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Zusammenfassung

In dieser Arbeit werden Raum-Zeit-Variationsformulierungen und deren Diskretisierung
mittels konformer, stiickweise polynomieller Funktionen fiir die Wirmeleitungsgleichung
und Wellengleichung in einem beschriinkten Raum-Zeit-Zylinder Q mit Endzeitpunkt 7'
betrachtet.

Fiir die Wirmeleitungsgleichung ist das Hauptresultat eine unbedingt stabile Galerkin-
Bubnov-Raum-Zeit-Finite-Element-Methode mit stiickweise linearen, stetigen Funktionen
basierend auf einer Raum-Zeit-Variationsformulierung, welche in einem Unterraum ei-
nes anisotropen Sobolevraums formuliert wird. Diese Raum-Zeit-Variationsformulierung
wird mithilfe von Fourierreihen und einer Transformation, welche dhnlich zur Hilberttrans-
formation ist, analysiert. Daraus ergeben sich eine symmetrische und elliptische Variati-
onsformulierung und infolgedessen eine symmetrische Galerkin-Diskretisierung fiir die
erste Zeitableitung. Fur die Wirmeleitungsgleichung wird unbedingte Stabilitét fiir un-
strukturierte Raum-Zeit-Netze bewiesen. Weiters werden Fehlerabschitzungen in L?(Q),
in H'(Q) und in einer anisotropen Sobolevnorm fiir einen Tensorproduktansatz hergeleitet.
SchlieBlich werden numerische Beispiele, welche die theoretischen Ergebnisse bestitigen,
angegeben.

Fiir die Wellengleichung ist der Ausgangspunkt eine Raum-Zeit- Variationsformulierung in
Teilriumen des Sobolevraums H'!(Q). Diese Raum-Zeit-Variationsformulierung ist nicht
inf-sup-stabil. Die Diskretisierung dieser Raum-Zeit-Variationsformulierung mittels einer
konformen Raum-Zeit-Finite-Element-Methode mithilfe von stiickweise linearen, stetigen
Funktionen fiihrt zu einer bedingten Stabilitdt des Verfahrens. Das heifit, fiir die Stabi-
litdt muss eine CFL-Bedingung zwischen der Orts- und Zeitmaschenweite erfiillt sein.
Um die CFL-Bedingung zu vermeiden, wird fiir einen Tensorproduktansatz eine stabili-
sierte Raum-Zeit-Finite-Element-Methode mittels stiickweise linearer, stetiger Funktionen
hergeleitet. Fiir diese Formulierung werden unbedingte Stabilitit in L2(Q) sowie Fehler-
abschitzungen in L?(Q) und in H'(Q) bewiesen. Weiters werden numerische Beispiele,
welche die theoretischen Ergebnisse bestitigen, angegeben. Zu guter Letzt werden Exis-
tenz- und Eindeutigkeitssitze fiir die Wellengleichung als partielle Differentialgleichung
im L?(Q) und in einem schwicheren Sinne als L%(Q) bewiesen. Die zugehdrigen Losungs-
operatoren sind Isomorphismen, welche entsprechende inf-sup-Bedingungen garantieren.



Abstract

In this work, space-time variational formulations and their discretisations with conforming,
piecewise polynomial functions for the heat and wave equation are considered in a bounded
space-time cylinder Q with a terminal time 7.

The main result for the heat equation is an unconditionally stable finite element method
of Galerkin-Bubnov type with piecewise linear, continuous functions, which is based on
a variational formulation in a subspace of an anisotropic Sobolev space. This space-time
variational formulation is analysed with the help of Fourier series, and a kind of Hilbert
transform is introduced. This leads to a symmetric and elliptic variational formulation
and hence, to a symmetric Galerkin discretisation of the first-order time derivative. For
the heat equation, unconditional stability for unstructured space-time meshes is proven.
In addition, error estimates in L?(Q), in H'(Q) and in an anisotropic Sobolev norm for
a tensor-product approach are derived. Finally, numerical examples, which confirm the
theoretical results, are presented.

For the wave equation, a space-time variational formulation in a subspace of the Sobolev
space H'(Q), which is not inf-sup stable, is used for a conforming space-time finite el-
ement method, which leads to a conditionally stable method, i.e. a CFL condition is
required. For a tensor-product approach, a stabilised finite element method with piece-
wise linear, continuous functions is investigated, where unconditional stability in L%(Q) is
proven. Furthermore, error estimates in L?(Q) and in H'(Q) are derived, and numerical
examples, confirming the theoretical findings, are given. In addition, existence and unique-
ness results for the wave equation as a partial differential equation in L2(Q) and in a weaker
sense than L?(Q) are proven, including isomorphic solution operators and corresponding
inf-sup conditions.
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1 INTRODUCTION

Standard approaches for the numerical solution of time-dependent partial differential equa-
tions are usually based on semi-discretisations in space and time, where the discretisation
in space and time is split accordingly, see, e.g., [150] for parabolic partial differential equa-
tions, and [32, 33] for hyperbolic problems. Interpreting such approaches in a space-time
sense, i.e. the time variable is considered as an additional spatial variable, these methods
are related to tensor-product space-time methods, see, e.g., [16,48-50,85] for the parabolic
case, and [19,22,55,86,164] for the hyperbolic one. An alternative is to discretise the time-
dependent problem without separating the temporal and spatial variables, i.e. a space-time
discretisation. This ansatz may lead to unstructured decompositions of the space-time do-
main. The approaches of unstructured meshes are considered, e.g., in [116, 142-144] for
parabolic equations, and [42, 63, 111, 130, 140] for hyperbolic ones. More references are
given in Chapter 3 for the parabolic equations, and in Chapter 4 for the hyperbolic prob-
lems. In general, the main advantages of space-time methods are space-time adaptivity,
space-time parallelisation and the treatment of moving boundaries. At a first glance, a
disadvantage is that a global linear system must be solved at once. Therefore, fast solvers
and preconditioning are essential, which are not investigated in this work, see, e.g., [56].
In this thesis only direct solvers and the GMRES method are used. However, space-time
approximation methods depend strongly on the space-time variational formulations on the
continuous level. The focus of this thesis is on space-time variational formulations for
the heat and wave equation, which result not only in inf-sup stable formulations but fit
also very well to conforming space-time methods with piecewise polynomial functions. In
addition, these space-time variational formulations might be useful for variational formu-
lations and their analysis of boundary integral equations and boundary element methods.

To motivate space-time approximation methods, space-time adaptivity is investigated in
the case of a space-time interpolation and in the case of an adaptive space-time boundary
element method for the spatially one-dimensional wave equation.

1.1 Space-Time Interpolation

For the approximation of a function u(x,t) depending on a spatial variable x € Q C R,
d =1,2,3, and on a time variable 7 € (0,T) C R, where Q is a bounded Lipschitz domain
and T > 0 is a terminal time, a better adaption of a sequence of arbitrary admissible and
shape regular decompositions (7 )y of the space-time cylinder Q := Q x (0,T) C R4*! is
possible in contrast to a tensor-product meshing of Q. As illustration, consider the rectan-
gle

0 =(0,3) x (0,6) c R?
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with Q = (0,3) and T = 6 for the C>(Q) function u1: O — R,

1 3 3
st—x—=2)(x—1)°, x<tandr—x<2,
(nn) = {20 TF T2 xsrand r—x s (1.1
0, else,
which is plotted in Figure 1.1, and for the piecewise smooth function u: O — R,
1.
5 -1)], x<t,
up(x,r) = 4 2 (EE= D) x < (1.2)
0, else,

which is plotted in Figure 1.2.

3

Figure 1.1: The smooth function u; of (1.1).

The given rectangle

is decomposed into N uniform space-time triangles g, C R? with mesh size h as given
in Figure 1.3 for level 0, where M is the number of vertices {(xi,t,-)}?i 1~ The finite-

dimensional space S}(Q) = span{y;}}1, C H'(Q) is the space of piecewise linear, con-

tinuous functions on these space-time triangles with the nodal basis functions y;, and the
space-time interpolation operator I,: C(Q) — S},(Q) is defined by

Iv(x,t) =Y v(x,t)wi(x,t)  for (x,t) €0,

=

Il
—

4
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0.5
Up(xt)

3

Figure 1.2: The piecewise smooth function u; of (1.2).

where v € C(Q) is a given continuous function, see Section 2.8 for details. Next, the
interpolation errors in [|-|;2g) and |-|;y1(o) for the functions uy,u> are investigated for a
sequence of uniform space-time meshes and for a sequence of adaptive space-time meshes.
The uniform refinement strategy is depicted for the levels 0, 1,2 in Figure 1.3. As adaptive
refinement strategy, Dorfler marking [41] with parameter 6 = 0.5 for the norm |- 2 (¢, is
used.

For the smooth function u, the adaptive meshing is given in Figure 1.4. The uniform
and the adaptive refinement strategies lead to optimal convergence rates with respect to
l[ll12(g) and |41 (g) - see Table 1.1 and Figure 1.5. However, a comparison between the
uniform and the adaptive schemes shows that the adaptive scheme needs considerably less
degrees of freedom M for the same accuracy of the errors.

For the piecewise smooth function u;, the uniform refinement strategy results in reduced
orders of convergence, see Table 1.2. With the adaptive refinement strategy, the optimal
convergence rates are obtained, see Figure 1.7, and see Figure 1.6 for the meshes produced
by the adaptive scheme.

To summarise, a main advantage of space-time methods is the space-time adaptivity, as
depicted in Figure 1.4 and Figure 1.6, which is difficult to realise for standard approaches
based on semi-discretisations, where the discretisation in space and time is split accord-

ingly.
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Level O

Level 1

Level 2

Figure 1.3: Uniform refinement strategy: Starting mesh, the meshes after one
uniform refinement steps.

and two

level M N lur =l || 2g)  eoc  |uy—Tpui|pg)  eoc
0 15 16 5.122e-01 - 1.947e+00 -
1 45 64 2.302e-01 1.46 1.397e+00 0.60
2 153 256 5.797e-02 2.25 6.973e-01 1.14
3 561 1024 1.477e-02 2.11 3.537e-01 1.04
4 2145 4096 3.744e-03 2.05 1.788e-01 1.02
5 8385 16384 9.386e-04 2.03 8.957e-02 1.01
6 33153 65536 2.348e-04 2.02 4.481e-02 1.01
7 131841 262144 5.872e-05 2.01 2.241e-02 1.00
8 525825 1048576 1.468e-05 2.00 1.121e-02 1.00
9 2100225 4194304 3.670e-06 2.00 5.603e-03 1.00
10 8394753 16777216 9.176e-07 2.00 2.801e-03 1.00
11 33566721 67108864 2.294e-07 2.00 1.401e-03 1.00
12 134242305 268435456 5.735e-08 2.00 7.003e-04 1.00

Table 1.1: Interpolation errors for the function u; of (1.1) for O = (0,3) x (0,6) for a uni-

form refinement strategy with the meshes of Figure 1.3.
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Level 15
6 ) .
5 1
4 H
A V4
A
3 Won £ £
7]
v
2 |
1H H 1 / 1t /
0 S 0
0 1 2 3 1 0 1

Figure 1.4: Adaptive refinement strategy for the function u; in (1.1).

level M N luz— Dol 2g)  eoc  [uz —Ipuz|yig)  eoc
0 15 16 7.373e-01 - 5.653e+00 -
1 45 64 7.423e-01 -0.01 5.437e+00 0.07
2 153 256 2.970e-01 1.50 4.021e+00 0.49
3 561 1024 1.044e-01 1.61 2.821e+00 0.55
4 2145 4096 3.613e-02 1.58 1.939e+00 0.56
5 8385 16384 1.257e-02 1.55 1.365e+00 0.51
6 33153 65536 4.404e-03 1.53 9.491e-01 0.53
7 131841 262144 1.549¢-03 1.51 6.749¢-01 0.49
8 525825 1048576 5.463e-04 1.51 4.717e-01 0.52
9 2100225 4194304 1.929¢-04 1.50 3.364e-01 0.49

10 8394753 16777216 6.815e-05 1.50 2.355e-01 0.51
11 33566721 67108864 2.409e-05 1.50 1.681e-01 0.49
12 134242305 268435456 8.514e-06 1.50 1.177e-01 0.51

Table 1.2: Interpolation errors for the function s in (1.2) for @ = (0,3) x (0,6) for a uni-
form refinement strategy with the meshes of Figure 1.3.
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degrees of freedom M

Figure 1.5: Interpolation errors for the function u; of (1.1) for @ = (0,3) x (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.4.

1.2 Boundary Element Method for the One-Dimensional Wave
Equation

As a second example, an adaptive boundary element method for the spatially one-dimen-
sional wave equation is investigated, see [161] for a summary. For details of the boundary
element method, see [70, 131, 141]. As a model problem, consider the wave equation

Ouu(x,t) — Ou(x,t) = 0 for (x,t) € Q= (0,L) x (0,T),
u(x,t) = g(x1) for (x,t) € X={0,L} x [0,T], (1.3)
u(x,0) = du(x,0) = 0 forx € (0,L),

where g is a given Dirichlet datum and L > 0, T > 0. Define

LA(2) := L*(0,T) x L*(0,T) = {v = (52) tvp € LX0,T), v, € LZ(O,T)}
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Figure 1.6: Adaptive refinement strategy for the function u; in (1.2).

with the inner product
W)y = (vo.wo) 207y + (VLWL 20y forv,w € L*(T)

and introduce the Sobolev space
H&(E) = {v = (:2) svo € HY(0,T), v, € H'(0,T), vp(0) = v, (0) = 0}

with the inner product
<V’W>H(} (x) = (90, dwo) 207 T (FvL.dwL) 2oy forviwe H&(E),

see Section 2.2 for more details. In general, for w € L>(0,T), set w(t) := 0 for t < 0 or
t > T. The solution u(x,t) of the wave equation (1.3) admits the representation

u=Vou—Wg inQ (1.4)
with the single layer potential V and the double layer potential YW, where d,u denotes the
unknown normal derivative of # on X. The single layer potential V is defined by

1 tf\.x\ tf\x.fL\
() =5 / wo(s)ds + 5 / wi(s)ds, 1€0.T].xe (0,L),
0 0
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Figure 1.7: Interpolation errors for the function u, in (1.2) for @ = (0,3) x (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.6.

for a density w = (wo,wr) | € L?(X) with w = 0 outside of X. The single layer operator
V: L2(Z) — H(%(Z) is given by

t

| /wo(s)ds+ t]LwL(s)ds

Yw(t) == 3 o, o , t€lo,7],
/wo(s)ds+/wL(s)ds
0 0

for a density w = (wg,wr)" € L*(X) with w = 0 outside of X. Hence, it holds true that
(Vw) € L2(Z), i.e. 3;V: L*(X) — L*(Z). In [7], ellipticity and boundedness in L>(Z) of
the bilinear form ag(-,-): L*(X) x L2(X) = R,

ag(w,v) = <atVW’V>L2(Z) = ((9tVW)0aV0>L2(o,T) + <(aTVW)L’VL>L2(O,T)

for w, v € L*(X), are proven. Therefore, the following variational formulation is uniquely
solvable:
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Find d,u € L*(X) for a given g € Hol’(Z) such that

1
WwelL’(2):  ap(Qu,v) = E@g’ V)2 (9 (Kg).v) 2(x)» (1.5)

where the double layer operator K is given for g = 0 outside of ¥ by

Kﬂﬂ=K(ﬁ)m=—%(;g:8> forz € [0,T].

For a boundary element approximation, consider a decomposition of the lateral bound-

ary
No+Np,

U =
i=1

into Np + Ny, boundary elements 7; with maximal mesh size 7 = max; |7;|, where Ny is the
number of boundary elements for x = 0 and Ny is the number of boundary elements for
x = L. The conforming ansatz space of piecewise constant functions

No+NL,

sH(x) *ShO(O T) x ShL(O T)= span{(p } cL}(x

is used to define an approximate solution wy, € 52(2) Then, the discretisation of (1.5) to
find wy, € SY(X) C L*(Z) such that

1
Yo € SHE) CLAE):  ap(wavi) = E@g, vi)r2(z) + (9 (Kg)vi) 12(x) (1.6)
is equivalent to the global linear system
Viw=g

with the related system matrix Vj, € R®o+tN)x(Mo+N) | the right-hand side g € RN+
and the vector of unknown coefficients w € RN+N of w), € S ,(Z). Note that the system
matrix Vj, and the discretisation of the double layer operator /C are calculated analytically,
whereas all other appearing integrals are computed by the usage of high-order integration
rules. Since the bilinear form ag(-,-): L*(Z) x L*(Z) — R is bounded and elliptic, the
discrete variational formulation (1.6) is uniquely solvable and unconditionally stable. By
Céa’s Lemma and standard error estimates, there follows the a priori estimate

l|9ntt —will2x) < CH*|| ]| sz 1.7

for some s € [0,1] and a constant C > 0, where H*(X) = H*(0,T) x H*(0,T), see Sec-
tion 2.2. An approximate solution i, ~ u in the space-time cylinder Q is given by inserting
the approximate normal derivative wy, & d,u into the representation formula (1.4), i.e.

iy = Vw,—Wg inQ. (1.8)
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To derive an adaptive mesh refinement on X, an a posteriori error estimator [136] is used,
which is based on the application of the normal derivative d, to the approximate represen-
tation formula (1.8),

1
Wy, i= Oplly, = W +K'w,+Dg  onZX.

Here, the adjoint double layer operator K’ and the hypersingular boundary integral operator
D are used. Hence, the local error estimators

i == 1Wn = wall 2 (5 = | Onte = will 127

fori=1,...,Ny+ N are computable, where the adjoint double layer operator K’ and the
hypersingular boundary integral operator D are calculated analytically. For an adaptive re-
finement strategy, a parameter 6 € [0, 1] is chosen and all elements 7; are refined, where

fi; >  max ;. (19
J

As numerical examples, consider L =3 and T = 6, i.e. @ = (0,3) x (0,6), for the exact
solutions u; and up, which are given in (1.1) and in (1.2), with the smooth Dirichlet datum
g1i=uyz € HOI,(E) and the piecewise smooth Dirichlet datum g3 := uys € H&(Z). In the
case of the smooth Dirichlet datum g = uyy, the optimal order of convergence, i.e. s =1
for the error estimate (1.7), is achieved by a uniform refinement strategy, see Table 1.3,
and by the adaptive refinement strategy (1.9), see Figure 1.8. Furthermore, the L?(Q)
error for the approximate solution (1.8) is given in Table 1.3. However, in the case of
the piecewise smooth Dirichlet datum g5 = uys, only reduced orders of convergence are
obtained, when using a uniform refinement strategy, see Table 1.4 and Figure 1.9. Note
that the full order of convergence is attained for the adaptive refinement strategy (1.9), see
Figure 1.9. A resulting sequence of adaptive meshes is depicted in Figure 1.10, where
different decompositions for x = 0 and x = 3 are used, i.e. a decomposition without time
slabs.

Remark 1.2.1. Acoustic scattering problems are often formulated in exterior domains,
i.e. in an unbounded domain. The boundary element method is suited very well for
such scattering problems, since only a meshing of the surface of the bounded interior
domain is needed. The starting point of the boundary element method is the correspond-
ing boundary integral equation. The standard approach of boundary integral equations
for the wave equation uses the Laplace transform with respect to the time variable, see
[20, 21, 71-73, 87, 132]. This Laplace transform method results in space-time varia-
tional formulations, where the related bilinear form is bounded and elliptic in differ-
ent norms, i.e. the Lax-Milgram Theorem is not applicable in the space-time domain
and related error estimates for a boundary element method are not optimal. See also
[1,57-62, 70, 121, 155, 156] for recent developments in this direction. In [6, 8, 69], an
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level No+Np [ty —wipllpzs)  eoc  [lur —diull2) eoc

0 2 1.33823e+00 - 7.26168e-01 -

1 4 1.14684e+00 022 4.49627e-01  0.69
2 8 1.10072e+00 0.06  3.24885e-01  0.47
3 16 8.06608e-01 045  1.46335e-01 1.15
4 32 4.02738e-01 1.00  3.75263e-02  1.96
5 64 2.04198e-01 098  9.55880e-03 1.97
6 128 1.03212e-01 098  2.49973e-03 1.94
7 256 5.17114e-02 1.00  5.95579e-04  2.07
8 512 2.58723e-02 1.00  1.56495e-04  1.93
9 1024 1.29381e-02 1.00  3.71371e-05  2.08

10 2048 6.46928e-03 1.00  9.78807e-06  1.92
11 4096 3.23467e-03 1.00  2.40515e-06  2.02
12 8192 1.61734e-03 1.00  5.99227e-07  2.00
13 16384 8.08670e-04 1.00  1.49398e-07  2.00
14 32768 4.04335e-04 1.00  3.77370e-08  1.99

Table 1.3: Numerical results for the boundary element method (1.6) for the function u; in
(1.1) for 0 = (0,3) x (0,6) for a uniform refinement strategy.

(¢}

level No+Np ||Ouuz —wap HLZ(Z) eoc |jug— ﬁZ.h”LZ(Q) 0C
0 2 3.95477e+00 2.59835e+00 -

4 3.33217e+00 0.25 5.78383e-01  2.17

1

2 8 3.11643e+00 0.10  4.73586e-01  0.29
3 16 3.16575e+00 -0.02  4.10036e-01  0.21
4 32 2.37997e+00 0.41 1.77812e-01 1.21
5 64 1.66423e+00 0.52 6.10341e-02  1.54
6 128 1.15613e+00 0.53 2.28464e-02 142
7 256 8.07589e-01 0.52 8.15019e-03 1.49
8 512 5.67073e-01 0.51 3.29593e-03 1.31
9 1024 3.99491e-01 0.51 1.33215e-03 1.31

10 2048 2.81940e-01 0.50 5.98854e-04  1.15
11 4096 1.99168e-01 0.50 2.74489%-04  1.13
12 8192 1.40764e-01 0.50 1.32773e-04  1.05
13 16384 9.95104e-02 0.50 6.47539e-05 1.04
14 32768 7.03558e-02 0.50 3.21587e-05 1.01

Table 1.4: Numerical results for the boundary element method (1.6) for the function u; in
(1.2) for 0 = (0,3) x (0,6) for a uniform refinement strategy.
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Figure 1.8: Numerical results for the boundary element method (1.6) for the function u; in
(1.1) for 0 = (0,3) x (0,6) for the adaptive refinement strategy (1.9).

approach without the Laplace transform is considered for a screen problem in a two-
dimensional spatial domain, see also [2-5] for further investigations. In addition, the
work [77, 132] examines the boundary integral equations via semigroup theory and their
discretisations via the convolution quadrature method [105, 106], see also [23], and [104]
for a generalisation to variable time stepping. Note that this list of references is highly
non-exhaustive. However, a complete analysis of space-time variational formulations for
boundary integral equations of the wave equation seems to be still open. This motivates the
investigations of space-time variational formulations for the wave equation in the interior
and exterior of the space-time domain, see Chapter 4, since variational formulations of
boundary integral equations are highly related to the variational formulations within the
domain.

To summarise Section 1.1 and Section 1.2, one main advantage of space-time approxima-
tion methods, i.e. the space-time adaptivity, is realisable and leads to significantly lower
numbers of the degrees of freedom for achieving a desired accuracy.
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Figure 1.9: Numerical results for the boundary element method (1.6) for the function u, in
(1.2) for Q = (0,3) x (0,6) for the adaptive refinement strategy (1.9).
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Figure 1.10: A sequence of adaptive meshes for the adaptive refinement strategy (1.9) for
the function u; in (1.2).
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Outline

The rest of this thesis is organised as follows: In Chapter 2 notations of distributions,
Sobolev spaces and discretisation methods are fixed and their most important properties
are repeated. In Chapter 3 the heat equation is examined, whereas in Chapter 4 the wave
equation is investigated, where a more extensive overview of the literature and an outline
of the different sections are given at the beginning of each chapter. In Chapter 5 a short
summary of this thesis and an outlook for future work are given.



2 PRELIMINARIES

In this chapter, notations for function spaces, distributions and discretisation schemes are
introduced and their most important properties are repeated. Furthermore, a short summary
for variational methods is given.

In the whole thesis, Q ¢ R, d = 1,2,3, is a bounded Lipschitz domain and (0,T) is a
time interval with the terminal time 7' > 0. The bounded space-time cylinder is defined as
0:=0x(0,7) CR¥,X:=9Q x [0,7] C R¥*! is the lateral boundary, and X := LU
with Qg := Q x {0}, Zr :=XUQr with Qr := Q x {T'} are parts of the boundary dQ of
the space-time cylinder Q.

2.1 Distributions

As a reference for the theory of distributions see, e.g., [68,138,152]. In this work, Cy’ (0)
is the set of infinitely differentiable real-valued functions with compact support in Q. The
set Ci’(Q) endowed with the, usual for distributions, locally convex topology is denoted
by D(Q) and is called the space of test functions on Q. The set of (Schwartz) distributions
D'(Q) is given by all linear and sequentially continuous functionals on D(Q), see [138].
For a locally integrable function v € L. (Q), the distribution 7,: D(Q) — R, defined by

loc
T,(9) ::/v(x,t)q)(x,t)dxdt for all ¢ € D(Q),
Qo

is associated uniquely with that function v € L}, (Q). Hence, the function v € L] .(Q) and
the related distribution 7,,: D(Q) — R are identified. Throughout this work, (I := d;; — A,
denotes the classical (pointwise) derivative for sufficiently smooth functions. Furthermore,
let Op: D'(Q) — D'(Q) be the distributional wave operator for distributions D’(Q), where
for a distribution 7: D(Q) — R, derivatives are defined as usual:

OoT(¢) =T(Oe), ¢ €D(Q).

In particular, for Q_ 1= Q x (—e0,T) C R¥*!, let g : D'(Q-) — D'(Q-) be the distri-
butional wave operator for distributions D’(Q_).

The sets Ci(0,T), Cy () and the spaces of test functions D(0,T), D(L) are introduced
analogously.

15
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2.2 Sobolev Spaces in (0,7)

For an introduction to Sobolev spaces on intervals, see the references in the Section 2.3 and
in addition, see [13, Kapitel 5] or [96, Chapter 8]. With the usual notations, the Hilbert
space H*(0,T), s > 0, is the Sobolev space of real-valued functions endowed with the
Sobolev-Slobodeckij inner product () ys( 7y and the induced norm |- s (o 7)- Analo-

gously, for s > 0, H*(R) is the usual Sobolev space on the whole real line. Note that
H*(0,T) C C[0,T] for s > 1/2, see [64, (1.4.4.6), page 27]. Hence, for s € (%,%), one
defines the closed subspaces

H; (0,T) :={ve H(0,T): v(0) =0},
Hy(0,T) :={veH*(0,T): v(T)=0}.

In particular, for s = 1, the Sobolev spaces H&(O,T) and H’})(O,T) are endowed with the
inner products

T
<”’V>H01‘(0,T) = <M’V>H"0(0,T) = / O,u(t)Jrv(1)dt
0

and with the induced norm

|“\H1(o,r) = Hat””LZ(O,T) =

T
/|8,u(t)|2dt.
o

For s = 1/2, one defines via function space interpolation the Sobolev space
1/2
H/2(0.7) := [H3 (0.7), L2(0.T)]1

with the Hilbertian norm

2
Il oy = | Iy + [ 2,
0

which is equivalent to the interpolation norm H||[Hé (0.1),12(0.7)] o S€€ [102, Théoreme
11.7, page 72] and [102, Remarque 11.4, page 75]. Analogously, set

HY(0,7) == [H)(0,T), LX(0,T)]y 2

with the Hilbertian norm

T 2
o Ju(o)
N [y -
0
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The representations

H3/2 {UI UGHI/Z( ,T) with U(t) = 0f0rt<0}

2

T
={ueH?0,T): / dt<o<> 2.1
0

and
HY?(0,7) = {U‘OT) UEHI/Z(O,oo)withU(t):Ofort>T}

|2
—dr < e 2.2)

~

=ueH"0,T): /TW)
0

hold true, see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Be-
cause the test functions C’(0,7) are dense in H'/?(0,T), see [64, Theorem 1.4.2.4, page

25], the sets Hl/z( T) and HI/Z(O,T) are dense in H'/2(0,T). Note that the constant
function 1(r) := 1 for 7 € (0,T) fulfils 1 € H'/2(0,T), 1 ¢ Hy/*(0,T) and 1 ¢ Hy/*(0,T)
due to the representations (2.1) and (2.2). Because the set

C(0.7] = {@01): @ €C5(0,00)}

is dense in H& (0,T), it follows by interpolation arguments that the set C3’ (0,7 is dense in

H/ 2(0 T), see [102, Chapitre 1, Section 2.1, page 11], and analogously, the set

(Y {¢\0T ¢ €CG(—, T)}

is dense in H’:)/Z(O, T). It even holds true that the set C3’(0,7') is dense in Hol’/z(O,T) and
in H’IO/Z(O, T), see Theorem 2.2.2.

