H., Ahn, M., Sangtae, A., & Jun, S. (2012). Invariant Common Spatio-Spectral Patterns. 3rd 

TOBI Workshop, (pp. 31-32).
Ferrez, P., & del R Millan, J. (2008). Error-related EEG potentials generated during simulated brain-

computer interaction. IEEE transactions on bio-medical engineering, 55(3), 923-929.
Grosse-Wentrup, M., & Schölkopf, B. (2012). High gamma-power predicts performance in 

sensorimotor-rhythm brain-computer interfaces. Journal of Neural engineering, 9(4), 046001.
Krusienski D. J., Grosse-Wentrup M., Galan F., Coyle D., Miller K. J., Forney E., Anderson C. W. 

(2011) Critical issues in state-of-the-art brain-computer interface signal processing. Journal 
of Neural engineering, 8(2), 025002.

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification 
algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, R1.

Satti, A., Guan, C., Coyle, D., Prasad, G. (2010) A Covariate Shift Minimisation Method to Alleviate 
Non-stationarity Effects for an Adaptive Brain-Computer Interface. 20th International 
Conference on Pattern Recognition, (pp. 105–108).

Shenoy, P., Krauledat, M., Blankertz, B., Rao, R., & Müller, K.-R. (2006). Towards adaptive 
classification for BCI. Journal of neural engineering, R13-23.

Figure 1: Accuracy (left) and accepted trials (right) in % over varying threshold levels (50% to 100%). 
Each thin, gray line denotes the results for each dataset and the thick, blue line indicates the mean.
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