Lemma 2.2.1. Th . . d d b
e norm || |HH(;7/2<O,T) efined by
[ mf{ 1Ullp2y: U € H'A(R) with Ujgo,y = u, U(t) = 0 for < o}

forue HS/Z(O, T), is equivalent to ||-|| ,.1/2 , defined
' o,

by

Analogously, the norm H"”|H1/2
0

o1y (0.1)

el .7y = inf{||UHH1/z(R> LU € HV2(R) with Uy = u, U(t) = 0 for 1 > T}

1/2 . .
forue H,o/ (0,T), is equivalent to ”'HH})/Z(O,T)‘
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Proof. The proof is given only for the case of H, Y 2(O T), the other case is proven anal-
ogously. By interpolation arguments, see [102, Proof of Proposition 5.2, page 276], the
extension operator 7 : ,0/ 2(0, T) — H'/2(0,c0), defined by

Erult) = {u(z), re(0.7).

0, 12T,

1/2

foru € H L2 (0,T), and the restriction operator Ry : H'/2(0,00) — H{*(0,T), given by

RrU(t):=U(t)-UQT —1), t€(0,7),

forU € H1/2(O,tx=), are bounded. For u € Hj)/z(O, T), it holds true that RrEru = u and so,
it follows that

[[ul P om) = IRrErul e 7y < Cre lErulliaoey < CrrCerllul 12 g -

i.e. the norms H~||H1/z and u — ||5T”HH1/2<0N) are equivalent. Since H~||H1/2(0w) is
0 ’ ’

(0.1)

equivalent to the norm
: . 1/2 . _ 1/2
w = inf 3 U] 12y s U € H/Z(R) with Ujg) = w forw € H'/7(0,0),

see [160, Satz 5.3, page 100] with a natural extension by reflection in ¢ = 0, the assertion
follows. O

Theorem 2.2.2. The set Ci(0,T) is dense in H&/ 2(O, T) and H})/ 2(0, 7).

Proof. The proof is given for H, i 2(O T). Because of the density of the set C3'[0,7T) in
1/2(0 T), it remains to prove the density of Cy’(0,7") in C'[0,T') with respect to the norm

-1, V2o Therefore, fix an element ¢ € Ci’[0,T) with supp(¢@) C [0,R], T >R > 0. Take

an arbltrary extension V € C3(R) € H'/2(R) with Viory =9 and V(¢) =0 fort > T,
ie. Vijooo) €CY [0,00). The result [102, Lemme 11.1, page 60] yields for X =Y = R that
there exist sequences (Y,),en C Cy(R) and (&;),en C (0,7) such that y,(f) = 0 for
t € (—&y, &), i.e. Y, vanishes in a neighbourhood of ¢t = 0, and | y;, — V||H1/2(1R) —0as
n — oo. Consider a cutoff function y € C5(R) satisfying 0 < y <1, xjo., = | and x () =

fort > T+R , see [160, Folgerung 1.2, page 18] for the existence of such function. Note
that supp(x) (—eo,T) and hence, (W - X)|(0.7))nen C Cg (0, T) is the desired sequence.
With Lemma 2.2.1 and the local property [102, Théoréme 7.2, page 36] of H'/2(R), it
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follows that

(- ) 0.7) — ‘/’”H}/Z(o,n = 1w 1)) 0.1) _%\<O,T>‘PH%/2(0,T)
< Ci||(wn- ) j0.m) — X\(o,r)(P|HHB/2(OYT)

< Cllx (W =V)llrm)
< Clcle[/n _VHH]/2(]R) —0 asn-—»oo,

where the constant C; > 0 comes from the norm equivalence of Lemma 2.2.1 and the
constant Cy, > 0 depends on the cutoff function x and therefore, on ¢. O

The dual spaces [H, (0,7)]’ and [H’})(O,T)}’ are characterised as completion of L2(0,T’)
with respect to the Hilbertian norms

o [(g:v)0.1)]
||g||[H(} o) -— sup ‘V|
’ 0#£veH]) (0,1) VIH'(0.T)

and

|(f-w) 0.1
Aoy = swp 5,
[H}(0.1)] T Wlai o)

where (-, ) (o) denotes the duality pairing as extension of the inner product in L%(0,T), see
[160, Satz 17.3, page 258]. In other words, for [H (0,T)]’ and [H {,(0,T)]’, there exist inner

products (-, '>[HSV(O,T)]’ and (-, '>[H,b(0,7)]” inducing the norms || - H[H&(OYT)]’ =./¢, '>[HS,(0vT)]/
and || - H[H{)(O,T)], =./( '>[H})(0,T)]/, i.e. with these abstract inner products, [H; (0,T’)]’ and

[H{,(0.T)]' are Hilbert spaces, see [158, Satz V.1.7, page 222].

Analogously, the dual spaces [H(}/ 2(O,T)}’ and [H:)/ Z(O,T)}’ are Hilbert spaces charac-

terised as completion of L?(0,T’) with respect to the Hilbertian norms

sup |(gV)01)]

ozveH(0.7) HVHH&/Z(O,T)

HgH [H(;_/Z(O,T)]’ =

and
|(f-w) 0,1
sup —_—

. 2.3)
0weH ! (0,7) ”W”H.IU/Z(O,T)

||fH[H})/2(O,T)]’ =
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2.3 Sobolev Spaces in Q

For a general introduction to Sobolev spaces see, for example, the books [31,64,119,160],
and for function space interpolation, see [26, 102, 103, 153]. For s > 0, the usual Sobolev
spaces of real-valued functions H*(Q), Hj(Q) are endowed with the Sobolev—Slobodeckij
inner product () ys(q) and the norm [|-| s q)- For the closed subspace H}(Q) c HY(Q),
the inner product

<u,v)H(;<9> = (Vatt, Viv) ) = /qu(x) Vev(x)dy, u,v € H}(Q),
Q

and the induced norm

i @y = gy = /(g / Vi) P, ue (),

are considered. For a type of Fourier series approach in Chapter 3 and Chapter 4, the
eigenfunctions ¢; € HJ (Q) with eigenvalues y; € R, satisfying

—A¢;=p;¢; inQ, ¢=0 ondQ, H‘PiHL?(Q) =1 2.4)

for i € N, are used, see [97, Theorem 4.1 in Chapter I, page 60]. Note that the eigenfunc-
tions ¢; form an orthonormal basis in L?(Q) and an orthogonal basis in H{ (). In addition,
the eigenvalues L; satisfy

O<u < <puz<... and U —+ocasi— oo,
Hence, for a function u € L?(Q), it holds true that
M

- Y wio;

i=1

—0 asM — oo,
L2(Q)

ie.u=Y7, ui¢in L?(Q), with the coefficients

u,—/ x)dx € R,

and the L*(Q) norm is given by

||’4HL2(Q) = Z“lz
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Analogously, for a function u € Hé (€), it holds true that

—0 asM — oo,
L2(Q)

M
Viu— Y uiVeo;
i=1

ie u=Y7 ui¢;in H} (Q), with the coefficients

u; = /u(x)(]),-(x)dx €R
Q
and the H'!(Q) seminorm is given by

luln ) = 4/ Y wi
i=1

The dual space [H} (Q)]’ is a Hilbert space characterised as the completion of L2(Q) with
respect to the Hilbertian norm

g.v
Il == sup e-vial @.5)

0#veH) (Q) Vlm(@)

where (-,-)q denotes the duality pairing as extension of the inner product in L*(Q), see
Section 2.2.

2.4 Hilbert Tensor-Product and Bochner Spaces

For an introduction to the algebraic tensor-product ® and to the Hilbert tensor-product &,
see [15, Chapter 12], [157, Unterkapitel 1.6], [128, Section 11.4] or [152, Part III]. For
Bochner spaces, see also [160, Kapitel IV], [162, Chapter 23], [82, Chapter 1 and 2], [139,
Kapitel 10], [110, Chapter 2] and the recent work [12]. In this section, let H be a separable
real Hilbert space with the inner product (-,-);; and let Q; C R¥! and Q, C R be bounded
Lipschitz domains with d|,d, € N. Consider the Bochner space L*(Q;H) of classes of
measurable vector-valued functions U: Q — H, i.e. for each element U € L2(Q 13H), it
holds true that
U(y)eH foralmostallye Q

such that

U 20,0 =
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The Bochner space L?(Q; H) is a Hilbert space with respect to the inner product
V)i = [ W0)V0)udy
Q

The dual space [L?(Q;;H)]’ and the Bochner space L*(Qq;H’) are isometric, see [82,
Corollary 1.3.22, page 54] and see also [162, Section 23.3]. Furthermore, the Bochner
space L2(Q;H) and the Hilbert tensor-product L>(Q)&H are isometric, i.e.

LX(Q;:H) ~ L2(Q)&H ~ HYL*(Q),
see [15, Theorem 12.6.1, page 304].
For m € Ny, the Bochner Sobolev space is defined by
H™(Qy:H) := {U € L*(Q:H): 0%U € L*(Q:H) for |at| < m}

where d, is the distributional derivative on € with respect to y for vector-valued functions
and o0 = (0y,...,0) € Ng‘ is a multi-index. With the inner product

UV oy = [ WLV oD+ T [(3206).08v )
Q olsmg,

for U,V € H"(Q1;H), the Bochner Sobolev space H™(€;H) is a Hilbert space. Further-
more, the Bochner Sobolev space H™(Q;H) and the Hilbert tensor-product H™(Q)&H
are isometric, i.e.

H"(Q;H) ~ H"(Q))&H ~ HOH™ (), (2.6)

see [15, Theorem 12.7.1, page 307].

As a first special case, for m = 1 and Q| = (0,T), the Sobolev embedding theorem [110,
Proposition 2.46, page 46] holds true, i.e.

H'Y(0,7;H) C C([0,T];H) (2.7)
with a continuous embedding. Therefore, as in Section 2.2,
Hy (0,T:H) :={V € H'(0,T;H): V(0)=0in H},
H(0,T;H) :={V € H'(0,T;H): V(T)=0inH}
are closed subspaces of H'(0,T;H).
As a second special case, consider H = HP(Q;) with p € Ny. Then, the space
HE"(Q2 x Q)
= {u e L} Qo x Q): a,?zay“'u € L*(Q x Q) for || < p,

a1|§m},
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with the inner product

2 1 2 1
(V) ) = <a§ 9% u, 0% 9 v>

o
o2l <p al<m Fn

where d, and (9\ denote the distributional derivatives with respect to x and y on ; and Q,
is isometric to H™(Q1; H (Q,)), i.e.
Hg'm(ﬂz X Q]) ZHm(Ql;Hp(Qz)) ZH‘U(QQ;H’"(QI)) ZHP(Q2)®H’n(Ql), (2.8)

see [15, Theorem 12.7.2, page 308] and (2.6). Thus, for m = p = 0, the relation (2.8)
states

L2(Q x Q1) ~ L2(Q9; LH(Q))) ~ L2(Q; L% (Qy)) ~ L*(Q) QL (Q),

see also [128, Theorem II1.10, page 52] and [139, last line, page 188]. Hence, for a separa-
ble Hilbert space H C L?(€;), the Bochner space L>(Q1; H) C L*(Q1;L*(Q)) and the L?
subspace

{ue *(QxQ): y—u(-y) € *(Qi:H)}, (2.9)

endowed with the inner product
() 1= [ (@3)v(0)) b
Q

are isometric by the bijective isometry @ given by u(x,y) := (®U)(x,y) := U(y)(x) for
(x,) € Qy x Q1, U € L*(Q; H). Therefore, for a separable Hilbert space H C L?(;), the
Bochner space L2(Q; H) is identified with the subspace (2.9) of L?(€; x Q), hence, one
writes

LX(Q;:H) = {ue LXHQyx Q) yu(-,y) € L2(Ql;H)} .

Analogously, for a separable Hilbert space H C L*(;), the Bochner space L*(Q,;H) is
identified with a subspace of L?(Q, x Q), hence, one writes

LX(Qy;H) = {ue L2(Qx Q1) x> u(x,-) € Lz(Qz;H)},
where this subspace of L2(Q; x Q) is endowed with the inner product
() 1= [ (e )ov(x))
Q

With these identifications, the anisotropic Sobolev spaces are defined for 0 < r € R,
0<seRas

H™(Qx Q1) 1= L*(Q1;H'(Q2)) NL*(Qa; H (Q1)) C L7 (Q2 X Qi) (2.10)



24 2 Preliminaries

with the inner product
()@ = [ WD g+ [ e )v5 )
Q] Q’_}

For integers r and s, more explicit characterisations of the spaces H"*(Q, x Q) are given.
For p € N, m =0, it holds true that

HPO(Qa % Q) = {u €LX(Qyx Q)): % u e LX(Qy x Q) for || < p}
=H2(Q2 x Q) = L}(Q:HP(Qy))
~HP (Q0;L2(Q1)) ~ HP (Q,) QL2 (Q))

with the inner product

<“’V>Hf):0(92xgl): Z <<9f‘2u,8f‘2v>

|a2[<p L2(Qy%x Q1)

and analogously, for m € N, p = 0, it holds true that
HO™(Q x Q) = {u €LX(QxQ)): 0% ue LX(Q x Q) for || < m}
=H2"™(Q) x Q1) = L*(Qa; H™ (1))
~H™(Q13 L2 (Q0)) ~ L2(Q2)QH™(Q)

with the inner product

<M,V>H0.m(92><gl) = Z <a;x]u,a;xlv> .

|l [<m L2(QyxQ)

As a last special case, consider the interval Q; = (0,7T). For 0 < s € R\ N, the space
H*(0,T;L?(Qy)) is defined via function space interpolation endowed with the inner prod-
uct () ps(0,7:12(Qy)) °= () 12(@u:m5(0,7)) and with the to the interpolation norm equivalent
norm [|-|;2(q,.s(0,7))» Se€ [103, page 8]. So, in the following, the spaces H*(0, T;L%(©,))
and L2(Qy; H*(0,T)) are identified, hence, one writes

L*(Q;H*(0,T)) = H*(0,T; L*(,)). (2.11)
2.5 Sobolev Spaces in O

In this section, the notations and identifications of Section 2.2, Section 2.3 and Section 2.4
are used.
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For an introduction to anisotropic Sobolev spaces, see [102, 103] and for a short summary
see [35, Chapter 2].

For0 <reR,0<se€R,onedefines as in (2.10), see also (2.11), the anisotropic Sobolev
space

H™(Q) :=L*(0,T;H"(Q))NH*(0,T;L*(Q)) ~ (H"(Q)SL*(0,T)) N (L*(Q)&H*(0,T)).

which is a Hilbert space with respect to the inner product

T
<u’v>H"“(Q) :/< ( ) Hr dt+/ H‘(OT dX
0

=) 200,151 (0)) + (U5 V>Hs<o,T;L2(Q))
for u,v € H™*(Q). For r = s = 1, note that
H'(Q) = H"'(Q) € C([0.T]:L*(%)) (2.12)
with a continuous embedding, see (2.7). The subspace
Hy Q) := H'(0.T:L3(Q)) N L*(0,T; Hy (Q))
is endowed with the inner product

T

Vaio O/Z e av(xn )+ Veulnr) - Vov(nt))dadt (2.13)

and the induced norm

il 1= /Tt //(|9,uxt| +Z 10, u(x.1) )dxdt

m=1

1/2

Note that in Hé;’l (Q), the seminorm |-|1(g) is @ to ||| 1 (g equivalent norm due to the
Poincaré inequality. The subspaces

Hyp (Q) == H} (0.T:L2(Q)) N L*(0,T; Hy () (2.14)

and
Hy:o(Q) := HY(0.T:L7(Q)) NL*(0.T: Hy ()
are endowed with the inner product (2.13) and the induced norm |- | ©)

For functions defined in Q, the standard trace operator

e H'Y(Q) — H'/?(0Q)
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is linear and bounded, i.e. ||7%“tz}|H1/2(99) < Crvlz]| 1 (q) With a constant Cry > 0, where

the Sobolev space H 1/ 2(9Q) is the usual trace space, see [34,64,119,160] for more details.
The extended trace operator

e L2(0,T;HY (Q)) — L(X) (2.15)

satisfies the relation ) o
Yowv=vy forve L*(0,T;C(Q)),

the relation
— vel’(0,T;H(Q)),

[

and, with the same constant Ct, > 0 as yim, the boundedness estimate

i

see [12, Theorem 6.13, page 21]. Hence, the representations
_@,

ey~ IO =0},
= Ty =0}

Vi (E)

. < CTrHVHL2<o,T;H‘<9>)’

a0 = {ve '@ |

HY () = { e H'(0):

Hy0) = {ve (@) iy

are valid, i.e. Hé;’l (0), H&;& (Q) and H(%;‘}O(Q) are closed subspaces of H!(Q).

The dual spaces [H(}é (Q)] and [HS;’}O(Q)]' are characterised as completion of L?(Q) with
respect to the Hilbertian norms

[{g.v)ol
l8ll g1 @y = sup
()O 07&61‘1[] (©) ‘V|H1

and

Hf”[[.ﬂ;l )y = sup “<f,W>Q‘ >
o o pventho) M)

where (-,-)¢ denotes the duality pairing as extension of the inner product in L?(Q), see
Section 2.2.

For s = 1/2, one defines via function space interpolation the Sobolev space

Hy(0.7:L3(Q)) := [H} (0.T:LX(Q)), L2(0,T:LX(Q))], 2
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with the Hilbertian norm

T lluC0l?

SUL2(Q

IIMHH&/Q(W;LZ(Q)) = ||qu,]/z(0YT;L2(Q>)+/7Z ©) gy, (2.16)
0

which is equivalent to the interpolation norm, see [102, Théoreme 11.7, page 72] and [102,
(5.8), page 276]. Analogously, set

HY(0.T:12(Q)) := [H)(0,T;L3(R)), L2(0,T;L2(Q))]; 12

with the Hilbertian norm

T 2
[l 0)IZ2
2 L*(Q
Hu”Hi)/z(O,T;LZ(Q)) = Hu||1-11/2(0,T;L2(Q))+/Tdt' (2.17)
’ 0

The representations
HY?(0.T;L7(Q)) = {V|Q~ v € HY2(—o0, T;12(Q)) with v(-,1) = 0 in L*(Q) for < o}

u 7
=QueH'?0,T;1*(Q)): /&dt@o (2.18)
0
and

HY*(0.T;12(Q)) = {V‘Q: v € H'/2(0,00, L2(Q)) with v(-,1) = 0 in L*(Q) for > T}

T
u
=duecH20,1;12(0 /%dt <o (2.19)
0

hold true, see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Be-
cause the test functions

G (Q)@Cr(0,T) = span{Q > (x,1) = ¢(x) - y(t) € R: ¢ € (5 (Q), y € G5 (0, T)}

are dense in L2(Q)&H/2(0,T) ~ H'/2(0,T;L*(Q)), see [64, Theorem 1.4.2.4, page 25],
[157, Satz 1.63, page 62] and for the tensor-product of functions see [152, Example II, page
407], the sets HI/Z(O,T;LZ( Q)) and Hl/z(O,T;LZ(Q)) are dense in H'/2(0,T;L3(R)).
Note that the constant function 1(x,) := 1 for (x,1) € Q fulfils 1 € H'/2(0,T;L*(Q)),
1¢ HI/Z(O,T;LZ(Q)) and 1 ¢ HI/Z(O,T;LZ(Q)) due to the representations (2.18) and
(2.19).
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The first spaces needed for the heat equation are the anisotropic Sobolev spaces
1,1/2 1/2
Hyo*(0) = Hy*(0.T:L2(Q)) NL(0.7: H} ().
1,1/2 1/2
Hy §(0) i= P (0.T5L2(@) NL2(0,T5 13 (@)

endowed with the Hilbertian norms

- 2 V.l?
HVHHJJS,/Z(Q)' \/HVHH&/Z(O,T;LZ(Q))+|| 2o

HWHH(:J,IO/Z@ = \/HW|‘121I§)/2(0,T;L2(Q)) + HV"WHiz(Q)' (2.20)

The dual spaces [H, . /2( )] and [H, " 1/2(Q)]’ are characterised as completion of L?(Q)
with respect to the Hllbertlan norms

(8. v)ol

lelygrgyi= s el

overy*(@) 1 Hy*(0)

and (ol
W

||fH ll/2 7" = sup HWHiQ’

o4wery V2@ " HY P (0)

where (-,-)o denotes the duality pairing as extension of the inner product in L2(Q), see
Section 2.2.

A second space needed for the heat equation is introduced. Therefore, one defines
W(Q) :=L*(0,T;H}(Q)) NH" (0,T;[H}(Q)]) (221)
~ (H)(@)BL7(0.7)) N ([H () &H' (0.7)),

which is a Hilbert space with the inner product

(wv)wg) : //qu (x,1) - Vyv(x,1) dxdl+/ (Gu(-,1), (-, )>[H1< e,

see [160, Satz 25.4, page 380], and the norm is given by
1/2

T T
2 2
lully gy = '/'/|qu(x,t)| dxdt+/ luC Byt | - @22)
0Q 0
where the Hilbertian norm in the dual space [H} ()]’ is given as in (2.5) for ¢ € (0,7)

by
[(Qru(-,1),z
H(?;u(ut)H[H(}(Q)]/ = sup w
ofzeHi(@)  FlHY(Q)
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Moreover, it holds true that
W(Q) C C([0,T];L*(Q)) (2.23)

and this embedding is continuous, in other words, there exists a constant Cepy > 0 such
that

1/2

YueW(Q): D20 = / HFde| <G ,
ueWw(Q) tgf&’;]ﬂu( Nz [ax, J |u(x,1)| em [l o)

see [162, Proposition 23.23, page 422]. In addition, the trace map

Yo,: W(Q) — LX(Q), Yoo u(x) == ujg, (x) = u(x,0) forxeQ,
is surjective, see [102, Théoréme 3.2, page 25], and bounded due to the continuous em-
bedding (2.23) and

I 2y = - 0) 2y < max. 02y < Com g

for u € W(Q) with the constant Cer, > 0. Moreover, there exists a continuous, linear right
inverse Eq,: L?(Q) — W(Q), satistying for all ug € L*(Q)

Yo,Eautto = o in L*(Q)  and Hgg(]uoHW<Q) < Cex||uollz2(q) (2.24)

with a constant Cex > 0, see [102, Remarque 3.3, page 26]. Note that also Theorem 3.1.1
in Section 3.1 gives such an extension operator £q,. Because of the embedding (2.23), the
initial condition v(-,0) = vy in L?(Q) for a given v € L?(Q) is meaningful for functions
vEeW(Q) C C([0,T];L*(Q)). Further, the subspace

Wo,(Q) :=={veW(Q): v(-,0)=0in L*(Q)} C W(Q) (2.25)

is again a Hilbert space with respect to the inner product (-, ->W(Q).

2.6 Discretisations in Time

For the given terminal time 7 > 0, the time interval (0,7) is decomposed via the time
steps
0=t0<l| < < <Iyn-1 <1‘N,:T,

where N; denotes the number of time intervals 1y = (#_1,#¢) for £ = 1,...,N;. In addition,
the number of time steps #, is denoted by M,,i.e. M, = N, + 1, and the local mesh sizes are
given as h, g =ty —ty_; for { = 1,...,N;. Next, the global mesh size in time is defined by
h; = maxy—;__n, h; ¢, and the related finite element space

Sh,(0.7) = span{ @i}
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of piecewise linear, continuous functions is introduced, where the usual nodal basis func-
tions @, k =0,...,N;, satisfy @ (t;) = & for k,£ =0,...,N,. In addition, the subspaces
S}Lho’ (0,7)C S},I (0,T) and S}',“,O(O, T)C S,'lt (0,T) fulfil the homogeneous initial or terminal
conditions, i.e.

$h,0.(0.7) = S}, (0.7) N HY (0.7) = span{ gy},

and
Sh. 0(0.T) =S}, (0,T) NH(0,T) = span{e}y" .

Furthermore, S2[ (0,T) is the finite element space of piecewise constant functions. The

mapping
0+ L*(0,T) = S (0.7)

denotes the L? projection on the piecewise constant finite element space 52, (0,T), defined
for u € L*(0,T) by finding leu S Sg{ (0,T) such that
0
<thu’ Vh1>L2(0,T) = <M, Vhl>L2(0,T) (226)

for all vy, € Sgt (0,T), satisfying the stability estimate

HQg,”HLZ(o,T) < H”HLZ(O,T)

and the representation
Iy

1
Qg,u(t) =— / u(s)ds, t€ 1,
ht,é
-1
for{=1,...,N,.
For a continuous function u € C[0, T], the interpolation operator
I, : C[0.T] — 8}, (0,T)
is defined by
N;
Iu(r) := Y, u(te) @u() 2.27)
=0

for t € [0, 7], which is uniformly bounded with respect to the mesh size /i, as a mapping
Iy, - H'(0,T) = 8} (0,T), ie.

Vue H'(O0,T):  |yull oz < Cllullmor

with a constant C > 0 independent of #;, see [51, Proposition 1.4, page 6], and in addition,
it holds true that

Vue H'(0,T): Hatlht“”LZ(o,T) < Hat”HLZ(o,T)’ (2.28)
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see [51, Proof of Proposition 1.4, page 6]. For u € H&(O, T)NH?(0,T), recall the standard
error estimates for the piecewise linear interpolant

1
llu =Ty ull 207y < ﬁhr 10: (= I, ) | 20,7 (2.29)

1 1
Nl =T ull g 0.7y = 19 (= Iy ) |20,y < ﬁhz [9heutll 2(0,7) < ﬁhr |9l 10,7y
(2.30)
and therefore

I [
[l = Inull 20,7y < ﬁh’ 9wl 20,7y < ﬁht 9l 1 0.7)- (2.31)
An interpolation argument between (2.30) and (2.31) yields for u € H(},(O, T)NH 2(O, T)
3/2
=l ooy ) < i |9l 1 0.7)- (2.32)

where the constant C > 0 is independent of /4, but dependent on the norm equivalence

constants concerning || - HH1/2<0 1y S€€ Theorem 3.4.2 and (3.33).
o (0,

For a given function u € H&(O, T), the H(}’ projection Q}lz,” es ;1{,0’(0, T) is defined by
<9,Q;1,’u, ach, >L2(0,T) = <atu’ ach, >L2(0,T) (2.33)
for all vy, € S %11,,0,(0’ T), satisfying the stability estimate

1003, ull 20,7y < l9hull 20,7
In addition, for s € [0, 1], the standard error estimate
llu— Qg ull 20y < hy ™ llullppesio.r (2.34)

holds true for u € H&(O, T)NH'"+5(0,T) with a constant ¢ > 0.

Next, time stepping schemes are introduced. For a given positive integer M, € N, consider

a first-order ordinary differential equation
du
E(I) =F(t,u(t)) forte0,T],

where u(0) = uy € RM* and F: [0,7] x RM+ — RM~ are the imposed initial condition and
right-hand side. The right-hand side F is assumed to be sufficiently smooth and Lipschitz
continuous with respect to the second argument, i.e.

|F(t,v1) = F(t,5)| < Crlv; —v,|  forall vy, v € R, 1 €[0,7]
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with a Lipschitz constant Cy, > 0. To approximate the function u: [0, T] — RMx, time step-
ping methods are considered. These lead to approximations

u(t)) ~U" € RM™
in each time step #y for £ =0, ..., N;. Therefore, the 8-method for 6 € [0, 1] is defined as

U0 = g (1= O (11.U") + 0F (104,01 (2.35)

for £ =0,...,N, with U° := u; € RM*. The 0-method simplifies to the explicit Euler
method for 6 = 0 and to the implicit Euler method for 6 = 1. For 6 = 1/2, the Crank-
Nicolson method is obtained. The explicit and implicit Euler method converge with order
hy, whereas the Crank-Nicolson method converges with order 42. Furthermore, the implicit
Euler and the Crank-Nicolson methods are A-stable. On the other hand, the explicit Euler
method is not A-stable. See [93, Section 7.4] and [75] for more details and proofs.

2.7 Discretisations in Space

Let the bounded Lipschitz domain Q R be an interval Q = (0, L) for d = 1, or polygonal
for d = 2, or polyhedral for d = 3. For this situation, different discretisations in space are
introduced as follows. The spatial domain Q is decomposed as

IVX
Q=Jo
/=1

with N, spatial elements @, C RY. The sequence (7y)y of decompositions is assumed to
be admissible, shape regular and globally quasi-uniform. Here, the spatial elements @, are
intervals for d = 1, triangles or quadrilaterals for d = 2 and tetrahedra or hexahedra for
d = 3. The local mesh sizes are given as

1/d
hyo= /dx for¢=1,...,N;
Wy
and hy = max,—;__n, hye is the global mesh size. Furthermore, My, is the number of ver-

tices {xi}?ixl of the decomposition. The space

Vi (Q) = span{l//i}?i*'l - Hl(Q)

is the space of piecewise linear, continuous functions S, }lx (Q) on intervals (d = 1), triangles
(d =2), tetrahedra (d = 3), or Vj,, (Q) is the space of piecewise linear/bilinear/trilinear, con-
tinuous functions Q}lX(Q) on intervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3),
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where the functions y; are the usual nodal basis functions satisfying y;(x;) = 8y for
i,k=1,...,M,. Recall that S}lX(O,L) = Q}h (0,L) on intervals. In addition, the subspace
Vi 0(Q) C V;, (Q) satisfies the homogeneous Dirichlet boundary condition, i.e.

Vi 0(Q) = Vi, (Q) N Hy (Q).

M\’

i=

After an ordering of the vertices {x;};,~; in interior vertices {x,-}?i"l C Q and boundary

vertices {x,-}?fo 41 C 9Q, this H{} (Q) conforming subspace is written as

Vio(Q) = span{y;}. (2.36)

A function Uy, € Vj, () admits the representation

My
U, (x) = ; Uiyi(x)

for x € Q. In the remainder of this work, My, € RMe>*Mx and Ay, € RM-*Mx denote mass
and stiffness matrices defined via

M [i. ] = (V- ¥i) 12 2.37)

fori,j=1,...,M,, and
AnliJ] = (Vavi. Va¥i) 12 o) (2.38)

fori,j=1,...,M. The L? projection
O, LH(Q) = Vi 0(Q)

on the piecewise linear, continuous functions, satisfying homogeneous Dirichlet boundary
conditions, is given as the solution of the variational formulation to find Qp u € Vj, o(Q)
such that

(Ont.vi) 12(0) = (V1) 120 (2.39)
for all v, € Vj, 0(Q), satisfying the stability estimate

”thMHLZ(Q) < ”uHLZ(Q)’

where u € L*(Q) is a given function.

2.8 Discretisations in Space and Time

As in Section 2.7, let the bounded Lipschitz domain Q C R be an interval Q = (0, L) for
d =1, or polygonal for d = 2, or polyhedral for d = 3. Hence, the space-time cylinder
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Q=Qx(0,T) Cc R¥*! is polygonal for d = 1, or polyhedral for d = 2, or polychoral
for d = 3. For this situation, different discretisations in space and time are introduced as
follows.

First, consider a sequence (7y)y of admissible, shape regular and globally quasi-uniform
decompositions

N
0=Tv=Ua
(=1
with N space-time elements g, C R9*!, where ¢y is a triangle for d = 1 or a tetrahedron
for d = 2 or a pentatope for d = 3, see [117,142]. In addition, M is the number of vertices
{(x,,t,)}l , of the decomposition and 4 = max,—; __n hy is the global mesh size, where the
local mesh sizes are given by

1/(d+1)
/dxdz for¢{=1,...,N.

The space
$H(Q) = span{wi}}, C H'(Q)

is the space of piecewise linear, continuous functions on triangles (d = 1), tetrahedra
(d = 2) or pentatopes (d = 3), where {lm}?il is the nodal basis, i.e. Wi(xg,#) = &; for
k,i=1,...,M. A function u;, € S}(Q) admits the representation

M
up(x,t) = Zu,-l[/,-(x,t) for (x,1) € Q.
i=1

For the space S }I(Q), the space-time interpolation operator

Ih: C(Q) = S;(Q)
is defined by
M
Tnu(x,r) Z u(xi, 1) Wi(x,1) (2.40)
i=1

for (x,t) € Q.

Second, consider for a tensor-product ansatz a sequence (7x)y of admissible decomposi-

tions
Ny N,
O0=Tvn=Qx[0,T] = (Uw,») X (UW) (2.41)

i=1 =1
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with N = Ny - N; space-time elements, where the time intervals 7, = (#,_1,#;) are defined
via the decomposition

0=[0<l‘1<[2<-~~<l‘N,,1<l‘Nt=T

of the time interval (0,7) and where the spatial domain Q is decomposed as

=

o=\ ]w.
1

Here, the spatial elements @; C R? are intervals for d = 1, triangles or quadrilaterals for
d = 2 and tetrahedra or hexahedra for d = 3. The local mesh sizes are h; y = t; —t;_; for
¢{=1,...,N; and

1/d
hyi= /dx fori=1,...,Ny.
]
Furthermore, the global mesh size is given as h = max{h,, i} with h, = max,—__ N e

,,,,,

is shape regular and globally quasi-uniform. Next, consider the finite element space
04(0) :=Vj,0(Q) ®5}, (0.7T) (2.42)

of piecewise multilinear, continuous functions, where Vj,_o(Q) C Hé(Q) is the space of
piecewise linear, continuous functions S}lno(ﬂ) on intervals (d = 1), triangles (d = 2),
tetrahedra (d = 3), or V;,_o(Q) is the space of piecewise linear/bilinear/trilinear, continuous
functions Q}lx,o (Q) on intervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3), fulfilling
in both cases the homogeneous Dirichlet boundary conditions on the lateral boundary X,
see (2.36). Recall that S} ((0,L) = @ ,(0,L) on intervals. A function u, € Q}(Q) admits
the representation "

Ny M, N _
wp(x.t) = Y Y i (x) @u(t) = Y Uno(x)@(t)  for (x,1) € Q. (2.43)
(=0 j= (=
j=1 0
=:Up,0(x)

where ¢y is a piecewise linear, continuous nodal basis function with respect to time and
y; is a piecewise linear/bilinear/trilinear, continuous nodal basis function with respect
to space with M, := dimVj, o(Q). Furthermore, it holds true that U, ; € Vj, o(Q) for
(=0,...,N;.

The extended time interpolation operator

Iy: C([0,T];L*(Q)) = L*(Q) ®5;, (0.7)
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is defined by

N,
Lyu(x.t) =Y u(x.10)@q(t) (2.44)
(=0

for (x,t) € 0.

To derive space-time error estimates, different space-time projections are needed. As a
first space-time projection, the H&,’é (Q) projection

O Hy (0) = 04(Q) NHyy (0)

is introduced as the solution of the variational formulation to find Q}v € Q}(Q) HHS;’& (0)
such that

(901 9vh) 2 () + (VaQiV. Vivh) 12 ) = (v v p2(g) +(Vavs Vavh) o) (2:45)
for all v, € 0}(Q) DH&;’& (Q), where v € H&;’& (Q) is given. The stability estimate
W e Hop (Q): Q) < M)
and if Q is sufficiently regular, for s € [0, 1], the standard error estimate
||V_Qll1v||L2(Q) §5h1+s||VHH1+.\(Q) (2.46)

hold true for v € H&;’& (Q) NH'"t5(Q) with a constant ¢ > 0.

As a second space-time projection, the Hg-Hj projection Q) O v € Q4(Q) ﬂHol;’é’ (Q)
is introduced analogously to [16, Section 2], where the function v € Hé;’& (Q) is suffi-

ciently smooth. First, for a given function v € L*(0,T; H} (Q)), the extended H{} projection
0}, v € Vi 0(Q) ®L*(0,T) is defined by

(V2@ v Vv, ) gy = (Vv Vv, )2 g) (2.47)

for all vj,, €V, o(Q) ® L*(0,T). Note that V;,_o(Q) ® L?(0,T) is, as a tensor-product of the
separable Hilbert spaces (VhX,o(Q), (VX(-),VX(~)>L2(Q>> and (LZ(O,T), <‘v'>L2(0,T)) , again
a Hilbert space, where the inner product is given by (Vi(-),Vi(-));2(g)- Hence, by the
Lax-Milgram Theorem, it follows the well-posedness of the extended H(} projection

0} 1 L*0.T;Hy(Q)) — Vi, 0(Q) @ L*(0,T),
satisfying the stability estimate

”VXQlquvHLz(Q) < HVXV”LZ(Q)'
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Furthermore, for s € [0, 1], the standard error estimate
v =05 vli2i0) < m ™ IVl 20, rsm1+(@) (2.48)

holds true for v € L2(0,T; H} (Q) NH'*(Q)) with a constant ¢ > 0, if Q is sufficiently
regular. Second, for a given function v € H&(O,T;LZ(Q)), fulfilling the homogeneous
initial condition, the extended H(}’ projection Q,11[V c}(Q)®S }lz,,o,(o’ T) is defined by

<8,Q}Ltv, 8,vh,>L2(Q> = (9, a,vh,>L2(Q) (2.49)
for all vy, € L*(Q) @S}, (0,T), satisfying the stability estimate

10: Q4 vl 22(0) < 19v]l12(0)-
where the well-posedness of the extended Héy projection
0}, HY (0.T:L2(Q)) — LX(Q) ©S), 0 (0.7)
is shown analogously as for Q}lx. In addition, for s € [0, 1], the standard error estimate

v =03 vlir2(0) < el Wil gssio 20 (2.50)

holds true for v € Hy (0,T;L*(Q)) NH'*#(0,T;L*(Q)) with a constant ¢ > 0. Testing the
variational formulation (2.49) with the test function

(x,1) = z(x)-t  for (x,1) € Q x [0,),
T = 2(x)-1,  for (x,1) € Qx [t,T]

with an arbitrary function z € L>(Q) for £ € {1,...,N,} yields

/ 2(0)Q) v 1) dx = / ) j A0}, v(x,)drdx = / (%) ] v(x, 1) drdx = / 2F)v(x)dx
0 Q 0

Q Q Q

and hence, with the fundamental lemma of calculus of variations, there follows the inter-
polation property
0, v(x.t)) = v(x.t).
In other words, it holds true that
Q;l,, =1,

for functions in H&(O, T;L%(Q)), see (2.44).

Lemma 2.8.1. The following properties of the projection operators Q}h and Q%l,, are true:
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1. Forafunctionv € H'(0,T;H} (Q)), it holds true that Q}lxv €V o(Q)@H'(0,T). If
in addition, the given function v satisfies v € HOI!(O, T;HY(Q)), then it follows that
Qj, € Vi 0(Q) © Hy (0.T).

2. For a function v € Hj (0,T;H'(Q)), it holds true that Q},[v cH(Q)® SL,,O,(O’T)'
If, in addition, the given function v satisfies v € H(}’(O, T;H& (Q)), then it follows that
0),v € Hy(Q)®S), ,(0,T).

Proof. For the first part, consider a representation for (x,z) € Q

=

0 v(nt) = ¥ 7,0 9,(x), 251
1

J

where {1,17]-}};21 is an orthonormal basis of V}, () with respect to (Vx(-), Vi(+)};2(q) and
V; € L*(0,T). To show that a weak derivative of V; exists, fix an index j € {1,...,M}.
The definition of the extended H, projection Q}l)_ in (2.47) for vy, (x,t) = ¥;(x)z(t) gives

T T T
[ U020 = [ (V.0 v(t).9:05) 1 g (00 = [ (Fav(et). V1) g (1)
0 0 0

(2.52)
for all z € C3°(0,T). So, the fundamental lemma of calculus of variations for (2.52) yields

V/([) = <VXV("I)7VxV~/f>L2(Q) (2.53)

for ¢ € (0,T). For z = d,Z in (2.52), it follows that

T T T
/ Vi(1)az(t)de = / (Ve (). Vo) 1y (1)t = / (V1)) 2 2O
0 0 0

forallz € C5(0,T),i.e. 9;Vj(t) = (9, Vav(-,1), Vxll?j>L2(Q)' Furthermore, with the Cauchy-
Schwarz inequality, it holds true that

T
i ) 2
1090, = | (O 500)y50)
0

T
= / 10900 VW 12y 80 = 10V 720 | VW2 < o2
0
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and so, the first assertion. If, in addition, v(-,0) = 0 in HOl (Q), then the continuity of
(+)12(q) and of the trace operator yields

Vf(t)‘fzo = <va("t)\t:0s V.x¢j>L2(Q) =0.
The second part follows in an analogous way. 0

The next lemma shows that Q}]l, Q,‘lrv € Q}I(Q) ﬂHéd (Q) is well-defined under regularity
assumptions for v and that the operators in space and time commute, where the proof is
analogous to [16, Lemma 2.1, page 261].

Lemma 2.8.2. For a given functionv € Hgé (Q) with the regularity ;v € L*(0, T;Hé (Q))
and dy,v € H} (0,T:L*(Q)) form=1,....d,

1. the relation B,Q,llxv = Q}“atv € Vi 0(Q) ®L*(0,T),
2. the relation meQ}hv = Q}L; o, v € L2(Q) ®S,11h0’(0,T)f0r m=1,...,d and

3. the relation Q}Z;Q}LXV = Q,'“Q}hv € Q,L(Q) ﬂHé;’& (Q) hold true. In particular, the
space-time projections Q}u Q}uv and Q}le}I/V are well-defined.

Furthermore, the error estimate
flv— Q}II,Q}lxv”LQ(Q) <|v- Q}II,V”LZ(Q) +lv— Q}IXVHLZ(Q) +chehy |0 Vvl 12

with a constant ¢ > 0 is valid.

Proof. For the proof of the first relation, recall that
o Q111XV € Vi 0(Q) QL2 0,7)

by Lemma 2.8.1. Consider (2.47) for dyv € L*(0,T;H{} (Q)) and with integration by parts,
it follows that

<VXQ}1XBIV5 VxVhX>Lz(Q) = <antV, VxVhX>L2(Q) = - <V)CV7 VXachx>L2(Q)
== <VxQ/11XVs antvhx >L2(Q) = <antQ},XV’ Vv, >L2(Q)
= <VYCQ}ILt at Q}],,L v, vah,x >L2(Q)
for all vj,, € Vi, 0(Q) ® C(0,T). Because of the density of C5(0,T) in L?(0,T), it holds
true that
Q,lua,v = Q,lha,Q;lle
with 8,Q,1hv € Vj,,0(Q) ®L*(0,T). So, the first relation is proven.
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The proof of the second relation is analogous to the proof of the first relation.
For the third relation, by Lemma 2.8.1, it holds true that
N
Qj,v=Y V'ou € Hy(Q)®S, 0 (0.T) C Hy (0.T:Hy (Q))
(=1
with coefficients V* € H} () and so,
i, Q},V € Vi 0(Q) © Hy (0.T) C Hy (0.T: Ho ()

is well-defined. With the representations as in (2.51) and in (2.53) for Q,'ltv, it follows for
(x,t) € Q that

Q/th, X, t Z Vj th, ’VX]T/j>LZ(Q> l/7]'()5)

H
[ Mz T ME

M,

Z <V V), o B00)

and so, Q) Qv € 04(Q) ﬂH(};’(l), (Q). Analogously, O} 0} v € 0}(Q) N H, 00 1(Q) is well-
defined. With the help of the first relation, the second relation and the definitions (2.47),
(2.49), it holds true that

M=

d
Z <at ax,,, Q/11, Q},X v, 3; axm Vi >L2 Q) =

m=1

(O Qh, A QhXV 9,0, Vh>L2 Q)

3
Il

M=

(0, Q}LXV» 0;0x,, Vh)LZ(Q)

s
)

Il
M=

<ataxmvy ataxmvh>L'—’(Q)

3
I

and analogously,

Z (9195, 0h. O V2105, vi) 1200 = Z (0105,v: 9195, 12(0)

m=1 m=1
forall v, € 0}(0Q) QH&’& (Q). Hence, also the third relation is true.

The error estimate follows with the triangle inequality, the first and second relation and
standard error estimates for Q}h and Q}1r from

v =03, Qi Vll20) < IV =i vlliz(0) + IV — Qi VIl 2 0)
+ [lv— Q;IIXV) - Qfll, (v— Q}lev) l200)

<eihy 3, (v=0} )l 2 0y <102 |8 V] 12 )

with constants c,c, > 0 independent of 4; and A,. O
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Next, for a function v € C([0, T]; L*(€)), investigate I, Op,,v € O}(Q) ﬂHé;" (Q). Therefore,
for a given function v € L?(Q), the extended L? projection Qj, v € Vj, o(Q) ® L*(0,T) is
defined by

(thv,v;h)Lz(Q) = (v, th>L2(Q) (2.54)
for all vy, € V), o(Q) @ L*(0,T), satisfying the stability estimate
HQhXV”LZ(Q) < ”vHLz(Q)v (2.55)
where the well-posedness of the extended L? projection
On,: L*(Q) = Vi 0(Q) ©L*(0,T)

is analysed as for the projection Q}lx given in (2.47). Furthermore, for s € [0, 1], the standard
error estimate

v —=On 20 < el IVl 2075014502

holds true for v € L?(0,T; H} (Q) NH'*(Q)) with a constant ¢ > 0. The following prop-
erties of the projection operator Q), are true:

Lemma 2.8.3. For a function v € C([0,T];L*(Q)), the relation
Onv €V 0(Q)®C[0,T]
holds true. In addition, for a function v € H"(0,T;L*(Q)) with r > 0, it holds true that
Onv € Vi o(Q@H(0.T) and  ||QnVllr o 1020)) < IWlar0.1:02(02))-

In particular, for r = k € N, the relation Q,thxv = tha,kv is valid.

Proof. The proof is analogous to the proof of Lemma 2.8.1. More precisely, take an or-
thonormal basis {%}JJM; 1 of Vj, 0(€2) with respect to (,-) 2 (q) and write

V(e ()W (x) (2.56)

M?

Opv(x,t) =

1

J

for (x,) € Q with V; € L?(0, T). For the first assertion, it remains to show that V; € C[0,T].
For that reason, the equation (2.54) gives for vy, (x,1) = ;(x)z(t)

T
/ 5(t)z(t)dt = (O, w,z>L2<Q (v Wjz); Q>—/<v w,>L2<Q>z(z)dt (2.57)
0
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for each z € L2(Q) and hence, the fundamental lemma of calculus of variations yields
0= (0. W) 20 = [ PO B0 (2.58)
Q

fort € (0,T). Because for almost all x € Q and all # € [0,T], the estimate

/i < . H(X)| =:
(0 W;(x)| < nax, v(x,s)] I;leagle(X)\ g(x)

holds true with g € L>(Q), the theorem of continuity for parameter integrals [47, Satz 5.6,
page 147] gives V; € C[0,T] and hence, the first assertion.

For the last statement, an interpolation argument is used, see [102, Théoreme 5.1, page 32
in Chapitre 1]. For r = 0, the assertion is trivial. Therefore, let v € H*(0,T;L%(Q)) be
given for k € N, i.e. » = k. Because of the representation (2.56), it remains to prove that
oFV; € L*(0,T). For z = 9Fz in (2.57), it follows that

T T T
V030 = [ (600 g 270 = (<1F [ (300, 0
0 0 0

for all Z € C5(0,7T), i.e. (9,]‘\7]-(1‘) = <8,kv(~,t),li/j>Lz<Q). Furthermore, with the Cauchy-
Schwarz inequality, it holds true that

T

2
ot dr
LZOT) /< )%> ())
0
The relation 8,"thv = thz?,kv is proven analogously to the relations of Lemma 2.8.2, and
s0, the assertion for r = k, where for the stability [|Qy, VIl x (o 7.12()) < IVllg#(0.7:2(0)- the

stability (2.55) is used for 9/ Qp v = 0y, /v, 1 =0,...,k. For arbitrary r > 0, the statement
follows by interpolation. O

< oo,

H%Hu dr =

71

Mo

For a given function v € C([0,7]; L*(Q)), Lemma 2.8.3 ensures that [, 05, v € 0} (Q), given
by

N
1, Op v(x,1) ZQhVXl( oot Z Zv/ Vi (x) @y(r) (2.59)

for (x,¢) € Q, is well-defined.
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Lemma 2.8.4. For a given function v € C([0,T];L*(Q)), it holds true that

1, 0n,v = OnIn,v € Q1(Q).
Furthermore, forv € L2(0,T; H*(Q))NH"(0,T;L*(Q)) with s € [0,2] and r € (1/2,2], the
error estimate
v =1y, QhXVHH(Q) <a h;s(”vHLZ(O,T;HS(SZ)) te htr”vHH’(O,T;LZ(Q))
with constants c1,cy > 0 independent of h, and h; is valid.

Proof. Take an orthonormal basis {%}1]\/1; 1 of Vi, 0(€) with respect to (-,-) ;> (o) and write
with (2.58) '

Op,v(x.t) Zvj(t Wilx Z V("[)’¢j>L2(Q)Wf(x) for (x,1) € 0,

where V; € C[0,T], see Lemma 2.8.3. With this representation, it follows for (x,t) € Q that

My

N;
Ih,QhY xt ZZ<V t/ Wj>L2(Q)Wj (P[/ 1)
and

M, Ne My
O I, v(x,1) = Z(Ih, S0 05) 1200y Wi (0 = 1 ) (VCat0). W) 12 ) W (X) o).

Jj= =0 j=1

ie. I, 0n,v = On v € Q4(Q).
The error estimate follows with the triangle inequality, standard error estimates for /;, and
Oy, and Lemma 2.8.3 from
v =12, 00l 1200y < IV = OnVll12(0) + 1@V — In, OVl 12 ()
< il Wl o.rms@)) T 2 1OVl o 722200
<c hchVHLZ(O,T;HS(Q)) te htrHV”H’(O,T;LZ(Q))

with constants cy,c¢; > 0 independent of 4, and /. O

Last, for a given function v € L%(Q), the extended L? projection lev c’(Q)® 52/ (0,7)
on the space L?(Q) ® S2r (0,T) of piecewise constant functions with respect to time is
defined by

(@) 1) = )2 (2.60)
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for all vy, € L2(Q)® 521 (0,T), satisfying the stability estimate

HQg,VHLZ(Q) < HVHLZ(Q)7
where the well-posedness of the extended L? projection
0, 1(Q) = (@)@ 8, (0.T)
is analysed as for the projection Q,llx given in (2.47).

Lemma 2.8.5. Forv € L*(Q), the extended L? projection Qg[ D LX) = LA(Q) ®S21 (0,T),
defined in (2.60), satisfies the representation
17
lev(x,t) = / v(x,s)ds, (x,1)€Qx1,

1,0
Iy

for 0 =1,....N,. In particular, for a given function v, € Q,'l(Q) with the representation,
see (2.43),

vp(x,1) Z Vie(X)@e(t), (x,1) € Q,

the relation

Oh va(x.t) = ZW( X) O @ult),  (n1) €0, 2.61)

holds true, where the extended L* projection th: L2(Q) — [*(Q) ®S2r (0,T), defined
in (2.60), occurs on the left-hand side and the L? projection Qgt: LZ(O,T) — 521 (0,7),
defined in (2.26), occurs on the right-hand side.

Proof. The proof of the first representation is analogous to the proofs of Lemma 2.8.1 or
Lemma 2.8.3.

The proof of the second representation follows from the first representation. O

2.9 Variational Methods

Let X and Y be real Banach spaces endowed with the norms ||-||, and ||-||. Furthermore,
leta(-,-): X xY — IR be a given continuous bilinear form and let F: ¥ — R be a given
continuous linear form. Consider the abstract variational problem to find # € X such that

YweY: a(u,v)=F(). (2.62)
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A continuous, linear operator A: X — Y’ is associated with a(-,-): X x¥ — R by set-
ting
(Au,Vyyroy ==a(u,v) forallueX,vey,
where (-, )y, y is the duality pairing.
Theorem 2.9.1 (Necas). Let (X, ||-||x) be a real Banach space, (Y, ||-||y) be a real, reflexive

Banach space and a(-,-): X XY — R be a continuous bilinear form. Then, the following
statements are equivalent:

1. For every given continuous linear form F : Y — R, a unique solution u € X of (2.62)
exists, satisfying
llullx <é&llFlly

with a constant ¢; > 0.

2. The continuous, linear operator A: X — Y' associated with a(-,-): XxY - Ris
an isomorphism, i.e. A is bijective and ALY Y — X is continuous.

3. The continuous bilinear form a(-,-): X XY — R satisfies the following conditions:
* condition (N'1), the so-called inf-sup condition:
ey > 0: inf  sup (V)| > cs.
07ueX evey ||ullx [[VIly
* condition (N2):

VeV \{0}: JueX: aluv)#0.
Moreover, it holds true that ¢, = f

Proof. If X,Y are real Hilbert spaces, a proof is contained in [118, Théoréme 3.1, page
318] or in [29, Satz 3.6, page 119]. For the general case, see [51, Theorem 2.6, page
85]. O

Remark 2.9.2. For complex Hilbert spaces X and Y, a continuous sesquilinear form
a(-,-): X xY — C and a continuous linear form F: Y — C, a proof is included in [131,
Theorem 2.1.44, page 36].






3 HEAT EQUATION

The main focus of this chapter is on space-time variational formulations and conforming
discretisations for parabolic problems. First, a highly non-exhaustive list of references,
second, an overview of the sections of this chapter, where for each section the relevant
literature is cited, and third, an outlook for possible extensions are given. Here, the model
problem for a parabolic partial differential equation is the homogeneous Dirichlet problem
for the heat equation,

du(x,t) — Au(x,t) = f(x,1) for (x,t) € 0 =Q x (0,T),
u(x,1) 0 for (x,t) e L =T"x[0,T], 3.1
u(x,0) = up(x) forx € Q,

where Q C R?, d = 1,2,3, is a bounded Lipschitz domain with boundary I' = dQ, T > 0 is
a terminal time, u is a given initial condition and f is a given right-hand side. To compute
an approximate solution of the heat equation (3.1), different numerical schemes including
different approaches of the underlying mathematical framework are available. On the one
hand, some of them are repeated in this chapter, but on the other hand, powerful tools like
semigroup theory as in [91, 123] on the continuous part or on the discretisation side, any
kind of discontinuous Galerkin methods [48-50,56,78,85,116,134,135] or finite difference
methods [65, 97, 147] or boundary element methods are not in the scope of this work.
For boundary integral equations and boundary element methods for the heat equation,
see [14,35,40, 120] and in addition, see [39,76, 107, 109, 125, 129, 149]. Furthermore, all
approaches where the heat equation (3.1) is reformulated as a first-order system also in the
spatial variables are excluded in this work, see, e.g., [25] and the references therein. In
addition, see also the approaches in [10,11,38,99,100, 112,137, 154].

Outline of Chapter 3

The remainder of this chapter examines the heat equation (3.1) as follows:

In Section 3.1 a pointwise spatial variational formulation coming from a so-called Galerkin
method [36,97,98,102, 160, 162] and time stepping schemes [65,74,85,93,150] are cited,
see also [9,16,17,43,54,79,108,148,151,159]. In Section 3.2 a space-time variational for-
mulation with ansatz spaces of Bochner type, analysed via the inf-sup theory and including
a stable space-time discretisation, is formulated, see [51, 137, 142—144]. In Section 3.3 an
anisotropic space-time variational formulation [35, 98, 102, 103], which is obtained by a
transposition and interpolation argument, is replied, and also an example for an unstable
numerical scheme, which is derived by the (natural) usage of conforming, piecewise linear,

47
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continuous ansatz and test functions, is given. Nevertheless, this anisotropic formulation
leads to boundary integral equations in anisotropic Sobolev spaces, where the single layer
and hypersingular boundary integral operators are elliptic, see [35,40, 120]. For the last
and main Section 3.4, see [145], a motivation is given by transmission problems. For trans-
mission problems of the heat equation a coupling of finite and boundary element methods
is a natural choice, i.e. the finite element method is used for the interior problem as in (3.1)
and the boundary element method is used for the corresponding exterior problem. For the
finite element part, the anisotropic variational formulation of Section 3.3 is not well-suited
on the discretisation level because it seems that a stable finite element method is not avail-
able. On the one hand, the Bochner type variational formulation of Section 3.2 gives a
stable finite element method, but on the other hand, from an analysis point of view, the
boundary integral equations [35,40, 120] and the variational formulation of Bochner type
in Section 3.2 do not fit, i.e. the resulting trace spaces of the Bochner spaces are different
from the anisotropic boundary spaces in Section 3.3. In other words, it seems that the anal-
ysis of a coupling of the corresponding discretisations in [35,40, 120] and Section 3.2 is
very difficult. To overcome the problem of non-fitting spaces, either the boundary integral
equations are treated in trace spaces of the Bochner spaces of Section 3.2, or a stabilised
finite element method of the anisotropic spaces of Section 3.3 is introduced. The second
approach is the motivation of Section 3.4, where the main result is a symmetric and elliptic
variational formulation and hence, a symmetric Galerkin discretisation of the first-order
time derivative, see [145]. In addition, see [37,52, 101]. In Section 3.4 the key ingredient
is a type of Hilbert transform, where its fast realisation is not in the scope of this thesis.
However, Section 3.4 is completed with error estimates and some numerical examples,
which emphasise the theoretical results.

Outlook for Possible Extensions of Chapter 3

The results of this chapter for the model problem (3.1) can be transferred to a more general
parabolic equation

duet) =Xy 2 (@i (er) 22 ()

+XL ai(xn ) 94 () +a(eu(xnt) = f(xr)  for (x1) €0, 3.2)
u(x,t) = gxt) for(x,t) €X,
u(x,0) = up(x) forx e Q,

where a; j, a;, a are given coefficients, f is a given right-hand side, g is a given Dirichlet
datum and ug is a given initial condition, which have to satisfy smoothness and bounded-
ness conditions, see, e.g., the classical references [36,97,98, 102,103,160, 162]. Since the
derivations and the proofs of the corresponding results have to be done with great care,
they are left for future work, including precise assumptions on the involved functions and
function spaces.
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3.1 Variational Formulation in Space and Pointwise in Time

In this section, a short overview of a pointwise in time variational formulation is given.
Furthermore, numerical examples for lowest order in space, i.e. piecewise linear, continu-
ous ansatz functions, combined with lowest order time stepping are presented.

The pointwise in time variational formulation of (3.1) is given with the notations of Sec-
tion 2 as follows:

Find u € L2(0,T; H}(Q)) with du € L*(0,T;[H}(Q)]') and u(-,0) = up in L?(Q) such
that
(), )+ (Vatu(, 1), Vir) 2 = (£ (1), ¥ (3.3)

for almost all € (0,7) and all v € H}(Q), where f € L*(0,T;[H} (Q)]') and ug € L*(Q)
are the given right-hand side and the given initial condition. Here, o, is the distributional
derivative on (0,7), i.e. equality (3.3) means that

T T
— /(u(-,t), dz+/ Vu(-,1), Vyv) 2@ (p(t / Vo (t)dr
0 0

for all ¢ € C5(0,T). The variational formulation in (3.3) is examined in many books,
for example, [102, Exemple 1, Chapitre 3, page 263], [160, Beispiel 28.1, Kapitel IV,
page 409], [162, Section 23.8, Chapter 23, page 426] or [36, Mathematical Example 1,
Chapter XVIIILpage 524]. In these books, the following existence and uniqueness result is
proven.

Theorem 3.1.1. For given f € L*(0,T;[H}(Q)]') and ug € L*(Q), there exists a unique
solution u of the variational formulation (3.3), satisfying

u€ L*(0,T;H) (Q))NC(0,T];L*(Q)),  du € L*(0,T;[H)(Q)]),

i.e. u € W(Q), and the stability estimate

lullw ) = \/H”Hiqo,r;ﬂ(;(g)) + ”aluH[Z}(O,T;[H(}(Q)]’) <¢ (”"‘OHLZ(Q) + ||fHL2(0,T;[H(}(Q)]’)>

with a constant ¢ > 0.
Proof. See the books [36, 102,160, 162] as mentioned above. O

For a discretisation scheme, let the bounded Lipschitz domain Q C R¢ be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
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of Section 2.8, consider a discretisation of a tensor-product type (2.41) with the finite-
dimensional space 0} (Q) =V}, 0(Q) ®S}lr (0,T), see (2.42). Therefore, introduce for x € Q
and ¢ € {0,...,N,} the approximation

MX
Upo(x) = Z Ufy/,»(x) ~ u(x,tp),
i=1

where Uf € R are the unknown coefficients of the functions Uy, ¢ € Vi, 0(Q) C Hé () for
£ €{0,...,N;}. Furthermore, set for (x,) € O

up(x,1) : Z ZU ilx ZUM(x @u(t) ~ u(x,1), (34

(=

ie u, € 0}(0).

For the pointwise in time variational formulation (3.3), a conforming discretisation in space
with Vj,_0(Q) C H}(Q) in combination with a 8-method (2.35) for @ = 1 leads to the so-
called implicit Euler Galerkin method to find Uy, ; € Vj,, 0(Q) C H}(Q) for £ € {0,...,N;}
such that

Un,0 = On,lto
andfor/=1,...,N;
1
E(Uhx,Z_Uhx,Zfl,VhJLz( <V Uh st Vh) 12(Q) = </f dS th> 3.5
1,

for all vj,, € Vi, 0(Q), where @y, : L?(Q) — Vj,, o() denotes the L? projection (2.39). This
method is given in [74, (2.10), page 684] or in [79, (3.5), page 508] and differs from the
methods [150, (1.47), page 16] or [65, (1.34), page 334] only in the right-hand side. The
implicit Euler Galerkin method (3.5) is equivalent to the linear systems

M, U° = u,

and
(M, +hy pAn ) U = M U1 4 F* (3.6)

forall ¢ =1,...,N,, where M), € RMx*Mx ig the mass matrix (2.37), Ap, € RMexMx ig the
stiffness matrix (2.38) and the vectors u, F' ¢ ¢ RMrx are defined by

wli] = (o, Vi) 2y Fl1 = < / f(-,s>ds,wi> (3.7)

Q

for i = 1,...,M, with the nodal basis functions y; satisfying V;, ¢(Q) = span{l//i}?i‘l, see
(2.36). The matrix M, + h; Ay, is positive definite and hence, the linear systems (3.6) are
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uniquely solvable for all £ = 1,...,N,. Stability of the numerical scheme (3.5) holds true
without any CFL condition because the implicit Euler method is unconditionally stable,
see Section 2.6.

As a second discretisation method in time, the Crank-Nicolson method is considered,
which follows from the 6-method (2.35) for 6 = 1/2. Hence, using the Crank-Nicolson
method combined with a conforming discretisation in space with Vj,_o(Q) C H}(Q) for the
pointwise in time variational formulation (3.3), there follows the so-called Crank-Nicolson
Galerkin method to find Uy, ¢ € Vi, 0(Q) C H3(Q) for £ € {0,...,N;} such that

Uh,0 = On,to
andfor/=1,...,N;

1 1
T <Uhx,é - Uhx,f—l 5 th>L2 Q) + E <V)cUhA £t Vthx,l,’—l 5 VxVhX>L2 )

ht,€
!
- M</f(~,s)ds, vhx> (3.8)
T Q

for all vj,, € Vi, 0(Q), where @y, : L*(Q) — Vj,, o(Q) denotes the L? projection (2.39). This
method is given in [74, (2.11), page 684] and differs from the methods [150, (1.54), page
16] or [65, (1.34), page 334] only in the right-hand side. The Crank-Nicolson Galerkin
method (3.8) is equivalent to the linear systems

M U° = u,

and

h ‘ h ‘
(M;,X + %‘AQ U'= (th - %‘Am) U'+F' forallé=1,....,N;, (3.9

where M), € RMe*Mc s the mass matrix (2.37), Ap, € RM:xMx i the stiffness matrix (2.38)
and the vectors u, F ! ¢ RMx are given in (3.7). The matrix M}, + %Ahx is positive definite
and hence, the linear systems (3.9) are uniquely solvable for all £ = 1,...,N;. Stability
of the numerical scheme (3.8) holds true without any CFL condition because the Crank-
Nicolson method is unconditionally stable, see Section 2.6.

Next, error estimates for the implicit Euler and the Crank-Nicolson Galerkin method are
the aim. It seems that error estimates of the quantities ||u(-,7¢) — U, ¢l|2(q) for each
{=0,...,N; are standard, see [150, Theorem 1.6, page 16 or Theorem 1.5, page 15]
or [65, Theorem 5.13, page 336], [85,93] and also [43, 159] for some early references.
However, here, error estimates in space-time norms ||-[|,2(g). |51 (¢) are considered, see
the work [9, 16, 17,54,74,79,108, 148, 151].
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Theorem 3.1.2. Let Q be sufficiently regular and consider a constant step size hy = hy g
for all £ =1,...,N, together with a sequence (Ty)n of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hy. Furthermore, let the
unique solution u of (3.3) be sufficiently smooth and let uy, be defined via (3.4), where the
coefficients Uy, o are calculated by the implicit Euler Galerkin method (3.5). Then, the
space-time error estimate

[ = unll 20y < e1Che + R lull 20 715 ) + 2 1t utll 0,722 (2))

holds true with r € (1/2,1], s € [1,2] and with constants ¢; > 0, ¢c; > 0 independent of h;
and hy.

Proof. This proof follows the ideas of the proof of [74, Theorem 3.1, page 684]. So, for
u € C([0,T];L*(Q)), one defines the function I, Oy, u € Q,'l(Q) asin (2.59), i.e.

M _
I, Op u(x,t) = Z O u(x,tp) o(t)  for (x,1) € Q

=Ty 0 (x)
with Uy, € Vi, 0(Q) C H}(Q), satisfying
<0h,(,[’VhX>L2(Q) = <M(',l‘[),VhX>L2(Q) for all vy, €V, 0(Q)
for £ =0,...,N;. With the triangle inequality, it holds true that
[l — MhHLZ(Q) <|lu—1, QhX“”LZ(Q) + || £, O 1t — Mh“LZ(Q)'

The first term is estimated by standard error estimates of Lemma 2.8.4 and so, it remains
to investigate the second term. Therefore, set

Ne:=Upo—Upt € Vi o(Q) forf=0,....N,
where 1o = 0. Hence, it holds true that
2 & 2
174, Onett = w720y = Y 10 Ot — unll2 e

=1

Ny )
= / Y et (Me(x) 4+ M1 ()Mo (x) + M1 (x)?) dx
Q

< Y el - (3.10)
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With [74, (4.5), page 689] for oo = 0 and [74, (4.4a), page 688] for ¢ = & = 0, it follows
from the last inequality (3.10) that

N 1/2
1, @n e = w2 < (/Z_Zl htlmlliZ(Q)>

< ci(b+ Bl 20.7:m50) + 2 lullgro7.02(0))

with r € (1/2,1], s € [1,2] and with constants ¢; > 0, ¢; > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details. O

Theorem 3.1.3. Let Q be sufficiently regular and consider a constant step size hy = hy g
Jor all £ =1,...,N; together with a sequence (Ty)n of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hy. Furthermore, let the
unique solution u of (3.3) be sufficiently smooth and let uy, be defined via (3.4), where the
coefficients Uy, ¢ are calculated by the Crank-Nicolson Galerkin method (3.8). Then, the
space-time error estimate

llu = unll 2() < c1(hy ) ull 20.7.m5(0)) + 2wl gr o702

holds true with r € (1/2,2], s € [1,2] and with constants ¢; > 0, ¢c; > 0 independent of h;
and hy. Furthermore, for Q}I(Q) - Hé;’l (Q), assume the inverse inequality

Vv € Q}ll(Q): ‘vh‘Hl(Q) < Cith71|‘VhHL2(Q)
with a constant ciny > 0 and h = max{hy, h}. Then, it holds true that
| — uh‘Hl(Q) < Cein h* HMHH#H(Q) + Ciny h! l|ear, — ””LZ(Q)

with it € [0,1] and with a constant C > 0 independent of h.

Proof. For the L?(Q) error estimate, repeat the proof of Theorem 3.1.2 until (3.10). Then,
with [74, (4.5), page 689] for @ = 0, see also [74, Lemma 4.4, page 690], and the first
estimate of [74, Lemma 4.3, page 690] for a = & = 0, it follows from the inequality (3.10)
that

N, 1/2
(121, Ot — "‘h”LZ(Q) < <£Z'1 ht|nk||i2(9))

< er(hf + ) ull 207150y + 2 b N4l o 722(0)-

with r € (1/2,2], s € [1,2] and with constants ¢; > 0, ¢; > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details.
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For the H'(Q) error estimate, consider an H(};" (Q) projection to find Q111,0” € 04(Q) such
that

<azQ111,ou, afvh>L2(Q) + <VxQ}l,0u, VxVh>Lz(Q) = (Ju, ath>L2(Q) +(Vau, VxVh>L2(Q)

forall v, € Q}l(Q). Then it follows with the triangle inequality, standard error estimates for
Q}l,o and the inverse inequality in Q,'l(Q) that
lu—unlggig) < [u=Qhottl 1) + 1ot = tal 1 )
S ChM ([ull 1)+ cinh ™ || @hou — MhHLz(Q)
<Ch* l[ull o1 (0) +cinyh ! HQ}LOM - ”HLZ(Q) + Ciny By — ull 120
<C

Ciny I ||MHHH+‘(Q) +Cinyh ™! [l — "‘HLZ(Q)
for u € [0,1] and hence, the assertion. O

Remark 3.1.4. Since in the proofs of Theorem 3.1.2 and Theorem 3.1.3, see [74] for more
details, regularity results of related adjoint problems are used, one expects reduced orders
for the error estimates, given in Theorem 3.1.2 and Theorem 3.1.3, if Q is less regular.

Corollary 3.1.5. Let the assumptions of Theorem 3.1.2 and of Theorem 3.1.3 be fulfilled
and let u be sufficiently smooth. Then, for the implicit Euler Galerkin method (3.5), the
error estimate

flu— Mh”B(Q) <Ch

holds true, and for the Crank-Nicolson Galerkin method (3.8), the error estimates
Hu - uhHLz(@ < Ch2

and

hold true with a constant C > 0 independent of h = max{h,h.}.

Proof. These estimates follow immediately from Theorem 3.1.2 and of Theorem 3.1.3 for
the maximal values of r,s and u. (]

In the last part of this section, some numerical examples are presented. So, for the space-
time cylinder

0=0x(0,T)=(0,1) % (0,2),
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consider the solutions of (3.3)

)= Y(1+1)e /2,
uz(x,1) - (T —1)*4,
w3 (x,1) = sin(7x) (2 + %) /8,
g (x,1) = sin(7mx) (T /4 — 1) 4+ x7) /8

for (x,t) € Q. Note that u; € H'(Q) for i = 1,2,3,4. The spatial interval Q = (0, 1) is de-
composed into N, elements, i.e. intervals, and M, = N, + 1 vertices with the constant mesh
size hy = 1/(My — 1) = 1/Ny. For the time interval (0,2), there are M, time steps intro-
duced with the constant time step size , = T /(M; — 1). See Section 2 for more details. The
appearing integrals for the initial condition and the right-hand side in (3.7) are calculated
by the usage of high-order integration rules, and the degrees of freedom are denoted by

uy (x,t sin(mx

sin(7mx

dof = (M, —2)-(M; — 1)
due to the homogeneous Dirichlet boundary condition and the initial condition.

In Table 3.1 and Table 3.2, the errors in [|-|;2() and in |-| 51 ) are presented for the smooth
function u; and for a uniform refinement strategy in space and time direction, i.e. /; ~ h,.
Note that no CFL condition like &, ~ h? is needed because the Crank-Nicolson method and
the implicit Euler method are unconditionally stable, see Section 2.6. The error estimates
of Theorem 3.1.3 and Theorem 3.1.2 are confirmed.

Table 3.3, Table 3.5 and Table 3.7 show that the position of singularities leads to differ-
ent convergence behaviours for the Crank-Nicolson Galerkin method. For the function u3,
the singularity is at (0,0) and hence, the initial condition ug € L>(Q) is less regular, i.e.
ug ¢ Hi(Q). This results in an observed convergence rate of 3/4 in ||-|| 12(¢) @nd in no con-
vergence in || H(Q although uz € H'(Q), see Table 3.5. If the position of the singularity
is at the termmal tlme T, as for the solution uy, or at the time 7 /4, as for the solution ua,
then reduced orders of convergence are observed as expected, see Table 3.3, Table 3.7. For
the implicit Euler method, analogous results are given in Table 3.4, Table 3.6, Table 3.8,
where the position of the singularity for the functions uy, u3, us plays no role.



56 3 Heat Equation

M, M, dof hy hy [y — ulvhlle(Q) eoc |uj— ul,z,lHl(Q) eoc
3 3 2 0.50000 1.00000 2.5257e-01 - 1.6202e+00 -
5 5 12 0.25000 0.50000 6.3416e-02 1.54 8.2405e-01 0.75
9 9 56 0.12500 0.25000 1.5851e-02 1.80 4.1399e-01 0.89
17 17 240  0.06250 0.12500 3.9635¢-03 1.90 2.0726e-01 0.95
33 33 992  0.03125 0.06250 9.9092¢-04 1.95 1.0366e-01 0.98
65 65 4032  0.01562 0.03125 2.4773e-04 1.98 5.1836e-02 0.99
129 129 16256 0.00781 0.01562 6.1933e-05 1.99 2.5918e-02 0.99
257 257 65280 0.00391 0.00781 1.5483¢-05 1.99 1.2959¢-02 1.00
513 513 261632 0.00195 0.00391 3.8708e-06 2.00 6.4797¢-03 1.00
1025 1025 1047552  0.00098  0.00195 9.6769¢-07 2.00 3.2398e-03 1.00

2049 2049 4192256 0.00049 0.00098 2.4206e-07 2.00 1.6199e-03 1.00
4097 4097 16773120 0.00024  0.00049 6.0215e-08 2.01 8.0996e-04 1.00

Table 3.1: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder O = (0,1) x (0,2) and for u;.

M, M, dof hy hy [y — u1,],||Lg(Q) eoc |uj— ”thHl(Q) eoc
3 3 2 0.50000 1.00000 2.4176e-01 - 1.6141e+00 -

5 5 12 0.25000 0.50000 7.8469¢-02 1.26 8.3436e-01 0.74

9 9 56 0.12500 0.25000 2.8683e-02 1.31 4.2342¢-01 0.88

17 17 240  0.06250  0.12500 1.2317e-02 1.16 2.1337e-01 0.94

33 33 992  0.03125 0.06250 5.8288¢-03 1.05 1.0719¢-01 0.97

65 65 4032  0.01562 0.03125 2.8627¢-03 1.01 5.3748e-02 0.98

129 129 16256  0.00781 0.01562 1.4228e-03 1.00 2.6918e-02 0.99

257 257 65280 0.00391 0.00781 7.0988e-04 1.00 1.3470e-02 1.00

513 513 261632 0.00195 0.00391 3.5463e-04 1.00 6.7383e-03 1.00
1025 1025 1047552 0.00098  0.00195 1.7725e-04 1.00 3.3699e-03 1.00
2049 2049 4192256 0.00049  0.00098 8.8607e-05 1.00 1.6852e-03 1.00
4097 4097 16773120 0.00024  0.00049 4.4300e-05 1.00 8.4263e-04 1.00

Table 3.2: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1) x (0,2) and for u;.
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M, M, dof hy hy [tz — uz ||L2(Q) eoc  |uz — |y (o) ©oc¢
3 3 2 0.50000 1.00000 1.7974e-01 - 1.2812e+00 -
5 5 12 0.25000 0.50000 5.3647e-02 1.35 7.0582e-01 0.67
9 9 56 0.12500 0.25000 1.5830e-02 1.58 4.0519e-01 0.72
17 17 240  0.06250 0.12500 5.4556¢-03 1.46 2.5515e-01 0.64
33 33 992  0.03125 0.06250 2.2538e-03 1.25 1.7871e-01 0.50
65 65 4032  0.01562 0.03125 1.0047e-03 1.15 1.3639¢-01 0.39
129 129 16256 0.00781 0.01562 4.4819¢-04 1.16 1.0957e-01 0.31
257 257 65280 0.00391 0.00781 1.9647¢-04 1.19 9.0273e-02 0.28
513 513 261632 0.00195 0.00391 8.4780e-05 1.21 7.5223e-02 0.26
1025 1025 1047552  0.00098 0.00195 3.6195e-05 1.23 6.2996e-02 0.26

2049 2049 4192256  0.00049 0.00098 1.5351e-05 1.24 5.2874e-02 0.25
4097 4097 16773120 0.00024  0.00049 6.4854e-06 1.24 4.4422¢-02 0.25

Table 3.3: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder O = (0,1) x (0,2) and for us.

M, M, dof hy hy [tz — u2,],||Lg(Q) eoc  |ux —uzp|pp () eoc
3 3 2 0.50000 1.00000 3.7057¢-01 - 1.6781e+00 -

5 5 12 0.25000 0.50000 1.9478e-01 0.72 1.0367e+00 0.54

9 9 56 0.12500 0.25000 1.0549¢-01 0.80 6.1865e-01 0.67

17 17 240  0.06250  0.12500 5.6371e-02 0.86 3.7187¢-01 0.70

33 33 992  0.03125 0.06250 2.9435¢-02 0.92 2.3356e-01 0.66

65 65 4032  0.01562 0.03125 1.5118e-02 0.95 1.5857¢-01 0.55

129 129 16256  0.00781 0.01562 7.6856e-03 0.97 1.1747¢-01 0.43

257 257 65280 0.00391 0.00781 3.8823e-03 0.98 9.2856e-02 0.34

513 513 261632 0.00195 0.00391 1.9533e-03 0.99 7.6028e-02 0.29
1025 1025 1047552 0.00098  0.00195 9.8032e-04 0.99 6.3241e-02 0.27
2049 2049 4192256  0.00049  0.00098 4.9126e-04 1.00 5.2947e-02 0.26
4097 4097 16773120 0.00024  0.00049 2.4596e-04 1.00 4.4444¢-02 0.25

Table 3.4: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1) x (0,2) and for u,.
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M, M, dof hy hy llus —uspll2g)y  eoc  |us—usplpg) eoc
3 3 2 0.50000 1.00000 3.8930e-01 - 2.8412e+00 -

5 5 12 0.25000 0.50000 1.5092e-01 1.06 2.2724e+00 0.25

9 9 56 0.12500 0.25000 7.2348e-02 0.95 2.0666e+00 0.12
17 17 240 0.06250 0.12500 3.9069e-02 0.85 2.0819e+00 -0.01
33 33 992 0.03125 0.06250 2.2136e-02 0.80 2.2423e+00 -0.10
65 65 4032 0.01562 0.03125 1.2839¢-02 0.78 2.5212e+00 -0.17
129 129 16256  0.00781 0.01562 7.5378e-03 0.76 2.9090e+00 -0.21
257 257 65280 0.00391 0.00781 4.4532e-03 0.76 3.4053e+00 -0.23
513 513 261632 0.00195 0.00391 2.6393e-03 0.75 4.0171e+00 -0.24
1025 1025 1047552 0.00098  0.00195 1.5668¢-03 0.75 4.7577e+00 -0.24

2049 2049 4192256  0.00049  0.00098 9.3084e-04 0.75 5.6463e+00 -0.25
4097 4097 16773120 0.00024  0.00049 5.5325e-04 0.75 6.7077e+00 -0.25

Table 3.5: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder O = (0,1) x (0,2) and for u3.

M, M, dof hy hy [z — u3,],||Lg(Q) eoc  |u3 —uzpl;m () eoc
3 3 2 0.50000 1.00000 3.1084¢-01 - 2.9018e+00 -

5 5 12 0.25000 0.50000 1.7098e-01 0.67 2.2254e+00 0.30

9 9 56 0.12500 0.25000 1.0734e-01 0.60 1.7948e+00 0.28

17 17 240  0.06250  0.12500 6.2274e-02 0.75 1.4924e+00  0.25

33 33 992  0.03125 0.06250 3.4179¢-02 0.85 1.2533e+00 0.25

65 65 4032  0.01562 0.03125 1.8147¢-02 0.90 1.0550e+00 0.25

129 129 16256  0.00781 0.01562 9.4412¢-03 0.94 8.8824e-01 0.25

257 257 65280 0.00391 0.00781 4.8483e-03 0.96 7.4759-01 0.25

513 513 261632 0.00195 0.00391 2.4686e-03 0.97 6.2902e-01 0.25
1025 1025 1047552 0.00098  0.00195 1.2498e-03 0.98 5.2914e-01 0.25
2049 2049 4192256 0.00049  0.00098 6.3032e-04 0.99 4.4507e-01 0.25
4097 4097 16773120 0.00024  0.00049 3.1707e-04 0.99 3.7433e-01 0.25

Table 3.6: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1) x (0,2) and for u3.
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M, M, dof hy hy llus —uanll2g)y  €oc  |ua—uaplpg) eoc
3 3 2 0.50000 1.00000 6.2378e-01 - 2.5520e+00 -

5 5 12 0.25000  0.50000 1.7639¢-01 1.41 2.7132e+00 -0.07

9 9 56 0.12500 0.25000 6.6921e-02 1.26 2.1509e+00 0.30
17 17 240 0.06250 0.12500 2.7324e-02 1.23 1.7729e+00 0.27
33 33 992 0.03125 0.06250 1.1359¢-02 1.24 1.4811e+00 0.25
65 65 4032 0.01562 0.03125 4.7565e-03 1.24 1.2429e+00 0.25
129 129 16256  0.00781 0.01562 1.9991e-03 1.24 1.0444e+00 0.25
257 257 65280 0.00391 0.00781 8.4227e-04 1.24 8.7808e-01 0.25
513 513 261632 0.00195 0.00391 3.5559¢-04 1.24 7.3836e-01 0.25
1025 1025 1047552 0.00098 0.00195 1.5046e-04 1.24 6.2093e-01 0.25

2049 2049 4192256 0.00049  0.00098 6.3843e-05 1.24 5.2221e-01 0.25
4097 4097 16773120 0.00024  0.00049 2.7189e-05 1.23 4.3923e-01 0.25

Table 3.7: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder Q = (0, 1) x (0,2) and for uy.

M, M, dof hy hy ltg — ug p ”LZ(Q) eoc  |ug— uaply @ eoc
3 3 2 0.50000 1.00000 5.8329e-01 - 2.5931e+00 -
5 5 12 0.25000 0.50000 2.5431e-01 0.93 2.9416e+00 -0.14
9 9 56 0.12500 0.25000 1.5258e-01 0.66 2.4423e+00 0.24
17 17 240  0.06250 0.12500 8.6590e-02 0.78 2.0575e+00 0.24
33 33 992  0.03125 0.06250 4.7030e-02 0.86 1.7383e+00 0.24
65 65 4032  0.01562 0.03125 2.4819¢-02 091 1.4675e+00 0.24
129 129 16256  0.00781 0.01562 1.2856e-02 0.94 1.2372e+00 0.24
257 257 65280 0.00391 0.00781 6.5804e-03 0.96 1.0419e+00 0.25

513 513 261632 0.00195 0.00391 3.3420e-03 0.98 8.7684e-01 0.25
1025 1025 1047552 0.00098  0.00195 1.6887e-03 0.98 7.3767e-01 0.25
2049 2049 4192256  0.00049  0.00098 8.5041e-04 0.99 6.2046e-01 0.25
4097 4097 16773120 0.00024  0.00049 4.2730e-04 0.99 5.2183e-01 0.25

Table 3.8: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1) x (0,2) and for uy4.
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3.2 Space-Time Variational Formulation of Bochner Type

In this section, a short overview of space-time variational formulations of Bochner type is
given and a stable space-time discretisation is formulated, see [51, 137, 142—144].

For the heat equation (3.1), a space-time variational formulation of Bochner type for the
Hilbert space W (Q) from (2.21) with the norm |-y o) from (2.22) is given as follows:

Find u € W(Q) such that
(G, v) g+ (Viit, Vav) 2 gy + (u(,0),w) 12 ) = (f3v) g + (0. W) 12(q) (3.11)

forall (v,w) € L2(0,T; H} (Q)) x L*(Q) =: Y, where f € L*(0,T;[H} (Q)]) and ug € L*(Q)
are the given right-hand side and the given initial condition. The space-time variational
formulation of Bochner type (3.11) is equivalent to the pointwise in time variational for-
mulation (3.3) because of the fundamental lemma of calculus, the density of C3’(0,7T) in
L?(0,T) and so, the density of the algebraic tensor-product

Hy(Q)®C7(0,T) =span{Q > (x,1) — ¢(x) - y(r) € R: ¢ € H)(Q), w € C5(0,T)}

in H} (Q)®L?(0,T) ~ L*(0,T;H}(Q)). Hence, the unique solvability of the space-time
variational formulation of Bochner type (3.11) follows from the pointwise in time varia-
tional formulation (3.3), i.e. from Theorem 3.1.1. An alternative proof of a uniqueness and
existence result for the space-time variational formulation of Bochner type (3.11) uses the
Necas Theorem 2.9.1. Therefore, define the bilinear form b(-,-): W(Q) xY — R by

b(u, (v,w)) := (9, v) o + (Vatt, Viv) 12 ) + (u(+,0),w) 12 ) (3.12)

foru € W(Q), (v,w) € Y, where the Hilbert space Y is endowed with the inner product
. ,
(W), (5, ))y 1= / / Vov(x1) - Vid(x, £)dedt + / wE)WE)dx  for (v,w), (5,19) € V.
0Q Q

Theorem 3.2.1. The bilinear form (3.12) is continuous and fulfils the condition (N'1) and
the condition (N2), i.e. it holds true that:

1. A constant C > 0 exists such that for all u € W(Q) and for all (v,w) €Y

1b(u, (v, w))| < Cllully ) | (v, w)lly -

2. A constant cg > 0 exists such that

inf  sup PO

0FueW (Q) 04 (v,w)eY ”MHW(Q)”(V’W)”Y B
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3. For each element (v,w) € Y, (v,w) # 0, an element u € W(Q) exists such that

b(u,(v,w)) #0.

Proof. For ug = 0, the proof is contained in the book [51, Proof of Theorem 6.6, page
282]. For the general case, see [137, Theorem 5.1, page 1300]. O

The linear form F: Y — R is given by
Floaw) == () o+ (0. w) 2y for (vow) €7,
where its boundedness follows with the Cauchy-Schwarz inequality by
I om)] < L2 0rgascap IV l2 o) + ollz gy 19122 o
<\ 203 oy + 0lE2(y | 0 w) iy

for all (v,w) € Y. Hence, the variational formulation (3.11) is rewritten to find u € W(Q)
such that

b(u,(v,w)) = F(v,w) (3.13)
for all (v,w) € Y. The following existence and uniqueness result holds true:

Theorem 3.2.2. For each given F = (f,ug) €Y', the variational formulation (3.13) and
hence, the variational formulation (3.11) have a unique solution u € W (Q), satisfying

2 2
lullwig) < E\/ 11207 m3 0 + 0120

with a constant C > 0. Furthermore, the solution operator

L:Y —=W(Q), LF=L(~fup):=u,
is an isomorphism.
Proof. This follows with the Necas Theorem 2.9.1 from Theorem 3.2.1. (]
In the remainder of this section, the initial condition i is incorporated via homogenisation.
So, the bilinear form

a(u,v) = (u,v) o+ (Vatt, Viv) 2 ) forue W(Q),v e L*(0,T;H}(Q))
is introduced. The bilinear form a(-,-) is bounded, i.e.
la(u,v)| < ﬁHu“W(Q)HVXV”LZ(Q) foru e W(Q),v e L*(0,T; H}(Q)).

Next, for the bilinear form

a(-,-): Wo (Q) x L*(0,T;H} (Q)) — R,

the requirements of the NeCas Theorem 2.9.1 are examined, where the Hilbert space
Wo,(Q) is the subspace given in (2.25).



62 3 Heat Equation

Theorem 3.2.3. The bilinear form a(-,-): Wy (Q) x L*(0,T;H}(Q)) — R is continuous
and fulfils the condition (N'1) and the condition (N'2), i.e. it holds true that:

1. Forallu € Wy (Q) and for all v € L*(0,T; H} (Q)), there is

la(u,v)| < \sz”HW(Q)HVXVHLZ(Q)'

2. The inf-sup condition

inf S 1 )] I
0uEW0.(Q) 0 4ver2(0.1:11 (@) 4w I Vevllrz o) — 2v2

holds true.

3. For each function v € L*(0,T;H}(Q)), v # 0, an element u € Wy (Q) exists such that
a(u,v) #0.

Proof. The proof is contained in the book [51, Proof of Theorem 6.6, page 282]. For the
inf-sup constant, see [142, Theorem 2.1, page 5]. O

For a given initial condition iy € L?(Q) and a given right-hand side f € L*(0,T; [HL(Q))),
the variational formulation of the heat equation (3.1) is to find u € W(Q) with u(-,0) = ug
in L2(Q) such that

a(u,v) = (f.,v)g (3.14)

forallv € L*(0,T; H} (€)). By homogenisation, there follows the existence and uniqueness
theorem:

Theorem 3.2.4. Let the right-hand side f € L*(0,T;[HJ(Q))') and the initial condition
uy € Lz(Q) be given. Then, the variational formulation (3.14) admits a unique solution
u € W(Q) with u(-,0) = ug in L*(Q), satisfying

”uHW(Q) S 2\/§ <HfHL2(0,T;[H(§(Q)]/) + \/ECeX”M(]”LZ(Q)> +Cex||M0||L2(Q>

with a constant Cex > 0 coming from the extension (2.24) of ug.

Proof. Consider the extension iy := Eq,up € W(Q) from (2.24) with 7p(-,0) = up in L*(Q)
satisfying |||y (g) < Cex|[u0ll12(q) With a constant Cex > 0. Next, investigate the varia-
tional formulation by homogenisation to find # € Wy (Q) such that

a(@,v) = (f,v)o —alit,v) (3.15)
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for all v € L?(0,T; H} ()). The right-hand side is bounded by

(£:)g — alio)] < (I |z + V2 1olwig) ) 1Vl )

< (HfHLZ(O,T;[H(‘,(Q)]’) + ﬁcexHMOHLZ(Q)> IVxvll 20y (3.16)

for all v € L?(0,T; H}(Q)). So, the Necas Theorem 2.9.1 yields with Theorem 3.2.3 that
there exists a unique solution & € Wy (Q) of the variational formulation (3.15), satisfying
with (3.16)

7lhwio) < 2V2 (Il iy + V2Cerlollizia))- @3.17)

Setu:=u+1uy € W(Q).

Next, the independence of the extension 7 for u is examined. So, for a second extension
fp € W(Q), satisfying fip(-,0) = ug in L*(Q), there exists again & € Wy (Q), satisfying
the variational formulation (3.15). The difference (% + 1) — (24 o) € Wy (Q) fulfils the
homogeneous variational formulation

a((@+1o) — (@ +1p),v) =0 forallv e L*(0,T;H} (Q)).

Because of Theorem 3.2.3 and the NeCas Theorem 2.9.1, the to the bounded bilinear form
a(--): Wo,(Q) x L*(0,T; H} (Q)) — R related operator A: Wy (Q) — L*(0,T;[H{ (Q)])
is an isomorphism. Hence, A ((+1g) — (14 o)) = 0, i.e. U+ 7o = &+ il and therefore,
the solution u € W(Q) is independent of the extension i for the initial condition u.

With the triangle inequality, (3.17) and the continuity of the extension operator for ug,
there follow the stability estimate

lallw (o) < Illwi ) + ol )
<2V2 (Il oy + V2Cerlluollzziay ) +Cexlloll 2y

and hence, the assertion. O

For a discretisation scheme, let the bounded Lipschitz domain © C R? be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. As a conform-
ing space-time discretisation, consider the space of piecewise linear, continuous func-
tions S}(Q) NWo,(Q), see Section 2.8 for more details. For an arbitrary fixed extension
Tip € W(Q) with Tip(-,0) = ug in L*(Q) and l@ollw ) < CEX”MO”LZ(Q) with a constant
Cex >0 independent of u, e.g., ip = Eq up from (2.24), the discrete variational formu-
lation is to find @, € S} (Q) NWo,(Q) such that

a(tn, vi) = (f,va) o — altio, vi) (3.18)
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for all v, € S}(Q) NWo,(Q). Note that ansatz and test spaces are equal. Next, define the
approximation
up = up+up € W(Q), 3.19)

where in practice i is replaced by the space-time interpolant I,ip € S }I(Q) from (2.40), if
U is smooth enough, see [141, page 246] or [51, Section 3.2.2, page 124] for the elliptic
case.

The following stability and convergence theorem is contained in the work [142, Section 3,
page 6].

Theorem 3.2.5. Let the assumptions of Theorem 3.2.4 be satisfied with the unique solu-
tion u € W(Q) of (3.14). Further, let iy € W(Q) be the extension from (3.18) of up with
7io(-,0) = ug in L*(Q) and aollw (o) < CexHMoHy(Q) with a constant Cey > 0 independent
of ug. Then, a unique solution uy, € S}I(Q) NWo.(Q) of the discrete variational formulation
(3.18) exists, satisfying the stability estimate

1951 l200) < 2V2 (I 2075y ) + V2Cos 0l 2 ) -
Furthermore, assume u = u—uy € H*(Q) for some s € [1,2]. Then, for the approximation

uy, = uy +ug in (3.19), the error estimate

1Vt =) 2y < €[l s )

holds true with a constant C > 0.

Proof. The unique solvability of the discrete variational formulation (3.18) follows from
the discrete inf-sup condition

a(uh,vh) >
|VXV/1||L2(Q) T2’

inf sup (3.20)

0 €S}, (Q)NW0.(Q) 0s£v, €51 (Q)NWo, (Q) [V xtt ||L2(Q)

which is proven in [142, Theorem 3.5, page 7]. In addition, the discrete inf-sup condition
(3.20) yields with the bound (3.16) the stability estimate

HV’CEhHLZ(Q) S 2\/§ <||fHL2(0,T;[HOl(Q)]’) + \/EC‘CX”M()“LZ(Q)> .

The error estimate follows from [142, Corollary 3.4, page 10] with

(Ve = un) | 20y = IVl = )| 2 )

and hence, the assertion. O

Numerical examples and further investigations are given in [142-144].
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3.3 Space-Time Variational Formulation of Anisotropic Type

In this section, a short overview of a so-called space-time variational formulation of an-
isotropic type for a homogeneous initial condition, i.e. uy = 0, is given. The motivation
comes from considering a FEM-BEM coupling for transmission problems of the heat equa-
tion. Because this variational formulation of anisotropic type arises by the treatment of
boundary integral equations for the heat equation, the usage of this variational formulation
of anisotropic type is natural for the finite element method. However, it seems that a stable
conforming discretisation of this variational formulation of anisotropic type by piecewise
linear, continuous functions is not available.

For the homogeneous Dirichlet problem of the heat equation
du(x,t) — Awu(x,t) = f(x,1) for (x,1) € 0 =Q % (0,T),

u(x,1) 0 for (x,t) e 2 =Tx[0,T],
u(x,0) = 0 forx € Q,

where Q c R?, d = 1,2,3, is a bounded Lipschitz domain with boundary T = dQ and
T > 0is a given terminal time, the space-time variational formulation of anisotropic type
is given as follows:

Find u € Hyp'*(Q) such that
(Qu,v) o+ (Vxut, Vav) 120y = (f.V) g (3.21)

forallve H(:;’}O/Z(Q), where f € [H(}lo/Z(Q)]’ is a given right-hand side, see Section 2.5 for

the notations. The bilinear form a(-,-): Hol;’é’/ 2(Q) X Hé;‘}o/ 2(Q) —+R,

a(u,v) == (G, v) g+ (Vatt, Viv) 12 g

forue H(};’Ol,/ 2(Q), Ve H(;;’}()/ 2(Q), is bounded, i.e. there exists a constant C > 0 such that

<
la(u,v)| < CHMHH&S/Z(Q) \\V||H(;:-j()/z(Q)

foru € Hé;’&/z(Q), ve H(}IO/Z(Q) see [35, Lemma 2.6, page 505].
Remark 3.3.1. The bilinear form (du,v) q 1) for u,v € C'(0,T) has no continuous exten-
sion to

Hy/*(0.1) x Hy/*(0,7)

or to
H'2(0,T) x H'/2(0,T),
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i.e. the usage of the different ansatz and test spaces H0 172 (0), H, H 1/Z(Q) for the bilinear
form

ll 2 1,1/2
a(-): Hop*(0) < Hy (@) = R
is crucial. See [35, Remark 2.7, page 505] and [64, Proposition 1.4.4.8, page 32].

In [35], the following existence and uniqueness theorem is proven by a transposition and
interpolation argument as in [102, 103], see also [98].

Theorem 3.3.2. Let the right-hand side f € [H, 1’1/2(Q)]' be given. Then, the variational
formulation (3.21) has a unique solution u € H0 1/Z(Q), satisfying

il agy < Ol e

o0, (Q) (9

with a constant C > 0. Furthermore, the solution operator
L1/2 1 1/2
£ [Hy Q) = Hep*(0). L=
is an isomorphism. In addition, the bilinear form
a(): Hop?(Q) x Hy'{*(Q) = R, a(uy) = (Buv)g+ (Vait, Vav) 2 o).

is continuous and fulfils the condition (N'1) and the condition (N2).

1/2(

Proof. The existence and uniqueness of a solution u € H0 Q) of the variational formu-

lation (3.21) and that the solution operator £: [H’ L1/ 2(Q)] — H(;;‘(;’/ 2(Q) is an isomorphism

follow from [35, Lemma 2.8, page 505]. The Necas Theorem 2.9.1 yields the properties
of the bilinear form a(-,-): H, - 1/2(Q) - 1/Z(Q) —R. O

Remark 3.3.3. In Section 3.4 an alternative proof of Theorem 3.3.2 is given by the usage
of Fourier series, see Theorem 3.4.19.

For a discretisation scheme, let the bounded Lipschitz domain Q C R be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
of Section 2.8, a conforming space-time discretisation via the space of piecewise linear,
continuous functions S} (Q) leads to the discrete ansatz and test spaces Si(Q) N HI’I/Z(Q)

and S}(Q)NH, l l/ 2(Q) Hence, the test space differs from that of the approach (3.18), i.e.

SHQ)NHy 4 (Q) # SH(Q) NWo. ().
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It turns out that the resulting finite element method, for the choice above of different ansatz
and test spaces, is not stable. Therefore, only the time component is considered. That
means, for a fixed i > 0, the ordinary differential equation

Ju(t) + pu(t) = f(t) forr e (0,T), u(0)=0,

1/2

and the variational formulation to find u € H,’~(0,T) such that

(Qu.v) 0.1y + (V) 20 = (fv)07) (3.22)

forallveH /2(0 T), where f € [ (0 T)]' is given, are investigated. Analogous to

Theorem 3.3.2, there exists a unique solutlon u€H, 1/2 (0,T) of the variational formulation
(3.22), see also Theorem 3.4.10. With the notatlons of Section 2. 6,a conformlng discreti-
sation with piecewise linear, continuous functions Sh (0,T) = spam{(pk}l,{:0 leads to the

discrete variational formulation to find u, € S| 1w (0,T)NH, 1/ 2 (0,T) such that
<3t”h,’Vht>L’(o T) +Au'<uhr’vhr>LZ(O T) =(f Vht> (0,7) (3.23)

for all vy, € S}lr (0,T) ﬁH’:)/Z (0,T). The resulting system matrix of (3.23) is given as

1
X 0 1
Ky, :E -1 0 1 |
-1 0 1
hy
th,l + 2/’11,2 ht,z
+% heo 2hyp+2hy  hes (3.24)

hn—1 2heN—1+2he N, i,

and hence, unique solvability of the discrete variational formulation (3.23) follows because
€ RN >N s a lower triangular matrix with positive diagonal elements.

For a uniform discretisation with mesh size h;, the matrix K}, in (3.24) can be interpreted
as a finite difference scheme

aov1 =f1,
avi +aov2 =f2,
avjo+ayviy+apvj=f; forj>?2,
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where

a.fl_i_th,H‘“hf a.,‘Wht
0727 T e 0 T

1 phe  —3+uh
ay = — o B T

6’ 2 6 6

with given f; € R. The essential case f; = 0 for j > 2 is examined. The solution of the
homogeneous linear recurrence relation

avj_o+avj_1+apv; =0 forj>2

is given for j > 1 by

i—1 i—1
Ny <2ht,u\/9+3ht2,u2)1 o <2h,/.t+\/9+3h,2u2>]
j_ 9

3+hr,u 3+hty,

where the coefficients Ag,A; € R are determined by fi, f> € R. Hence, in general, the
sequence (v;) jen is unbounded as j — oo independently of y and 4. In other words,
the numerical scheme (3.23) is unstable for each u > 0 and each A, > 0. For the heat
equation, deriving a conforming discretisation by piecewise linear, continuous functions
of the variational formulation (3.21), which results in a stable numerical scheme, is delicate
and is not discussed in this thesis. On the other hand, an alternative approach with the help
of a type of Hilbert transform is given in Section 3.4.
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3.4 Space-Time Variational Formulation with a Type of Hilbert
Transform

In this section, the space-time variational formulation of anisotropic type of Section 3.3
is examined with the help of a type of Hilbert transform, see [145]. Via a Fourier series
ansatz a transformation operator H7 is introduced, and existence and uniqueness of the
space-time variational formulation of anisotropic type of Section 3.3 is proven directly, i.e.
no transposition and interpolation argument is needed, see also [35, Remark 2.13, page
507]. For the resulting space-time variational formulation of this section, ansatz and test
spaces are equal. Furthermore, the used analysis is developed on a finite time interval
(0,T) instead of considering an unbounded time interval (0,e) as in [37,52,101]. More-
over, a conforming discretisation of the resulting variational formulation leads to an uncon-
ditionally stable finite element method, which is combinable with the boundary element
method as in [35] via a FEM-BEM coupling. In the last part of this section, unconditional

stability for unstructured space-time meshes, error estimates in L>(Q), in H'(Q) and in

the anisotropic Sobolev space H&/ 2(0, T;L?(Q)) for a tensor-product approach are proven.

Furthermore, numerical examples, which confirm the theoretical results, are presented.

3.4.1 Characterisation of H(;’/ 2(0, T)and H ,10/2 (0,T) via Fourier Series

In this subsection, the interpolation of function spaces as in [102, Chapitre 1, Section
2.1, page 11] is considered. Hence, all functions are complex-valued in this subsec-
tion, i.e. H*(0,7;C) and H&/ 2(O,T;(E) are the complex-valued versions of the Sobolev
spaces of Section 2.2. With the notations of [102, Chapitre 1, Section 2.1, page 11] let

Y := L*(0,T;C) be the usual complex Hilbert space with the inner product

T

(w)ore) = [uO¥,
0

and let the complex Hilbert space X := H(%’(O, T;C) be endowed with the inner product

T
() 07:0) = / (1) 3 (1)dr.
0

Clearly, X and Y are separable and X is a dense subset of ¥ with a compact embedding,
see [13, Proof of Satz 5.12, page 148].

Next, an unbounded operator A: ¥ D dom(A) — ¥ with domain dom(A) = X is con-
structed such that A is self-adjoint and positive in Y. Therefore, define the unbounded
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sesquilinear form a: dom(a) x dom(a) — C by

T
() = (09) g 070 = / (1) (1) de
0

for u,v € dom(a) :=X = H&(O,T;C) C Y. The sesquilinear form a is densely defined,
symmetric, closed and lower semibounded in Y, i.e.

* dom(a)is densein Y,

* it holds true that a(u,v) = a(v,u) for all u,v € dom(a),
* (dom(a), (,-)q) is a Hilbert space with the inner product (u,v)q := a(u,v),
* it holds true that
2
2 il 2
a(u,u) = ”u”H&(O,T;C) z WHMHU(O,T;C)
for all u € dom(a) due to the Poincaré inequality, see Lemma 3.4.5 for the constant.

The Representation Theorem for Semibounded Forms, see [133, Theorem 10.7, page 228]
and see also [90, Theorem 2.1, page 322], [157, Unterkapitel 4.2], yields that there exists a
uniquely determined, lower semibounded, self-adjoint operator S: ¥ D dom(S) — Y such
that

it holds true that dom(S) C dom(a) =X,

for all u € dom(S) and v € dom(a), it holds true that

a(u,v) = (Su,v)12(0.7:0) (3.25)

it holds true that
dom(S) = {u €X: 3w, eY: Yvedom(a): a(u,v) = (WM’V)LZ(O,T;C)}’

and the operator is given by Su := w,, for u € dom(S),

* alower bound for S is given by

2
T 2
(Su,u)Lz@!T;@) > m”u“LZ(O,T;C)

for all u € dom(S).
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Lemma 3.4.1. The unbounded operator S: Y O dom(S) — Y from above is given by
Su= _anu

and

dom(S) = {u € H*(0,T:C): u(0) = 0,4/ (T) =0}

Proof. Let u € dom(S) be fixed. It is shown that u satisfies u € H>(0,T;C) with u(0) =0
and ' (T) =0, i.e. u is contained in the right-hand side. First, because dom(S) C dom(a),
it holds true that u € H&(O,T;C) and so, u(0) = 0. Second, for v € C5(0,T) in (3.25), it
follows with integration by parts that

(Su, V)LZ(O,T;C) =a(u,v) = —(u, attV)LZ(O,T;C)’

hence, Su = —dyu € Y and so, u € H*(0,T;C). Third, for v € C*[0,T] with v(0) = 0 and
v(T) = 1 in (3.25), it follows with integration by parts that

a(u,v) = (Su,v) 20,70y = — (V) 20.1:0) = = (TW(T)+a(u,y) < u(T)=0
and so, u is contained in the right-hand side.

Next, let u satisfy u € H*(0,T;C) with u(0) = 0 and #'(T) = 0, i.e. u is contained in
the right-hand side. Hence, u € X = H(}’(O,T;(D). The function u is contained in dom(S),
because for w,, := —d,u € L*(0,T;C) with integration by parts, it holds true that

a(u,v) = = (e, v)207:0) = W V)12(0,1:0)
for all v € dom(a). Thus, Su = w, = —dyu. O
The Second Representation Theorem [90, Theorem 2.23, page 331] yields that the square
root A := §'/2: ¥ > dom(A) — Y fulfils dom(A) = dom(a) = X = H(}’(O,T;C) and
a(u,v) = (Au,Av) 2 ¢y forallu,v € X.

Recall that A: Y D dom(A) — Y is self-adjoint and positive in Y, because A is the unique
square root of the self-adjoint and positive operator S: ¥ D dom(S) — Y, see [157, Satz
8.22, page 303] or [133, Proposition 5.13, page 95].

Because of the compact embedding of X in Y, the operator S: ¥ D dom(S) — Y has a
purely discrete spectrum, see [133, Proposition 10.6, page 227]. A simple calculation
gives

Vi(2) := sin ((g +k7r)%> , M= % (g +kﬂ:>2 for k € Ny, (3.26)
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which fulfil for k € Ny
— I Vie(t) = 4Vi(t)  fort € (0,T), Vi(0)=0, IV (T)=0,

i.e. SV, = AV for k € Np. These eigenfunctions V; form an orthogonal basis in L(0,T; C)
satisfying

T
/Vk(l‘)Vg(t)dt =5 Oe  fork,l € Ny

and in Hol,(O, T;C) with

+kﬂ:> Sy fork,f € No.

T T
Javiwavio = [vitowitoa = 5(3
0 0

Hence, by Parseval’s identity, see [157, Entwicklungssatz 1.55, page 53] and [158, Satz
V.4.9, page 254], it follows that for u € L(0,T;C), the expansion

- T
u(t) = I;)uk sin <<g +k7r) %) , = ;0/ sin << +k7r> )dt (3.27)

holds true, and the norm is given by

2 & 2 T
14l 0r.0) = 7 X |@Vrore| =3 X lul. (3.28)
k=0 k=0

Furthermore, for the inner product, it follows that

T
(V)2 01:0) = /u )v(r)dr Z W (3.29)
0

for u,v € L2(0,T;(D) with expansion coefficients u; and v from (3.27). For a function
ue H(},((), T;C), the expansion (3.27) converges also in H(},(O, T;C),ie.

oo

Z (g +k7r)ukcos ((g +kn)%>

k=0

1
aﬂ/l(l) = ?

converges in L?(0,T;C), and the norm is given by

1 & T 2 2
Vi) OT@’ 77, Z (2 +hkx) . (3.30)

”8’”HL2 0.7:C) Zlk
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Before defining the interpolation space Hol’/ 2(O,T;(D), note that for 6 € (0,1) the powers

59: Y > dom(S%) — Y are given by the so-called Functional Calculus, see [133, Section
5.3] or [157, Unterkapitel 8.4], i.e.

2 & 2
dom(s%) = {u eyY: T Z Akze (“aVk)LZ(o,T;C)’ < °°}
k=0

and the equality
|+

2 ¥ 520 2
2OT:C) ?kg()lk ‘(u, Vk)Lz(O,T;C>‘
holds true, see [133, Theorem 5.9, page 93].

Plugging these results in the definition of the interpolation spaces [102, Définition 2.1,
page 12] gives with the expansion (3.27)

H;/Z(o,r;@) = [H} (0.7:C),L*(0,T;C)] ; = dom(A!/?) = dom(s"/*)

{MELz()T(D Zﬂ, ’”VkLZ(OTG)‘2<°°}

k=0

o =
= {uGLz(O,T;C)Z u:k;)ukvk, 5 Z (2 +k7'C> |uk\ <oo}

with the interpolation norm for u € H’ 1/2 (0,T;C)

2 2
H"H[H(}_(O,T;C),LZ(O,T;G)]1/2 = \/”“”LZ(O,T;C) + HAl/zuHLZ(o,T;C)

R A e
)

k=0

‘ 2

, (3.31)

see also [102, Proof of Théoreme 16.2, page 112] and [15, Section 11.5] for such a con-
struction. This motivates to define for u,v € H, 1/ 2(O,T;C) with expansion (3.27) the

norm
_ |Iy(E 2
Il 20700, = ¢2k20 <E+kﬂ> K (3:32)

as well as the inner product

(M,V) ]/Z(OTC) = EZ

where the subscript F' stands for Fourier series.
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Theorem 3.4.2. Forall u € Hol’/ 2 (0,T;C), the norm equivalences

H“HH1/2<0T@ Fo H"‘H[Hl (0.T:C),L20.T:C)] = \/ ||“|| \oTe)F

and

T u(0) 2
t

: |
il < | Wlinnorey T [ 70 < Callle
0

(0,T;C),F

. 1/2 .
hold true with constants C; > 0 and C, > 0. Hence, (HO,/ 0,T;0C), (-, ')H&/Z(O,T;C),F) is

a Hilbert space.

Proof. From [102, Théoreme 11.7, page 72] and [102, Remarque 11.4, page 75], it follows
f)\

that the norm u \/ Hu||1211 rorc) t f dr is equivalent to the interpolation norm

Il (B (0,150 L2(0,T5C)], > S€€ also [102, Remarque 2.3, page 13]. It remains to prove that

the norm || - [| ., e and the interpolation norm ||-|| (L (0.T:0) 20.T:C)], ,, A equiva-

(0,1:C),F 1/2
lent. The first 1nequa11ty [Jull, oz = < lul| [ (0.7:C).L2(0.T0)], , 18 trivial because of

(3.31). The second inequality follows from

1 & b1
2 2
el 0.7:0). 22070, = gkgo (T+ (5 *k”» e
2T 1& /m
< | == — =
< ( . +1) 2k§6<2 +k7r> Jutg |
(T,
- ?—i_ HMHH]/Z(O,T C).F’
where the representation (3.31) is used again. O

Remark 3.4.3. For the explicit calculation of boundedness constants, an interpolation
argument, i.e. the Interpolation Theorem [30, Proposition 14.1.5, page 373] or [26, Theo-
rem 3.1.2, page 40] or [153, Section 1.3] for the so-called K-Method of Interpolation with
the interpolation norm |||, x.y) is used. Interpolating the Hilbert spaces Hol’(O,T;C)

an , T with the K-Method of Interpolation yields again T with the to
d L2(0,T;C) with the K-Method of I lation yields again Hy'*(0,T;C) with th
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”'H[H&(O,T;C),LZ(O,T;C)]I/Z equivalent norm ”'HK]/2(H(}V(O,T;C);L2(0,T;C))fulﬁlling

2 n 2 2
Hu”KI/Z(H(}'(O,T;G);LZ(O,T;C)) ) [HMH[H(}_(O,T;C),LZ(O,T;C)]1/2 - ||“||L2(0,T;®)]

2
S

12(0,T:C)

LT
=3 ”””Hg/z(o,m)f (3.33)

for u€ Hy/*(0,T5C) with (3.31), see [102, Proof of Théoréme 15.1, page 108].

Next, the result of Theorem 3.4.2 is transferred to real-valued functions. Hence, for the
real Hilbert space H&/ 2(0, T), see (2.1), the representation

1/2 _ 2 v ¢ (m 2
Hy! (O,T){MGL(O,T).MI;)uka, 5,;)<E+kn> |utge| <°°}

holds true, and
& /m
<“’V>H(§,/2(0,T),F T2 kg;) (5 + kﬂ) Uk VK

is an inner product, which induces a to [|-|[ 1.2 or equivalent norm, where u;, v € R are
0, g

)

the expansion coefficients given by (3.27).

Analogously, the real Hilbert space H})/ 2 (0,T) is investigated. Here, only the notations are
introduced and some properties are stated. The eigenfunctions and eigenvalues

t

T), d 1<g+kn>2, k € No, (3.34)

Wk(t)::cos«ngkn) =

fulfil for k € Ny

—OuWi(t) = uWi(t)  fort € (0,T), Wi(0)=0, Wi(T)=0.
Note that A; = ik and 0,V = /4 W, for all k € Ny. These eigenfunctions W; form an
orthogonal basis in L2(0,T) satisfying

T

T
/ Wl Welt)d = 5 8 fork,L€ No
0

and in H{,(0,T) with

T

T
: - 2
[amwawia = [ Welowio)ar = % (5 +kx) 8 forkee N
0 0
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Hence, by Parseval’s identity, it follows that for w € I? (0,T), the expansion

w(t) = ]g)wk cos ((g +k77:> %) , W= ;O/Tw(t)cos ((g +k7‘£> %) dr, (3.35)

holds true, and the norm is given by

-
W0 = 7 O)(w W) =3 Ll

Furthermore, for the inner product, it follows that

T

T =
(w.2) L2(0,T) /W =3 Z WiZk (3.36)
> k=0

for w,z € L*(0,T) with expansion coefficients wy and z; from (3.35). For w € H 0(0,7),
the expansion (3.35) converges also in H’O(O, T),ie

ow(t) =—= Z ( +k77:>wk sin ((g +k77:> %)

converges in L?(0,T), and the norm is given by
2 1 & /7w 2 2
w0, z Ae|eWozom | = 57 X (5 +km) il
2T = \2

For the real Hilbert space H})/ 2(0, T), see (2.2), the representation

- & /m
1/2(0 T)= {MELZ(O,T)Z u=Yy wiW, EZ <§+k75> |Wk|2<°°}
k=0

k=0

holds true, and
1l & /m
<W’Z>H})/2(O,T),F = Ek;) (E +k7‘c> WkZk

is an inner product, which induces a to ||-|| Y equivalent norm, where wy,z; € R are
0

o (0.7)
the expansion coefficients given by (3.35).

Finally, representations of the dual spaces [Hj)/ 2(0, T)] and [H}](O, T)]' are given. In Sec-
tion 2.2 the dual space [H})(O, T)]' is characterised as a completion of L%(0,T) with respect
to the Hilbertian norm || - H[H'{)(QT)]/, where ”-HH})(OvT) = |lg1(0,r) is the norm in H})(O,T).
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Analogously, in Section 2.2, the dual space [H i 2(O T)] is characterised as a completion

of L*(0,T) with respect to the Hilbertian norm || - || 1 2

)

where ||-HH:]/2(O’T is the

H[H o)

norm in H})/ 2(O,T ), see (2.3). Here, ato || - H 101 equivalent norm is given by
If W)l
[F{[v— sup L
o (ODIF 0#weH!(0.7) ”W”HVIO/Z(O,T),F

for f € [H})/Z(O,T)]’. With the help of the expansion (3.35), the following lemma holds
true, see also [96, Section 8.1].

Lemma 3.4.4. For f € [H})/ 2(O,T)]/, the representation
T2 e T -1 2
I romyer =5 & (5 +k7) 7

k=0

is valid, where fi. := %f(Wk) with Wy (t) = cos <<% +k717) %) . Furthermore, the dual space
is given by

T ¢ .
[Hy*(0.7)] = {g: Hy?(0.7) 5 R: g(w) = 3 Y wagk with (g0)keny, € R
k=0

k=0

T2 2 /m -1
salisfyingTZ (5 +k7r) g%<oo},

where the expansion coefficients wy, are from (3.35).

Analogously, for f € [H})(O,T)]/, the expansion
&/ -2
2 _ 2
||fH[Hb(0,T)]’ = 7];] (3 +k77:) fi
; 2 : _ big t
is true, where f == 7 f(Wy) with Wi (t) = cos <<§ +k7r> 7) .

Proof. Let f € [H 1/ 2( T)]’ be fixed. Forw € H’IO/ 2(0,T), the representations

1 & /m
Z Wy COS (( +kn) ) Z wiWi (1) Hw||121:)/2(0’T>,F =5 Z (E —0—kn’) w%

k=0

and therefore, with the continuity of f,

Z wif (Wi) = Z Wi Sk
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-1
hold true. Set wh := (% +k7r> fefork=0,...,N and wi =0 for k > N. Assume w.L.o.g.
that w := Y2 wh'We # 0. Thus, w¥ € Hy/*(0,T) and it is obtained that

2 N -1 > N
N N G IR e
72(7+k”) fe = - 12 - 1/2
2 ()’f (EJrkn:)_lfz) : (g‘, (E+kﬂ:)(wN)2> :
£ \2 k £ \2 k
B
12002 5 ozwerr o) ] P or)r
Hence,
2 &
Hf|| 120 F271§6<§+kn> fi

follows as N — oo,

On the other hand, the Cauchy-Schwarz inequality yields

If ()l

71, Hl/? = sup
(0.7)] HW||H})/2

OyéweH_L/ 2(0.1) (0.7).,F

k)i:owkfk(% +k7t> 1 (% +k7r> "2

T2
=\ = su
2 O#WEHII/)Z(OT) v (= 2 12
o (O y (7+kﬂ>wk
k=0
1/2
T2 2 /1 -1
<| = z k) 2 )
_<2 L (G+hn fk>

Hence, the norm equality is proven and f is contained in the right-hand side.

To show that the right-hand side is a subset of [H /2 (O,T)]’ , one defines for a given se-

quence (gx)ren, C R, satisfying 72,(:0 <§ +k7r) g% < oo, the element

T e
(w):= ) Z Wk8k
k=0

1/2

forw € Hj~(0,T) with the coefficients wy from the expansion (3.35). The linear functional
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1/ 2(O T) — R is well-defined and bounded due to
T & b1 12 /¢ -1/2

W)‘ = E}{;)M&(z-i-kﬂ) gk(E +k713>
& x V12 = g S\
g<22(2+m)%) (22(2+m)ga .

k=0 k=0

<oo

12
7HWHHYIO/2(0,T),F

Hence, g € [HI/Z(O,T)}/.
For f € [H})(O, T)]', the proof is obtained in the same manner. O

For g € L? (0,7 with expansion coefficients g; from expansion (3.35) with respect to Wy,
and forw € Hj)/ 2(0, T') with expansion (3.35), note that

(&w) 12(0.T ngk
)=

and

T 1, TPE2,
72(§+kﬁ) ngTZE = ||8HL2 (0.7)"
=0 =0

Hence, it follows that g € [H 1/ (0,T)) with

2T
‘lg“[HB/Z(O,T)]’,F < ?”g”LZ(O,T)

and there exists a unique continuous extension of (,-);>( 7 on [H g i 2(0, 7)) x H})/ 2 (0,7),
which is denoted as duality pairing (-, ) - Thus, for f € [H ¢ i Z(O,T)]’ the usual notation
fw)={fw) o) forwe Hi)ﬂ(O, T) is used.

With the help of the representations (3.27) and (3.35), the following lemma states inequal-
ities of Poincaré type with sharp constants.

Lemma 3.4.5. The following inequalities are sharp:

1. Forue H]/Z(O, T)andze H’:)/Z(O,T), it holds true that

2T 2T
2o < S gy and el <y S ellgyn o o
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2. Foru€ H}(0,T) and z € Hy(0,T), it holds true that
||“||L2(0,T) < ?”anHLZ(O,T) and ||ZHL2 o1 =< ||atZHL2(0T
The inequalities remain valid for complex-valued functions.

Proof. The inequalities for H 1/ 2(0, T) and H&(O, T') follow from the norm representations
(3.28), (3.32) and (3.30) with

H HLZ(OT Z,

and

= T & /m s 2T, »
Jaip D i jad -
2oy Tis 3 L (5 ) = el

4T 1 & (m\2 ., _4T* 1 &m 2, 417
2 2 2 2
”MHLZ(O,T):?ﬁkZO(E) ”kﬁﬁﬁkz‘b(ngkﬂ) e = —5 loullzz 0 1),

which are sharp for functions u with expansion coefficients ug 7# 0 and u; = 0 for k € N.
Correspondingly, the inequalities for H})/ 2 (0,T) and H"O(O, T) are proven. O

3.4.2 Transformation Operator #r

First, the distributional derivative d; on (0,T) for a fixed u € H(i/ 2(O, T) is investigated.

Theorem 3.4.6. For u € H1/2(0 T), the distributional derivative d; on (0,T) satisfies

diu € [Hj)/z(O T)|'. More precisely, a uniquely determined element g € [H 12 (0,7)) ex-
ists, satisfying
Vo eD(0.T):  AT(P)=(8?) 1)

where T,: D(0,T) — R, Tu(@) = (1, @) 20 1), is the to the function u related distribution,
see Section 2.1.

In addition, it holds true that

Ha[MH 1/2 O.1)]'.F S HMHH&/Z(O,T),F
and
| =
(O w) o) = EZ ( +k77:>wk (3.37)

forallw e HI/Z(O,T) with expansion coefficients uy from (3.27) and wy from (3.35).
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Proof. Foru € H(i/ 2(O, T) with the representations
:iu sin(( +k77:> ) ZuV u)? :1i<g+kn’)u2
= k kVk H[;V/Z(O,T),F ) = ) k>
one defines the functional g € [Hi)/ 2(0, T)]' via the sequence (g )ken, C R with

1 T
=l , No,
Sk Tuk<2+k71'> k € Ny

satisfying
T2 oo o
Z( +kn) P Z( k) = ull, or) <

see Lemma 3.4.4. Hence, g € [H i 2( 0,T)] is well-defined. Next, consider the related
distribution 7;,: D(0,T) — IR defined by

Tu(9) = (u. @) 12007
for ¢ € D(0,T). The distributional derivative d; on (0,7) is given by

AT(9) = —Tu(99) = — (w9 P) 207 = — Y u(Ves 9 9) 120 1)
=0

i 1 T
= Z 8,Vk, >L2(0 T) = Z Mk<7+k7r> <Wk’(P>L2(O,T)
k=0 k:O 2

li ( +k75><Pk ng(Pk )0.1)

for ¢ € D(0,T) with expansion coefficients ¢ = %<Wk’(p>L2(O,T) from (3.35). Further-
more, with the last calculation and the Cauchy-Schwarz inequality, it follows that

1=

)(g,@(o,r)’ = Elguk<g+kﬂ>¢k
1l & (m 1 &
jﬂgg+mw¢g¥«wﬂ@m#Wﬁm%ww

Due to the density of Ci’(0,T) in Hi)/ 2(O, T), see Theorem 2.2.2, it holds true that

T T

and the element g is unique. The last equality of the assertion follows from the continuity
of g and again from the density of C5'(0,T) in H})/Z(O, T). O
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The representation (3.37) motivates to define for u € LZ(O,T) with expansion (3.27) the
function

(Hru)(t waé(t g{)u[cos ((§+£n) %) (3.38)
for t € (0,T). By construction, it holds true that Hyu € L(0,T). Furthermore,
Hy: L2(0,T) — L*(0,T)
is bijective and norm preserving, i.e.
HHTMHLZ(O,T) = ||”HL2(0,T) forallu L2(0,T),
where the inverse transformation operator
Hy': L2(0,T) — L*(0,T)

is given by

Zkak Zwkmn(( +k7t> ) t€(0,7),

for w € L*>(0,T) with expansion (3.35).

Foru € H(;’/ 2(0, T') with expansion (3.27), the function

(Hru)( Z ugWele Z weos (5 +47) )

fulfils Hru € H (0 T') because the equality

Pzl = il

(0,1),F 0,7),F

holds true, i.e. Hr: HS’/Z(O,T) — H})/z(O,T) is norm preserving. Furthermore,
Hr: Hy>(0.T) — HY*(0.T)

is bijective. Analogously,
Hr: Hy (0,T) — H(0,T)

is norm preserving and bijective.

The representation (3.37) yields for u,v € H1/2(0 T)andw:=Hrv € HI/Z(O, T)

oo

(B, Hrv) (0.1 Z ( +k7r) wpvg = (u,v) 2 01)F
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and
g
(Ot Hru) o) = kgo( k)t = [ A (3.39)

Hence, the bilinear form b(-,-): H, I/2(0, T)x HA’/Z(O, T)—R,
b(u,v) == (B, H = u, . wveH*0.T), 3.40
(u,v) := (du TV)(O,T) (u v>H(;v/2(O,T),F u,v (0,7) (3.40)
is bounded, elliptic and symmetric.
Next, some properties of the operator Hr: L*(0,T) — L*(0,T) are given.
Lemma 3.4.7. Foru € L*(0,T) and w € L*(0,T), the equality

(Hru,w) 20,7 = (Hr "W

is valid.

Proof. Foru € L*(0,T) and w € L*(0,T), the expansions

Zukqn(( +k7t> ), w(t)zé)wwos((%—i—én)%),
and
(Hru)(t Zukcos<< +k7r) ) (Hy'w)(r) =E)Wgsin<<g+€n> %)

hold true with expansion coefficients u; from (3.27) and w, from (3.35). Hence, it follows
with the representations (3.29), (3.36) that

336) T & (3 29)
(Hruw)p201) = o L MKW (wHz! W)
k=0

and therefore, the assertion. OJ
Lemma 3.4.8. Forallv e L? (0,T), the inequality
<VvHTV>L2((),T) Z 0 (34])

is valid.
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Proof. By using the representations

vam(( +kﬂ> ), (Hrv) (1) = ZWCOS(( +M>T)

it follows with the continuity of the inner product (-,-);2 (o r) that

o = X S fsn((Zkm) ) eos((Z )
0

k=0(=0
l & r t t
:21§6f§’>vm0/ [sin ((k+é+1)ﬂ:?>+sin ((kfé)ﬂ:f)]dt
138 T T
zzggvkw{ Sy cos((k+é+l)77: )0
1

where the second integral is ignored due to symmetry. When splitting & and ¢ into odd and
even indices, i.e. k =2i,2i+ 1, { =2j,2j+ 1, this gives

- V2iV2j V2it1V2j+1
H
(Hrv)rer = 22[21+2]+1 2i+2j+3]

z:Oj:O
e e 1 1
2i+2 2i42j42
=*Z Z V2iVaj /x’ jdx+V21+|V2/+1/ 2712 qx
Ti20j=0 o o
T 1 2i42] 1 2i42j42
:}\ym 72 Z vaiva; [ X i+ de+vzi+1vzj+1/x 27124y
- | TS0 o 0
1 /N 2
= — lim / X dx+/ Vo2t
TN || ;) 2i- Z 2i+1
0 \'=
and hence, the assertion follows. O

Remark 3.4.9. The transformation Hr is the counterpart on finite intervals (0,T) of the
Hilbert transform

H: L*(R) — L*(R)
defined by

Hy(t) == 1 lim d + teR,
l‘— N

T e—=0
t+£
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for a function v € LZ(R), see [92,122]. The Hilbert transform H has similar properties as
the transformation Hr, see [145].

3.4.3 Variational Formulation for d;u = f

To get a first impression of the transformation H7, the simple initial value problem
du(t)=f() forre(0,T), u(0)=0, (3.42)

is investigated. The corresponding variational formulation is to find u € H,, 1/ (0,T) such
that

b(u,v) = (f. Hrv)(o.1) (3.43)

for all v € H, 1/ Z(O,T), where f € [H})/ 2(0, T)]' is a given right-hand side and the bilinear
form
o /2 /2 _
b(-,): Hy! “(0,T) x Hy'*(0.T) = R,  b(u,v) = (du, H1v) 0.1,

is bounded, elliptic and symmetric, see (3.40). Hence, existence and uniqueness of a
solution u € Hol’/ 2 (0,T) for the variational formulation (3.43) follow by the Lax-Milgram

Theorem, since the right-hand side f € [H’IO/ 2(O, T)]' satisfies
(£ Hv)or | < 1], a0 s TV oz = 1 oy eV g0y e 349

for all v € Hy/*(0,7).

With the notations of Section 2.6, a conforming finite element discretisation of the varia-
tional formulation (3.43) is to find

, € Sh 0.0,7) = span{q)k}k  C HI/Z(O,T)

such that

(yn,, Hrvi,) 20,7y = (> Hrvm) o.1) (345)
for all v, € s/ 10,0 (0 T). Using standard arguments, e.g., [51, 141], there follow the unique
solvability of (3 45) and the a priori error estimates

1
o=l a2 gy < i Pllullgsor) forse (1/2.2],

[l —un, || 20.7) < chillull sy fors € (1/2,2]

and
””_MthH&(O,T) < ChrlH””H»\'(o,T) for s € (1,2
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with a constant ¢ > 0, when assuming u € H(;

timate in the energy norm |ju — uy, || TYs

’/Z(O,T) NH*(0,T). Note that the error es-

\F is a consequence of Céa’s Lemma and the

approximation property of Sli,,O,(o’ T). The approximation property

. 3/2
inf v—y <c-h'7|v
Vh,ES}xl‘O,<O,T) H fr ||H(;/2(O’T>’F - ! H ||H2<0’T)
for v € H(}’(O,T) NH?(0,T) is derived by an interpolation argument, see (2.32). For
lle — un, [l 12(0,7)> the Aubin-Nitsche trick is used, and for ||u — uy,|| H (0.r)> &N inverse in-
equality is required, i.e. for this situation a globally quasi-uniform mesh is needed. The
Galerkin-Bubnov finite element formulation (3.45) is equivalent to the system of linear

equations
Kpu=f

with a symmetric and positive definite stiffness matrix Kj,, € RM*M, defined by
K, [J.k] = (010 Hr @9j) 120,y Tork,j=1,....N;,
and the right-hand side f € RM, given by

fUl={Hrej)or) forj=1,....N,

where high-order integration rules are used for the calculation. The evaluation of the trans-
formed basis functions H7 @, can be done by using the definition (3.38). Although the
piecewise linear basis functions ¢ have local support, the transformed basis functions
Hr @i are global, see Figure 3.1 and Figure 3.2, and therefore, the stiffness matrix Kj, is
dense.

As a numerical example for (3.45), the solution
. (97
u(t) = sin o+ fort € (0,2) =(0,T)
of (3.42) with the right-hand side
)= 9—n:cos (%Tnt) fort € (0,2)

is considered. For the discretisation, a sequence of finite element spaces S,llho’(O,Z) of
uniform mesh size h; = 2/N;, and N; = 27!, j=0,...,10, is introduced. Since the so-
lution u is smooth, quadratic convergence in L?(0,2) and linear convergence in H'(0,2)
are expected. This behaviour is confirmed by the numerical results as given in Table 3.9.
In addition, the minimal and maximal eigenvalues of the symmetric stiffness matrix K,
as well as the resulting spectral condition number of K}, which behave as expected for a
first-order differential operator, are given in Table 3.9.
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1.0 A 1.0 b2
05 05
o.w 20 ' 05 1 15 2,0
=05 HTP1 =05 HT o2
-1.0 -1.0
1.0 93 10 [
Hros
05 05
05 1.0 1.5\/0 ! 05 110 1.5 20
05 Hre3 _05
-1.0 -1.0
Figure 3.1: Transformed basis functions Hr @y, k= 1,...,N;, N; = 4.
N, lu—upllz02) eoc  [du—diunlliz02 €0 Amin(Kn) Amax(Kn) Ka(Kp)
2 1.005e+00 - 7.059e+00 - 0416617 0.960210 2.3
4 8.612e-01 0.2 5.880e+00 0.3 0.284445 1.116917 3.9
8 1.692e-01 2.3 3.660e+00 0.7 0.168755 1.128029 6.7
16 3.247e-02 2.4 1.826e+00 1.0 0.091472 1.132714 12.4
32 7.486¢-03 2.1 9.051e-01 1.0 0.047463 1.133771 23.9
64 1.832e-03 2.0 4.512e-01 1.0 0.024147 1.134042 47.0
128 4.555e-04 2.0 2.254e-01 1.0 0.012174 1.134110 93.2
256 1.137e-04 2.0 1.127e-01 1.0 0.006112 1.134127 185.6
512 2.842e-05 2.0 5.634e-02 1.0 0.003062 1.134131 370.4
1024 7.103e-06 2.0 2.817e-02 1.0 0.001532 1.134133 740.1
2048 1.776e-06 2.0 1.409¢e-02 1.0 0.000767 1.134134 1479.4

Table 3.9: Numerical results for the Galerkin-Bubnov formulation (3.45).
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Figure 3.2: Transformed basis functions Hr ¢y, k= 1,...,N;, N; = 8.
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3.4.4 Variational Formulation for du+ pu = f

Instead of the initial value problem (3.42), consider for pu > 0 the first-order linear equa-
tion
Jiu(t) + uu(t) = f(r) forte (0,T), u(0)=0, (3.46)

and the related variational formulation to find u € H, 1/ 2(0, T) such that
(G, Hrv) o) + 1 Hrv) 2000y = (F- Hrv)or) (3.47)

forallv e H, 1/2 (0,T), where f € [H i 2(0 T)] is given. The first-order ordinary differen-
tial equation (3 46) plays a central role in the analysis of the heat equation, see Subsec-
tion 3.4.5, where i > 0 corresponds to a Dirichlet eigenvalue of the Laplace operator, see
2.4).

Theorem 3.4.10. Let 1t > 0 and the right-hand side f € [H})/z (0,T)) be given. Then, there

exists a unique solution u € H(i/ 2(O, T) of the variational formulation (3.47), satisfying the
stability estimate

oy e < I Ny ry (3.48)
Proof. When combining (3.39) with Lemma 3.4.5 and (3.41), this gives

2uT
(Gu, Hrv)(o,1) +“<M’HTV>L2(O,T)’ < (1 +7) H”HH(}/%(),T),F”"HH(}/Z(O,T),F (3.49)
and

(O, Hrv) o.1) + (v Hrv) 2oy = (v, Hev) o) = V112 20T (3.50)

for all u,v € H,, 12 (0,T), i.e. the bilinear form of the variational problem (3.47) is bounded
and elliptic, 1mp1y1ng unique solvability of (3.47) by the Lax-Milgram Theorem, including
the stability estimate

HMHH&/Z(O,T),F < Hf”[HVIU/Z(O,T)]’,F’

since the right-hand side f satisfies (3.44). O

A first regularity result is given in the next lemma.

Lemma 3.4.11. Let f € L*(0,T) be given. Then, the unique solution u € H(i/z(O,T) of
(3.47) is given by

t
= / eH01 £(s)ds (3.51)
0

fort €[0,T] and fulfils
”atuHLZ(O,T) < ||fHL2(0,T)‘
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Proof. By inserting [ e*(~") f(s)ds into the variational formulation (3.47), it follows that

the unique solution u € H(i/ 2(O,T) is represented by (3.51) and that u € H&,(O,T). Fur-
thermore, the ordinary differential equation (3.46) holds true for almost all ¢ € (0,7).
Multiplication of (3.46) by d,u € L*(0,T) and integration over (0,T) yield

%M(T)z.

The Cauchy-Schwarz inequality gives the assertion. O

(f. )20,y = (Or, ) 20 7y + 1w, Opt) 120 1y = H8[u||12‘2(0’T) +

For the analysis of the heat equation, a u explicit estimate for the solution « in L2(O, T)is
required.

Lemma 3.4.12. Let u € HI/Z(O,T) be the unique solution of the variational formulation

(3.47), where f € [H 1/2(0 T)] is given. Then, the inequality

y 1}
””Hiz(o,T) < ) Z :

—_— (3.52)
Sou?+ g2 (5 +km)?

is valid, where
2 T t
Jei= ?<f,Wk>(0,7~), Wi (1) = cos <<§ +k7'[> ?> .

Proof. First, note that the right-hand side in (3.52) is finite due to
= 2

2L =

2
_— <o<>,
payTE +T2 +kﬂ) Hf” 1/2

see Lemma 3.4.4.

2 . .
Let (fn)nen C L*(0,T) be a sequence with l}g& Ilf — f,,||[HVIU/2<0’T)],’F
u, € H(;,/ : (0,T) be the weak solution of the variational formulation (3.47) with right-hand

=0, see (2.3). Let

side f,. Hence, u —u, € Hé’/ 2(O,T) is the unique solution of (3.47) with right-hand side
f—fu € [HY*(0.T)]'. Thus, the stability estimate (3.48) yields

H"tiuﬂlll_]&/7 0.1).F = ||f f'lH[Hl/z 0.7)].F (353)

and therefore, u, — u in H;’/z (0,T) as n — co. Write for f, € L*(0,T) the expansion (3.35)
as

= A
= k;)fn,kCos ((g +k7t> %) s k= %/f,,(l)cos <<§ +k7r> %) dr.

0
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2
First, with A, = % ( + k7t> , the Cauchy-Schwarz inequality and Lemma 3.4.4, it follows
that

TS 1 ) 2

<< )Xo i Tk

2L iy
=|fe— k| | et Fuk|

12
T & |fi— furl? | fi + ful
< | 2y Mk Jnkl
<(zE"k ) 2% e )
<|f- fn|| HY 0T F ||f+fn|| 120 ryr 0

as n — oo. It other words, the equality

TS A T &
lim — k_ 3.54
LS Ml P o Mk (3.54)

Zi 1 7Zi ok
2k:0,u2+lk 2 :O,U2+lk

holds true.

Second, because of f, € L>(0,T), the representation (3.51)

t

t
n(t) = / ) fo(s)ds = ¥ fop-eH / &5 cos(1/Ts)ds
k=0

0

0

= i Fuk [ Aesin(v/Ait) + cos(y/ Agt) fuef”’}
2 _'_2/

holds true for ¢ € [0,T], where the continuity of the inner product (-,-) 12(0,) for fixed

t € [0,7] is used. When computing all integrals, where again the continuity of the inner

product (-, -);2(q 7y is used, one obtains

2
TS fox 1 2 o Juk
_uli pT] n,
||MHHL20T) Z” +l 2I~L|: +e I;)H2+A,k Z 2+kk
Hence, the assertion follows as n — oo with the help of (3.53) and (3.54). OJ

Remark 3.4.13. From (3.52), it follows immediately the estimate

2 rer 20 2
HMHLZ(O‘T) S 7 ; (E +k7t) fk = Hf”[Hb(O,T)]”
see Lemma 3.4.4 for the representation of the norm || - H Lo Moreover, when the right-

hand side satisfies f € L*(0,T), the estimate (3.52) gtves

2 < p— [ j.e. < 20T -
H””LZ((),T) T kg(,)fk 12 ”fHLZ((),T)’ re. U H“”LZ(O,T) = Hf”L-(O,T)
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With the notations of Section 2.6, the Galerkin-Bubnov discretisation of (3.47) is to find
uy, €S}, o.(0,T) such that

(Geun,s Hrvi,) 1200,y + M Hrvi) 20,0 = (FsHrva) o) (3.55)
for all v, €S }11’07(0,T). As for the initial value problem (3.42), the unique solvability of
(3.55) follows by Céa’s Lemma, including with (3.44) the stability estimate

[T -

and with the help of (3.50), (3.49), an error estimate in the energy norm
2uT\ s-1/2
S (1 + 7) el s o)

forse (1/2,2)and u € HI/Z(O,T) NH*(0,T) with a constant ¢ > 0 independent of u and
h;. Hence, in general, a priori error estimates depend on i and require a sufficiently small
mesh size /; to ensure convergence for large (. In the following theorem, a refined error
estimate in the energy norm ||~\|H1 2015 and an error estimate in ||-[| 2o 7) are given.

Theorem 3.4.14. Let u € Hy'*(0,T) and w;, € S,lh 0.(0,T) be the unique solutions of the

variational formulations (3. 47) and (3.55). Ifu € HI/Z(O,T) NH%(0,T), then the error
estimates

=l

12

||ufuh,HH1/z<0T)F < Ciyp(hy,p)- h ”at”HH‘(O,T)

and
Nl = un,ll 20,7y < Collus 1) - 7 |9ruall g1 0.7 (3.56)
hold true with

Cyja(he, ) :=

1 1 (V8  Ymr2(1+2ur)T
N w(w* 276 m)“m

and

Y v/m2+2(1+2u2)T?
Colhs, 1) :=Cyjp(hy,ut) - | ~= |
0([”) I/Z(I.u) <\/ﬁ+ 2\4/6 Hhy

Proof. Using (3.50), the Galerkin orthogonality of the variational formulations (3.47),
(3.55) and the norm invariance of H7, it holds true that

et =y, |2 H < (9 (e —up, ), M (w—up, ) o,7) + 1 C — wen, Hor (e = wap, ) r20,7)

O1)F =
= (O (u—up, ), Hr (= Inu)) 0.7y + 1w =y, Hor (w0 — Iy ) p20.7)

§||M—“/11HH1/2(0T [ — Iy, ul| 0.7 p il = 20,0 0= Inull 20,7y
3.57)
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To estimate the error in L?(0,T), consider the adjoint problem
—ow(t) +uw(t) = u(t) —u(t) forte (0,T), w(T)=0, (3.58)
i.e. the function w € H i 2(0 T) is the unique solution of the variational problem
(B,W V>(0T +H<W V>L2(0 )= <M—Mhr, >L2(0,T) (3.59)
forall v e Hl/2 (0,T). Analogous to Lemma 3.4.11, the regularity result
||3IWHL2(0,T) < lu—up, HLZ(O,T) (3.60)
holds true and in addition, d,w € H 1 (0,T). Hence, from the differential equation in (3.58),
one finds
Iuw(t) = uow(t) — o u(t) —up,(t)] forre (0,T),
and therefore, with (3.60) and the Poincaré inequality of Lemma 3.4.5, the estimate
HatW”%-]l(o,T) = ”atWHé(o,T) + ‘|atlw||1%2(0j)
< (12021303207 20104 u =) 2o 7,

< +2ﬂ2)H“_“hr”%2(o,7) +2||at("‘_”hz)Hi2(o,T)
< (142 210 =) B )+ 200 =) B

4712 8T2 2
ATt

> = w11 0.7 (3.61)

follows. Since dw € H'(0,T), an interpolation argument for the K-Method of Interpola-
tion between (3.60) and (3.61) yields the estimate

4 8T-u
HatW”K]/z H'(0,T);L2(0,T)) = < \/i” Hh,”K,/2 Hj (0.T);L2(0,T))
T 8T
\/*4/ “ —uy | QD) (3.62)

with the help of the norm equivalence (3.33).

Forv=u—u, € Hl/z(O,T) in (3.59) and with the Galerkin orthogonality for u — uy,, it
follows that
e = 1en 12 0.7y = (10 = w10 =) 20.7)
—(w,u—up, ) 0.1y + H{Wsu —up,) 120.1)
= (9 (u—up, ), w) (0,1 + H{u — un W) 12001
= (0 (= up, ), w — In,w) (0,7 + M (u — un s W = In, W) 1201y
< =l 10 = 2wl 112 7

+ plfu—un, [l 20,0y W = I Wl 20.7) - (3.63)
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For the first summand in (3.63), it holds true that

2
||W—lh[WHH’})/2(O'T), =\ W =W, @0y 220m)

\f V2 awll 20,

.
< 1 =, | 2 0.7

where the first equality follows from a norm equivalence analogous to (3.33), the last in-
equality follows from (3.60), and the first estimate follows from an interpolation argument
for the K-Method of Interpolation between

1 1 1
W —Inwll207) < ﬁhr [0 (w =L, W)l 20,7) < ﬁhr 9wl 20,7y = ﬁhr IWlla o)

and
[[w— IhrW”H (0,7) = = [0 (w —I,w )||L2(0,T)SZHatW”LZ(O,T):2||WHH‘{)(0,T)

with the stability (2.28) and an error estimate analogous to (2.29) since w € H‘}) (0,7).

For the second summand in (3.63), it follows with (3.62) that

1
||W_IhrWHL2(O,T = m Ha’W”’(l/z H'(0,T);L2(0.T))

T4 8Tﬂ 32
< o= \f V2t TR

v/ +2(1+42u? ) i
2V6

where the first estimate follows from an interpolation argument for the K-Method of Inter-
polation between

e = e 1 2

(0.T),F’

1 1
W —In Wl 207) < ﬁhtz 9wl 20,7y < ﬁhrz 9wl g (0,1

and

1 1
w—Inwl20r) < \[h,||8,(w Iyw)llz o) < ﬁht”atWHLZor

with the stability (2.28) and an error estimate analogous to (2.29) since dyw € H'(0,T).
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Therefore, the inequality (3.63) yields

V38 12

e = wen, 172 0.7y < Th |’4_”thH&/Z(OET),FH”_uthLZ(O,T)

Y/ n? +2(1 +2,Lt2)T2 h3/2 I
t

+
H 276

w=t iz o=l o
ie.

8 477,'2+21+2[,t2 T2 12
=l 20y < <ﬁ+ T )0 =y G50

When inserting this into (3.57), together with the estimate

2 2 1 3p
||M*Ih,u||H$/2<O7T)’F = \/;H”*Ih,”HK]/Z(H&(O.T);LZ(O,T» < \/;ﬁhf 9kl 1 0.7

derived with the help of (3.33) via an interpolation argument for the K-Method of Interpo-
lation between (2.30) and (2.31), and again (2.31), this gives

L f LA T e X et
o <ﬁ+ ,MZ%M)TM) B =gy 10l 1y
ie.
=
<o (ST ot

and thus, the first assertion is proven.

The L?(0,T) error estimate follows with the first assertion from (3.64). U
To illustrate the error estimate (3.56), consider the given right-hand side f as

flt)y=1 forte(0,2)=(0,T),
which results in the solution

u(t) = % {l —ef‘”], t€(0,2),
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satisfying
u
Hatt”HLZ(m) < 2

As at the end of Subsection 3.4.3, a sequence of finite element spaces S, }lhO,(O,Z) of uni-
form mesh size h; = 2/N,, and N; = 2J+1 Jj=0,...,10, is introduced. Depending on ,
quadratic convergence is expected, but requiring a sufficiently small mesh size i, = 2/N;
for large p. This well-known behaviour can be seen in Figure 3.3, Figure 3.4, Fig-
ure 3.5 and Figure 3.6, where the computed L?(0,2) error is plotted versus the error bound
(3.56).

100 = = |l 207 [ 102 |- == llu—wll2 07y |
—A— error bound —A— error bound
— N7 0| ' g
~ 1072 F a - 10
=~ N
S S
g 1077 ¢ a 5
| |
= = 107 :
1076 |- :
106 1
08 o o8l — v i i
10° 10! 10 10° 100 10! 10 10°

degrees of freedom N; degrees of freedom N,

Figure 3.3: L>(0,T) error and error bound  Figure 3.4: L*>(0,T) error and error bound

(3.56) for (3.47) for p = 1. (3.56) for (3.47) for u = 10.
RN e EmEmERL
. == [l =, [l 20,7 10° - = [l =, [l 207y |
10° |- —A— error bound | | —A—  error bound
. N2 _ N2
S 10 . g 10°0 1
S S
= 2
£ o107 3 £ 10| 1
| I
= =
104 | | 103 - ,—F«\ ]
—7 |- -
10 T YT R R S R TIT R 1077 v e
10° 10! 10 103 10° 10! 10? 103

degrees of freedom N; degrees of freedom N;

Figure 3.5: L*>(0,T) error and error bound  Figure 3.6: L*(0,T) error and error bound
(3.56) for (3.47) for u = 100. (3.56) for (3.47) for u = 1000.

Remark 3.4.15. The Galerkin-Petrov finite element formulation (3.23) of Section 3.3 is
uniquely solvable but unstable for any mesh size hy and any [ > 0, whereas the Galerkin-
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Bubnov finite element formulation (3.55) is uniquely solvable and stable independently of
the mesh size hy and 1 > 0.

3.4.5 Variational Formulation for the Heat Equation via Fourier Series

In this subsection, the ideas of Subsection 3.4.4 are transferred to the homogeneous Dirich-
let problem of the heat equation

du(x,t) —Awu(x,t) = f(xt) for (x,1) € 0=Qx (0,T),
u(x,t) = 0 for (x,t) e X =Tx[0,T], (3.65)
u(x,0)0 = 0 forx e Q,

where Q Cc R?, d = 1,2,3, is a bounded Lipschitz domain with boundary I = dQ and
T > 0 is a given terminal time. To write down the variational formulation (3.21) via a

Fourier series approach, characterisations of the spaces H&,’S / 2(Q) and Hé.’ 10/ 2(Q) are given.
Therefore, consider for i € N the eigenfunctions ¢; and eigenvalues y; from (2.4), i.e.

“Agi=p¢ inQ, ¢i=0 onl, [dilpq) =1

which form an orthonormal basis in L?(Q) and an orthogonal basis in H} (Q). Since the
relation 0

L2(Q) ~ L*(Q)&L*0,T) = [2(Q) @ L2(0,T) @
holds true for tensor-products, see Section 2.4, the functions

0> (x,0) — ¢i(x)-Vi(r) eR, i€ N, ke Ny,

form an orthogonal basis of L2(Q) with respect to the inner product (-,-) 12(g)» See [128,
Proposition 2, page 50], where the eigenfunctions Vj are given in (3.26). Hence, as an
extension of the expansion (3.27), the representation

u(nt) = ¥ Y uxi)0ix) = Y U)o Z i Vit (3.66)
i=1k=0 i=1
holds true for a function u € L?(Q) with the coefficients
2 ’ 2 r
Ui = ?// u(x, 1) Vi () §i(x)dxdr = ?/ +kn /u x,1)¢;(x)dxdr,
0 0 Q

i.e. it holds true that

N
Z Ui j Vi - i

1k=0

—0 asM —> oo, N — o0
L2(0)

Ma
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and

—0 asM — oo,
L2(Q)

M
u—Y Ui-9;
i=1

For the inner product, the representation

LZQ) Z<U"U>L’0T)_ Zzuzk i e

llk

is valid for u,i € LZ(Q) with the expansion (3.66), and if, in addition, u,i € H(;;’

follows that

oo

=) RatUi’atOOLZ(o,r) +“i<Ui’Ui>L2(o,T)]

H(Q 1

7:""" > 1 /m 2 .
=3 Zkgb {ﬁ (5 +k775> ‘le} Uije Uij

i=1

for the inner product (2.13). Correspondingly, the functions

053 (x,t)— @i(x) Wi (t) R, i€ N, ke Ny,

Q). it

form an orthogonal basis of L?(Q) with respect to the inner product {-,-);» 0)» Where the
eigenfunctions Wy are given in (3.34). Hence, as an extension of the expansion (3.35), the

representation
dxn) =) Y zuWe(t)gilx) = Z (1) i(x) Z 2iaWi(t) (3.67)
i=1k=0 i=
holds true for z € L2(Q) with the coefficients
) T ) T
ik = ?// (o, 1) Wi (1) @i (x)dxdr = T/ +k7r /z x,1) i (x)dxds,
0Q 0 Q
i.e. it holds true that
M N
*ZZZi,ka'(l),‘ —0 asM — oo, N — oo
i=1k=0 LZ(Q)
and
M
=Y Zi-¢ =0 asM — oo,
' 12(0)




3.4 Space-Time Variational Formulation with a Type of Hilbert Transform 99

Analogous to Subsection 3.4.1, the representations

H(0.7:12(Q) = { e2(Q): u(xt) =Y ¥ Vi) ().
i=1k=0
e
5,;;;0( k) fui <oo}

with the inner product

s

i ( +kﬂ:)u,k Wik

1
(. 2) HPO.r2(Q)F T 2

Il
—_
-
<)

i

and

1/2(0 T:L2(Q)) = {ZE L*(Q): z(x,1) = i iz,ka ()i (x),

YT (Z k) bl <°°}

i=1k=0

(=]

N =

with the inner product

oo

1& T .
(2 B0 @) F EZ )y (E +/<7T>Zi,k'zi,k

i=1k=0
hold true, where the induced norms ||| 01220 and [|-]| . V20 1z F A1 equiva-
lent to the norms ||-|| P 0102(@) and |- H Y 0102() given in (2 16) and (2.17). So, the

anisotropic space H0 1/Z(Q) 1/2(0 T;L2(Q)) NL*(0,T; HL(Q)) is endowed with the
inner product

TS & [1/m )
(w.d >HSS/2(Q%F =2 Z )3 [? (E +k”> ‘Hh} Uig - B jo
and analogously, Hy'/%(Q) = H{/2(0,T;12(Q)) N L*(0,T; H () is endowed with

> [ 1/
Y | (5 +km +u,-]z-, “Zik-
1k:0{r<2 ) Lk ik

o7 L

l

The transformation operator Hr, given in (3.38), acts only with respect to the time variable
t, i.e. for u € L?(Q) with expansion (3.66), one defines

s
s

(Hru)(x,1) iiutka )9i(x) =

i=1k=0 i

u,,kcos((2+kn) )¢,() (3.68)

1k=0
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for (x,) € Q. By construction, it holds true that Hru € L?(Q). Furthermore,
Hr: L2(Q) = LX(Q)
is bijective and norm preserving, i.e.
Hrullr2g) = llullz2g) forallue L*(0Q),
where the inverse transformation operator
Hr' L2(0) » 12(Q)

is given by

oo

HT 2)(x,1) ZZ’ ZikVie(t) 22 ,ksm<< +k77.'> )q),(x), (x,1) €0,

i=1
for z € L*(Q) with the expansion (3.67). Analogously, the maps
Hr: Hy?(0.T:L3(Q)) — Hy*(0.T:L*(Q))
and 1 1/2 1,1/2
Hr: Hyy ()~ Hy{*(©)
are norm preserving and bijective.

Finally, representations of the dual spaces [H,, 1/ 2(Q)] d[H j)/ 2(0, T;L*(Q))]’ are given.

In Section 2.5 the dual space [H, (; 10/ 2(Q)]’ is charactensed as a completion of L?(Q) with

respect to the Hilbertian norm || - H[H(i{,lo/z(Q)]” where H‘”H[i;:l()/z(Q) is the norm in Hl 1/2(Q),
see (2.20). Ato |- || ) equivalent Hilbertian norm is given by
[(f:2)ol
171l HE Q) T 2
0#%%@ Hy' ) (Q)F

for f € [H, H: 1/ 2(Q)] where (-,-), denotes again the duality pairing as extension of the
inner product in L2(Q). Moreover, a Hilbertian norm in [Hl/z(O, T;L2(Q))] is

‘(faZ>Q‘

= sup
] 12

1l Y 022(@)
OTLA@IF 0£z€H*(0,T;L2(Q))

(0,T;L2(Q)),F

for f € [HY*(0,7;:L2(Q))]".
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Lemma 3.4.16. For f € [HOHO/Z(Q)]/ the expansion

_T'yy 1 2
I [Hy: Q). F Yy 1(”+k7r)+u,~fi’k

17 || /2
OTLXQ))F 2 & A
holds true.
Proof. For z € H1 ]/2(Q) with (3.67), the representations

Z(xaf):iizi,k005<(2+k”) >¢,(x :iizszk (t)9i(x),

0 i=1k=0

k=
TEE (0 )

Y zik- fik

1k=0

=

&
Q

I
D18
MS
E_\ -
&H
=
§
N\’\]
iyl

I

N, k=0,...,N and 2, = 0

-1
hold true. Set 2} := (% (% +k7r> —HL,-) fufori=1,...,
fori > N or k > N. Assume w.lo.g. that z¥ # 0. Thus, 7V € H&’}O/Z(Q) and one obtains

raa o \" RE((E) )
B G s S
HER ) (k) ) )
_ % igl kgo Zﬁlkﬁ’k
1/2
(£3 () em)nr)”
[{f>2)0l

(17

HZ H ]l/z(Q)F 02 EHll/z )”Z”HJ;’_IU/Z(Q),F
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Hence,

0 oo 1

T
2
s ”[HSJ,IO/Z(QH’f = XY !

niffk
i=1k=0 7 (7 +k7r> + U;

follows as N — oo.

On the other hand, the Cauchy-Schwarz inequality yields

[{f32)0l
042 eH' o

N \/z sup ’g "EOZi’kfi'k G <% +k7r) +ui> . G (% +k”> -le')il/z

2 o o 1/2
0£zent 2(0) (Zlkz (%(%+kﬁ)+ﬂi) Zi%k)
i=1k=0
1/2
T & e 1
<5 —f
hE G o

and thus, the first assertion is proven.
For f € [H l/ 2(0 T;L%(©))]’, the proof is obtained in the same manner. O

Analogous to the case of the ordinary differential equation, see Theorem 3.4.6, the distri-
butional derivative d; on Q of a function u € H, 1/ 2(0, T;L*(Q)) is investigated.

Theorem 3.4.17. For a function u € H(;,/ Z(O,T;LZ(Q)), the distributional derivative 0,
on Q fulfils du € [H 1/2(0 T;L*(Q))]'. More precisely, a uniquely determined element
g€ [HI/Z(O,T;LZ( Q)] exists, satisfying

Vo eD(Q):  ITu(9) = (8. 9)p
where T,: D(Q) = R, T,(¢) = (1, 9) 12 (g), is the to u related distribution, see Section 2.1.

In addition, it holds true that

1 9ea] HY 0@ F S el e 2 0,702 2.
and L= =
T
(Guz)o=5Y ):: Uiy (5 k) 2ix (3.69)

i=1k=0

for all z € Hl/z(O,T;LZ(Q)) with expansion coefficients u;j from (3.66) and z;j from
(3.67).
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Proof. The proof is analogous to the proof of Theorem 3.4.6, since the algebraic tensor-
product Ci’ () ® C'(0,T) C Ci(Q) is dense in H’:)/2(O, T;L%(Q)). O
Remark 3.4.18. The equation (3.69) leads, with the bijective transformation operator
Hr: Hy(0.T;:L2(Q)) — Hy*(0.T;L2(Q)), to

(O, HTM = =5 ; ; ( +k77.7> Ui = (u, M) (;Y/Z(O,T;LZ(Q)),F (3.70)

1/2

for all u,it € Hy""(0, T;L%(Q)) with expansion coefficients u; y, ;. from (3.66).

As in Section 3.3, the variational formulation of (3.65) is to find u € H(;;,(;,/ 2(Q) such that
a(u,z) = (f.2)g (3.71)

for all z € H 1 ]/ 2(Q) where f € [H, | 1/ 2(Q)]’ is a given right-hand side and the bilinear
form

a(-): Hg;(;F(Q) x Hy'?(0) » R
is defined by

a(u,z) := (du,z) o + (Vatt, Vxz) 12 o)

for u € Hyy'*(0). z € Hy{*(Q). Note that
| @20 < 10l 12 ey L2 00

< uuu,,(;g el

(0,T;L2(Q)) (0,T;L2(Q)),F

for u € Hyy/*(Q) € Hy/*(0,T:12(Q)) and for z € Hy'{*(0) € Hy*(0.T;L*(R)) due to
Theorem 3 4.17, ie. (&,u 2) o is well-defined and bounded on

Hy*(0,7;L3(Q)) x Hy (0. T;L3(Q)).
With this last estimate, it follows the boundedness of the bilinear form

a(,): Hyy*(0) x Hy'{*(0) = R,

i.e. with the Cauchy-Schwarz inequality, it holds true that

la(u,2)| < |Gyt 2| + (Vi V:2) )

< llell e el IVl 21Vl r2(0)

(0.T:12(R)) (0.75L2(R))

<
< lellgrae gy el gz o)

11/2

for u € Hyy/*(Q). z € Q).
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11/2

Theorem 3.4.19. For a given f € [H, " 1/2( )|, a unique solution u € Hy,y'“(Q) of the
variational formulation (3.71) exists, sansfymg
<2
Il 0101 = 216 0 01
Furthermore, the solution operator
1,1/2 1,1/2
L: [Hy Q) = Hyy* Q). Lf=u,
is an isomorphism. In addition, the bilinear form
1 1 /2 1,1/2
a(-,+): Hyy!"(Q) x Hy " (Q) = R
is continuous and fulfils the condition (N'1), i.e
1 .2
5< it sup la(v.2)| , (3.72)
0#£veHy) (Q)O% eHl(0) vl Hyd*(0).F HZ” L20)F

and the condition (N2), i.e. for each z € H(;;}(J/Z(Q), z#0, an element v € HOIS/Z(Q) exists
such that a(v,z) # 0.

Proof. For the solution u of the variational problem (3.71), consider the ansatz (3.66)

o oo

() = L Y k9 () = 21 (). Ui(e) = 2 uiVe(t)

k=0

where U; € H, 1/ 2(O,T) are unknown functions to be determined. When choosing, for a
fixed j € N, z(x t) = Z(t)¢;(x) with an arbitrary Z € H 12 (0,T) as test function, the
variational formulation (3.71) leads to find U; € H, /2 (0,T) such that

(U Z) 0y + 1iUjs Z) 1200 = (f-Z8))0 (3.73)

forall Z € Hy’

(0,T). With Lemma 3.4.5, it holds true that
’(f,Zq)j)Q’ < Hf”[H(;:'.IU/Z(Q)]’,FHZ(P]'HH&'_IO/Z(Q),F

— £l W¢\\Z||;5/2(0,T),F+u,»uzniz<o,r>

< B s o V0
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1/2

forall Z e Hy~(0,T), and so,

< Z>(0T f Z¢J>Q

fulfils Fj € [H})/ 2(O,T)}’ . The unique solvability of (3.73) follows from the unique solv-
ability of (3.47). So, there exists for every j € N a unique solution U; € H(},/z(O, T) of the
variational formulation (3.73), satisfying

||Uj||i,(;/z(0’r)f = {2V, HrUj) o)

<QU;, HrUj)or) + 1 Ui HrUj) 20,1
Hence, the coefficients U; € H, 12 (0,T) are uniquely determined. Next, the convergence
properties of the series expansmn of u are investigated. Therefore, define the partial sums

M
up (x,t) = Zin(f)‘Pj(x)
=

for M € N, and one concludes

M M
HMM“Z(}/Z(OTLZ Z U1 101 F Z fr0;H1Uj)o = <fa Z¢,j7‘lTUj>
’ J=1 [¢]

j=1

< Hf”[Hg;f()/z(Q)]’,FHHT”MHH(};f({Z(Q),F
= |\f||[H&_lo/z(Q)]/yFHMMHH&&/Z(Q),F-

Hence, using (3.52) for fi; = %{E,Wk>(0 7 =Z(f, #iWj) o, one obtains

TE & Hi 2
||14MH22 .yl i ‘UH 2 < fik
L (O,T,HO(Q> Z i L*(0,T) 21:211;)“12_._%(%_’_](”)2 i

1

2 <2 2
<2 g

with the help of the inequality
a at+b
a*+b* = La+b)2 a+b
With this, it holds true that

forO0 <a,b eR.

2 _ 2 2
H”M”H&&/z(g), = |Jum|| 1/2 OT;LZ(Q)),F+ ||”MHL2 (0.T;HL ()

2
I Wy 21 g1



106 3 Heat Equation

and therefore, by solving the corresponding quadratic equation,
el oz ) ¢ = 215 N g2y

follows for all M € IN. The last inequality yields with U;(t) = Y77 u; xVk(f) the bound

P
Zzik 0{ ( +kﬂ') +.Uz} Uig =1 11m Z |:||U1H21/2 +.ui||UiHi2(o,T)
fy
= 11m HMM” HV/Z(Q),F
<4 < oo
I£1% HIOVF

and thus, u € H1 l/Z(Q) with limy; o up = u in Hl l/Z(Q).

Next, it is shown that u is a solution of the variational formulation (3.71). This follows

with the expansion z = ¥ Z;¢; € Hy'{*(Q), Z; € Hy*(0,T), which is given by (3.67),
= "

from

a(u,Z) = <atM,Z>Q + <VXM7VXZ>L2(Q>
= Jim o g Jim (e Vg

= Z <8tUj¢j,Z>Q + Zi<Uijq)j,sz)L2(Q)
J=1 J=

= <3fUJ¢J’Z¢t>Q Z Z(UjVX‘Pj’ZiVx‘Pi)LZ(Q)

j=li=

Me T
s

1i

J

and by using (3.73), from

Z(a,u,,z (0.1) "‘Zﬂj UjsZi) 2o Z<fz 95)0=(

j=1
The uniqueness of u is a consequence of the uniqueness of the coefficients Uj.

The remaining parts of the theorem follow from the Necas Theorem 2.9.1. O

The variational formulation (3.71) is equivalent to find u € H&’A’/ 2(Q) such that

alu,Hrv) = (@ Hpv) g + (Ve Velr) g = (LMY (B74)
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forall v € H&’é’/ 2(Q). Hence, unique solvability of the variational formulation (3.74) fol-
lows from the unique solvability of (3.71). In addition, the stability estimate (3.72) implies
the stability estimate

<a,u, 'HTV>Q =+ <qu, VXHTV>L2(Q)

HV||H(;;(I)‘/2(Q),F

1
~ <
2 HuHHt:&;,/Z(Q)’F - Sulll)/z

0£veH, !~ (0)

for all u € Hy; 1/Z(Q),
To introduce approximate solutions, the bounded Lipschitz domain Q C R¥ is assumed to

be an interval Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. When

using some conforming space-time finite element space V), C Hé;'ol/ 2(Q), the Galerkin vari-
ational formulation of (3.74) is to find u;, € V, such that

a(uh,'Hth) = <f,HTVh>Q (3.75)
for all v, € V). Note that ansatz and test spaces are equal.

Theorem 3.4.20. Let V), C H(i;’é’/ 2(Q) be a conforming space-time finite element space

and let f € [H, N I/Z(Q)}’ be a given right-hand side. Then, a unique solution uj, € V), of the
Galerkin- Bubnov variational formulation (3.75) exists. If, in addition, the right-hand side

Sulfils f € [H l/2(0 T;L%(Q))) C [H, v 1/Z(Q)]/, then the stability estimate

HuhHH(;Y/Z(O,T;LZ(Q)),F < ”fH[I-{L/Z(O,T;LZ(Q))]’,F

is true.

Proof. Let u2 € V), be any solution of the homogeneous variational formulation (3.75) with
f=0. With (3.70), v;, = u2 €V, in (3.75) and Lemma 3.4.8, it follows that

2
I

[ <afuh’HTuh>Q

Hy(0.T:L2(Q)

< <8tuh,HTuh>Q+ Z /<3Xmuh X,), me’HTuh X,- >L2 OT)
m=lg

>0

= (f Hrup), (3.76)
= O’

which implies u, 0 and thus, the uniqueness of a solution u;, € V), of the inhomogeneous
variational formulation (3.75). Since ansatz and test spaces of the variational formulation
(3.75) are equal, the unique solvability of the Galerkin-Bubnov variational formulation
(3.75) follows.
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If, in addition, the right-hand side fulfils f € [Hg*(0,T;L3(Q)))' C [Hy ¢ (Q)]', then,
with (3.76) for the unique solution u;, € V), of the Galerkin-Bubnov variational formulation
(3.75), the inequality

il 20 g2 gy < - Hrn)o
N S IR
= ||fH[HB/Z(O’T;LQ(Q))],,FHuhHH&/z(O,T;Lz(Q))’F
and hence, the stability estimate hold true. O

A possible choice for a conforming space-time discretisation of (3.74) is the space of piece-

wise linear, continuous functions Vj, = S} (Q) NHyy, L/ Z(Q), see Section 2.8 for more details.
However, to perform the temporal transformatlon HT easily, and to derive error estimates,
based on the tensor-product structure, only a tensor-product space-time finite element

space V), = Q}I(Q) N Hy, L1/ 2(Q) from (2.42) is considered in the remainder of this section.

The Galerkin-Bubnov varlational formulation of (3.74) is to find u;, € Q}I(Q) H 1/Z(Q)
such that

a(up, Hrvi) = (f, Hrva) o (3.77)

for all v, € 0L(Q) OH&’S’/ 2(Q). After an appropriate ordering of the degrees of freedom,
the discrete variational formulation (3.77) is equivalent to the global linear system

Knu=F
with the system matrix
Ky = A" @ My, + M} @A), € RNMoNeMy,
where Mj,, € RM>Mx and A;,, € RM~Mx denote spatial mass and stiffness matrices given
in (2.37) and (2.38), M;" € RM*M and A" € RM*M are defined by
H
M, Tk == <(PksHT(Pl>L2(0,T)’
H
Ay TG K] = (0P Hr 9e) 12(0.7)s
l,k=1,...,N;, and with the corresponding vector F € RN-Mx of the right-hand side.

The next aim is to derive error estimates in the space-time norms. First of all, for the
. . 1,1/2
unique solution u € H /

solution uy, € Q}I(Q) NHy; 1 1/ 2(Q) of the discrete variational formulation (3.77), the Galerkin
orthogonality

(Q) of the variational formulation (3.74) and for the unique

alu—up, Hrvy) =0 (3.78)
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holds true for all v, € Q}(Q) QH&’&/ 2(Q). To derive an L?(Q) error estimate, a space-time
projection
1/2 1,1/2

0,/°04v € 04(Q)NHyy *(0)

1,1/2

for a sufficiently smooth function v € H, )’ “(Q) is introduced, see Section 2.8.

For a function v € H&’/z(o, T;L%(Q)), the H(;’/z projection Q;lr/zv e (Q)® S}lho’(O,T) is
defined by

12
Q) v, Vh,)H&/2(0YT;L2(Q)),F = (v, Vh,)H&/2(0YT;L2(Q)),F (3.79)

forallvy, € 2(Q)®S, llz,,o,(o’ T). The properties of the Hé,/ 2 projection Q,lh/ ? are summarised
in the following lemma.

Lemma 3.4.21. Letv € H&/ 2(O,T;LZ(Q)) be a given function. For the H(}’/ 2 projection

Q}ll’/ 2v, defined in (3.79), the following properties hold true:

1. The stability estimate
1/2
12y, V”H(;_/Z(O,T;LZ(Q)),F = HV”H;_/Z(O,T;LZ(Q)),F
is true.
2. If, in addition, v € H*(0,T;L*(Q)) for some s € (1/2,2], then the error estimates
1/2 —1/2
V=0 ¥y oy S < Mloraray
and
1/2 s
V=04 Vi) < b IVl aso,7:02(0))
are valid with a constant ¢ > Q.
Proof. First, the stability estimate follows from the Cauchy-Schwarz inequality with
1/2
v, =0, v € 12(Q) ®5}, ( (0.T)
in the variational formulation (3.79).

Second, with the Galerkin orthogonality

1/2
(v— Q,“/ V’W’f)H(;/Z(O,T;H(Q)),F =0 forallv, € L*(Q) ®S},“0’(0, T),
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the first error estimate is given by
1/2

1/2
[[v— Qh, V”Z{;./z( ={v- Q) vv— th/ v)]_]&ﬁ(()y’r;LZ(_Q)),F

0.T:L%(Q)).F
=(v-0;/ V’V>H(§/2(0,T;L2(Q)),F
=(v— Qh, V- Ihrv>H(}./2(0,T;L2(Q))yF
<|v- Qhr VHH&/Z(O,T;LZ(Q)),F |lv— Ih,V||H(;_/2(0,T;L2(Q)),F
<=3/l iy r Vo

where ), is the extended time interpolant (2.44) and ¢ > 0 is the constant coming from
standard interpolation error estimates.

The second error estimate is proven by an Aubin-Nitsche argument. Therefore, let the
function w € H,, 1/ 2 (0,T;L*(Q)) be the unique solution of

= (Iw, HTZ)Q =Hr(v— Qh v) Hrz)pg) = (v— Q,lh/zv,zhz(g)
(3.80)

<W’Z>H(§/2 0.T:12(Q)).F

forall z € HI/Z(O,T;LZ(Q)), ie.
ow(x,t) =Hr(v— Q}Lr/zv)(x,t) for (x,1) € Q.

Forz=v—Q t/ Ve HI/Z(O, T;L*(Q)) in (3.80), it follows with the Galerkin orthogonality
and the first error estimate of this proof that

1/2
||V_Q / VHL2 < Qh V> OTLZ(Q))F

1/2
=(w=0y wyv-— Qh, v>H(;_/2(0,T;L2(Q>)sF

1/2 1/2
< HW_th W” I/2 (0.T:L2(Q)).F HV_Qhr VHH(;/2(O,T;L2(Q)),F

1/2
<chy! ||3tWHL2<Q By Vilgso.r2(0)

=chi|lv— th VHL?(Q) HV“H:(O,T;LZ(Q))v

where the constant ¢ > 0 comes from standard interpolation error estimates. O

Lemma 3.4.22. For a functionv € Hl’/2 (0,T;H'(Q)), it holds true that
0,*v e H'(Q)®S},0(0.7)
and if, in addition, v € Hl/z(O,T;Hl(Q)), then

0,*v e HY(Q) @S}, (0.7).
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Proof. The proof is analogous to the proof of Lemma 2.8.1. (]

The next lemma shows that
1/2

1,1/2
0,0l v e 04(Q)NHyy *(0)
is well-defined under regularity assumptions on the given function v and that the operators
in space and time commute, where the extended H& projection Q}u is given in (2.47).
Lemma 3.4.23. For a given function v € H(L’Ol,/z(Q) with regularity oyv € L*(0,T; H} (Q))
and 9y, v € HS,/Z(O,T;L2(Q))form =1,....d,

1. the relation ' i
9,0, v = 0,9, v € }(Q) @5}, (0.T)

form=1,...,d and

2. the relation
1/2 1.1/2

0,70} v=0}0/* e 0l(0) NHy*(Q)

hold true. In particular, the space-time projections Q;lll/ 2Q,luv and Q}“Q;ll/ 2y are well-
defined. '

Furthermore, the error estimates

1/2 1/2
v =020} Vll20) < IV —03/*Vll12(0) + IV — Qh.¥ll 20y + ¢l e |8Vl 2)
and
lv—0)/%0h vl <|v=0)*|
e Zh g 20,02 @) F = e Ny 2(0,1:2(9).F

1 1/2
+ HV - QthHH&/Z(O,T;LZ(Q)),F +Chxht/ HatVXV“H(;-/Z(O’T;LZ(Q»,F

with a constant ¢ > 0 are valid.

Proof. The proof is analogous to the proof of Lemma 2.8.2. O

Theorem 3.4.24. Let the unique solution u € H(;;’(;’/ 2(Q) of (3.74) satisfy the assump-

tions o € LZ(O,T;H(}(Q)) and Oy, u € Hé,/z(O,T;LZ(Q)) for m=1,...,d, and further,

A € H&/z(O,T;LZ(Q)). Then, the solution u, € Q}(Q) ﬁHé;’é’/z(Q) of the Galerkin-
Bubnov finite element discretisation (3.77) satisfies

1/2 1
”M - uh”Hé_/z(O,T;LZ(Q)),F < Hu - Qh, MHH(;Y/Z(O,T;LZ(Q)),F +2Hu - thuHHA’/Z(O,T;LZ(Q)),F

1/2
At~ Q) A

b pl/2
+Cl’lxht Hatvxu”H(;_/z(O,T;Lz(Q)),F+ ‘ ‘[H)IO/Z(O,T;LZ(Q))]’,F
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and

1/2
e —unll 20y < 1 — Q3 2ull iz + e — Qhtll 2y + e el| 4Vl 2 g

xu_Q

2T
+ 0= 0 )+ - = 03,

LZ(Q)

with a constant ¢ > 0 independent of h; and h,.

Proof. With the H)| 1/2 (0,T;L*(Q)) ellipticity of a(-,-), the Galerkin orthogonality (3.78)
of a(-,-), the propertles of the Hg’/ 2 projection Q;z,/ 2, the properties of the H(} projection
Q},X and integration by parts, it holds true that

< a(uy — Q)/* Oh . — 0> 0} )

Huh - Qh/ Qh

’ 20,T2(Q)).F
=a(u— Q;I,/ZQ;], u,up — Q;I,I/ZQ}LXM)
<8[(u - Q1/2Q;1, u), Hr (u, — Q;lh/zQ;llX”)>Q

(V=000 Vs -0, 0l w) ,

and further,

Huh - Ql/th

B Al . 1/2 A1
) VFOTaR@)F (0= 04 Hr (= 0} Q’“u)>Q
+ <Vx(u - Q,lll/zu), Vit (up — Q;I,Z/ZQ;LM)>
= <¢9,(u — O u), Hr (uy ;l,I/ZQh,M)>

_ <Ax(u — 03 2u) Hr (uy — Qh,/thx“)>L2(Q)~ (3.81)

L2(Q)

The relation (3.81) yields

Huh*Qh, th ‘ 1/2<0TL7 (Q)F
1
SHM*Q%” |H(l/2(0TL2(Q) ‘”h Qhr th ‘ o 2(0.T:L2(Q).F
1/
+‘A"”*Qhr A’””‘[H,‘/z(ow(n)) H =0y, Hy*(0.T:12(Q) F
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and so

o= 2

(0,T;L2(Q)),F
= H Ql/zQ’]’*u Hy2(0.T512(Q)),F ’ = Qh' Q" ‘ Hy*(0.T:L2(Q).F
= HM B Q’l“/zQ’l’*u )H‘i/Z(O,T;LZ(Q)),F
+ H”*Qllu” |H[i’/2(0,T;L2(Q))F Qllz,/z A ‘[Hl/z OTL2(Q)]F

This gives, with the second error estimate from Lemma 3.4.23, the H,, 1/ 2(O, T;L*(Q)) error
estimate.

It remains to prove the L?(Q) error estimate. With the Poincaré type inequality from
Lemma 3.4.5, the relation (3.81) and the Cauchy-Schwarz inequality, it follows that

2
1/2 41
uh—Q/thuL

n— 0,0},

20 ’ ’1/2(0T;L2(Q)),F

< |~ 0 3 g s — 03,0}

a7l

L2(0)
N

+ a0} A

L2(Q)’
This implies that

=l < =i Qhu (0) + =010l (0)
< H 00} u o)
+?Hz9,u7Q;llxatuHL2(Q) w-0 A,
and with the L2 error estimate from Lemma 3.4.23, the assertion follows. O

Corollary 3.4.25. Let the assumption of Theorem 3.4.24 be satisfied. If, in addition, the
unique solution u of (3.74) is sufficiently smooth and the spatial H(% projection Q}l)_ Sulfils
the standard L? error estimate

flue — le 2(g) < Ch)chuHLZ(O,T;HZ(Q))

with a constant C > 0, see (2.48), then, for the unique solution uy, € Q},(Q) N Hé;’é’/z(Q) of
the Galerkin-Bubnov finite element discretisation (3.77), the error estimates

— 3/2
lu uh"H&/z(O,T;LQ(Q)),F =ch
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and
|| — uh||L2<Q) <ch?

hold true with a constant ¢ > 0 independent of the mesh size h = max{h;, hy}.

Corollary 3.4.26. Let the assumption of Theorem 3.4.24 be satisfied. Furthermore, let
ue€ H'(Q) ﬂHol;’é’ (Q) be for some s € [0,1] and let the Hé;’é’ (Q) projection Q}, given in
(2.45), fulfil the standard error estimate
flu— Qll1u||L2(Q) < ChHS””HHH:(Q)
with a constant ¢ > 0, see (2.46). Moreover, assume for Q}(Q) ﬂHOI;’é’ (Q) the inverse
inequality
Yo € Q4(Q)NHyp (@) [vilg (o) < cinv ™ Ivall ()

with a constant ciny > 0 and h = max{h, h, }. Then, the error estimate
|u— “/1|H1(Q) < CcinvthuHHﬁrl(Q) +Ciny b} ||eey, — M”LZ(Q)

is valid with a constant C > 0 independent of h. If, in addition, the assumption of Corol-
lary 3.4.25 is fulfilled, then, the error estimate

‘M— uh‘Hl(Q) < Ch
holds true with a constant C > 0.

Proof. Note that
1,1/2

04(Q)NHy () = 0}(Q) NHyy *(Q).
It follows with the triangle inequality, standard error estimates for Q}l and the inverse
inequality in Q}(Q) N Hy; (Q) that
|u— uh\Hl(Q) < {u— Q},M|H1(Q) + |Q,llu — ”h|H1(Q)

< Chs||u||Hs+l<Q) + Cipy B! HQ},u — “hHL2(Q)

< éhs||u||Hs+l<Q> + iy ! HQ},u - uHLg(Q) + Ciny b H|up — ull12(g)

< Cciny h*|ull s gy + Cime B lun — ull2g)
with a constant C > 0 and hence, the assertion. O

Remark 3.4.27. The assumptions on the spatial H} projection Qllu and on the Hé;’ol, (0)

projection Q,ll in Corollary 3.4.25 and Corollary 3.4.26 are fulfilled, if Q is sufficiently
regular. Thus, for less regular Q, one expects reduced orders for the error estimates given
in Corollary 3.4.25 and Corollary 3.4.26.
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Remark 3.4.28. Analogous space-time error estimates, as proven in Theorem 3.4.24,
Corollary 3.4.25 and Corollary 3.4.26, are true for conforming tensor-product space-time
finite element discretisations of (3.75) with piecewise polynomial, continuous functions of
polynomial degree p > 1, i.e. the space-time error estimates

_ p+1/2
o=l o720 g2y < 15

1
[ —un|l 120y < chPt,

|t — up| g1 gy < ch?

are valid with a constant ¢ > 0 for analogous assumptions as in Theorem 3.4.24, Corol-
lary 3.4.25 and Corollary 3.4.26.
In the last part of this section, some numerical examples for the Galerkin-Bubnov varia-

tional formulation (3.77) are presented. Therefore, consider the space-time cylinder

0=Qx(0,T)=(0,1)x (0,2)

for the finite element space Q}(Q) ﬁHé;’S,/ 2(Q) with a uniform discretisation with mesh
sizes
1 2
hy=— and h=_—
Ny N
with

Ne=N, =2/, j=1,..,11,

see Section 2.8 for the notations. The number of the degrees of freedom is given as
dof = (Ny—1)-N;.

The temporal transformation Hr of the nodal basis functions of the finite-dimensional
space 0} (Q) ﬂHé;’é’/ 2(Q) is realised via the series representation (3.68) and the appearing
integrals in (3.77) are calculated by the usage of high-order integration rules. In Table 3.10
the minimal and maximal singular values of the system matrix Kj, corresponding to (3.77),
as well as the resulting spectral condition number of K}, are given. Note that the finite
element stiffness matrix Kj, is still positive definite, but not symmetric, and that no CFL

condition is needed, see Theorem 3.4.20.
Remark 3.4.29. The to (3.77) related inf-sup constant

a(uhs Hth)

inf sup

=:cs(h)  (3.82)
04uy€QL(Q)NHyy *(Q) 04ve0h (@)Y *(0) [1en ”H(};(‘)f 2(Q).F v ”H(;;(;/ 2(Q).F
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Ny N dof hy hy Omax (Kh) Omin (Kh) K> (Kh)
2 2 2 0.50000000 1.00000000 2.27730420 0.90807052 2.5

4 4 12 0.25000000 0.50000000 5.67006464 0.28650743 19.8

8 8 56 0.12500000 0.25000000 7.29533890 0.11531994 63.3
16 16 240 0.06250000 0.12500000 7.80822886 0.04567559 170.9
32 32 992 0.03125000 0.06250000 7.94997290 0.01642703 484.0
64 64 4032 0.01562500 0.03125000 7.98720088 0.00472215 1691.4
128 128 16256 0.00781250 0.01562500 7.99675804 0.00120736  6623.3
256 256 65280 0.00390625 0.00781250 7.99918336 0.00030351 26355.9

Table 3.10: Stability behaviour of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0,1) x (0,2).

seems to depend at least linearly on the mesh size h. As illustration, consider the inf-sup
constant
inf sup v a(u;,,?-lévh) =:&g(h), (3.83)
O?é“hEQ},(Q)mH(:;(;./Z(Q) OyévheQ},(Q)ﬁH(:;(;/z(Q) I "””HLZ(@ ” XV”HH(Q)

satisfying
¢s(h) = cs(h).

The inf-sup constant ¢s(h) is given as

ES(h) =V Amin,

where Amin is the minimal eigenvalue of the generalised eigenvalue problem [84, Subsec-
tion 3.6.6, page 124]
Ky Ao Ky = AApou

with the matrices
K[k i] := a(xi- Hr xe)
and
Apo, [k, ] := (Vxi: Vidi) 12 )
forik=1,...,dof, where ); are the nodal basis functions of the space Q}l(Q) ﬂHé;‘Ol/z(Q),
ie.
1,1/2 f
0},(Q) N Hyy/*(0) = span{z:}{}.
For a uniform discretisation with mesh sizes

1 2
hy=— and h=—
N, N,

X t
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with A
Ny=N, =2/, j=1,...,8,
and
dof = (N, —1)-N,,
the inf-sup constant ¢s(h) of (3.83) is given in Table 3.11, where a linear dependency is

observed. Hence, the inf-sup constant cs(h) of (3.82) seems to depend at least linearly on
the mesh size h = max{hy, hy}.

Ny N, dof  hy he &s(h)
2 2 2 0.500000 1.000000 0.673637
4 4 12 0.250000 0.500000 0.375800
8 8 56 0.125000 0.250000 0.216577
16 16 240 0.062500 0.125000 0.117912
3232 992 0.031250 0.062500 0.061679
64 64 4032 0.015625 0.031250 0.031558
128 128 16256 0.007813 0.015625 0.015963
256 256 65280 0.003906 0.007813 0.008028

Table 3.11: Optimal discrete inf-sup constant ¢s(h) of (3.83) with a uniform temporal
mesh size i and a uniform spatial mesh size h, for the space-time cylinder

0=(0,1) % (0,2).

Next, numerical examples concerning convergence rates are given. Therefore, consider the
functions

up(x,t) :=sin (%t) sin (7x),
up (x,1) :=1*/3sin (7x) ,
uz(x,t) == x> (x— 1)t

for (x,1) € O,
0=0x(0,T)=(0,1)x (0,2),

as the solutions of (3.74). Since the solution u; is smooth, a quadratic convergence in
L?(Q) and a linear convergence in H'(Q) are expected by Corollary 3.4.25 and by Corol-
lary 3.4.26. This behaviour is confirmed by the numerical results given in Table 3.12.

The solutions u; and u3 satisty only
u € H'°°¢(Q) and w3 e H'''9°¢(Q) fore >0,

which leads to a reduced order of convergence in [|-|;2(g) and ||;1(), see Table 3.13 and
Table 3.14.
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NX,N, dof hX h, HM] 7u1,hHLZ(Q) €oc |M1 7u|,h|H](Q) €oc
2 2 0.500000 1.000000 0.91082337 - 4.48444176 -

4 12 0.250000 0.500000 0.15773958 2.53 1.89079374 1.25

8 56 0.125000 0.250000 0.02936109 243 0.84238860 1.17

16 240 0.062500 0.125000 0.00689515 2.09  0.41495827 1.02

32 992 0.031250 0.062500 0.00169574 2.02  0.20679353 1.00

64 4032 0.015625 0.031250 0.00042208 2.01  0.10331240 1.00
128 16256  0.007812 0.015625 0.00010539 2.00  0.05164563 1.00
256 65280 0.003906 0.007812 0.00002634 2.00  0.02582149 1.00
512 261632 0.001953 0.003906 0.00000658 2.00  0.01291058 1.00

1024 1047552 0.000977 0.001953 0.00000165 2.00  0.00645527 1.00
2048 4192256 0.000488 0.000977 0.00000041 2.01  0.00322763 1.00

Table 3.12: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0, 1) x (0,2) and for the

function u;.
Nx,Nt dof ]’l)C ht Huz —Uzp HLZ(Q) €0cC |u2 — u2,11|H| (0) €oc
2 2 0.500000 1.000000 0.23826687 - 1.52140890 -
4 12 0.250000 0.500000 0.06709046 1.83 0.82368146  0.89
8 56 0.125000 0.250000 0.02030948 1.72 0.46578105  0.82
16 240 0.062500 0.125000 0.00707197 1.52  0.29871905 0.64
32 992 0.031250 0.062500 0.00280561 1.33 0.22207053 0.43

64 4032 0.015625 0.031250 0.00119675 123 0.18306107  0.28
128 16256 0.007812 0.015625 0.00052531 1.19  0.15842749  0.21
256 65280 0.003906 0.007812 0.00023285 1.17  0.13968147  0.18
512 261632 0.001953 0.003906 0.00010355 1.17  0.12397096  0.17

1024 1047552 0.000977 0.001953 0.00004610 1.17  0.11028663  0.17
2048 4192256 0.000488 0.000977 0.00002053 1.17  0.09819766  0.17

Table 3.13: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0, 1) x (0,2) and for the
function u,.
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Ny, N, dof hy Iy llus —usnllizg) eoc  |us—usnlmg eoc
2 2 0.500000 1.000000 0.15232131 - 1.13419849 -

4 12 0.250000 0.500000 0.06042186 1.33 0.91981810 0.30

8 56 0.125000 0.250000 0.02557510 1.24 0.79291178 0.21

16 240 0.062500 0.125000 0.01129138 1.18 0.70947658 0.16

32 992  0.031250 0.062500 0.00511443 1.14 0.64798432 0.13

64 4032 0.015625 0.031250 0.00234984 1.12 0.59815237 0.12

128 16256 0.007812 0.015625 0.00108778 .11 0.55512396  0.11
256 65280 0.003906 0.007812 0.00050549 1.11 051657314  0.10
512 261632 0.001953 0.003906 0.00023536 1.10  0.48134128  0.10
1024 1047552 0.000977 0.001953 0.00010969 1.10  0.44881042  0.10
2048 4192256 0.000488 0.000977 0.00005115 1.10 041861673  0.10

Table 3.14: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0, 1) x (0,2) and for the
function us3.

Outlook for Possible Extensions of Section 3.4

Since the constructions of the methods and the proofs in this section mainly rely on the
treatment of the first-order temporal differential operator d; + u with a parameter > 0,
the results of this section for the model problem (3.65) can be transferred to a more general
parabolic equation (3.2) under certain assumptions of the involved functions and function
spaces, where details are left for future considerations.






4 WAVE EQUATION

The main focus of this chapter is on space-time variational formulations and conforming
discretisations for hyperbolic problems. First, a highly non-exhaustive list of references,
second, an overview of the sections of this chapter, where for each section the relevant
literature is cited, and third, an outlook for possible extensions are given. Here, the model
problem for a hyperbolic partial differential equation is the homogeneous Dirichlet prob-
lem for the wave equation,

Onu(x,t) — Asu(x,t) = f(x,1) for (x,t) € 0 =Q % (0,T),
u(x,t) = 0 for (x,1) e L=Tx[0,T],
u(x,0) = up(x) forx € Q,
du(x,0) vo(x) forx e Q,

4.1)

where Q C R?, d = 1,2,3, is a bounded Lipschitz domain with boundary I' =9dQ, T > 0
is a terminal time, ug, vo are given initial conditions and f is a given right-hand side. To
compute an approximate solution of the wave equation (4.1), different numerical schemes
including different approaches of the underlying mathematical framework are available.
On the one hand, some of them are repeated in this chapter, but on the other hand, power-
ful tools like semigroup theory as in [91, 123] on the continuous part or on the discretisa-
tion side, any kind of discontinuous Galerkin methods [33,42,67,86,88,89,111, 130, 140]
or finite difference methods [32, 33, 65,97, 147] or boundary element methods, see Re-
mark 1.2.1, are not in the scope of this work. Furthermore, all approaches where the wave
equation (4.1) is reformulated as a first-order system in the spatial and/or time variables
are excluded in this work, see [19,22,24,42,45,46,55, 83,94, 163]. In addition, see also
the approaches in [53,63,66,80,81,85,114,115,124].

QOutline of Chapter 4

The remainder of this chapter examines the wave equation (4.1) as follows:

In Section 4.1 a pointwise spatial variational formulation coming from a so-called Galerkin
method [36,97,102,160,162] and time stepping schemes [18,22,27,28,44,95,113,126,127]
are cited. In Section 4.2 a space-time variational formulation [97] in a subspace of H'(Q) is
examined, which fits very well to finite element methods with piecewise linear, continuous
functions. This conforming finite element method is only conditionally stable, i.e. a CFL
condition plays a decisive role for stability. To gain a deeper understanding of the CFL
condition, an ordinary differential equation corresponding to the wave equation is anal-
ysed. For this ordinary differential equation, an unconditionally stable numerical scheme
is introduced. By transferring this idea to the wave equation, a stabilised space-time finite

121
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element method for the wave equation is obtained. This stabilisation is proposed in [164].
Finally, for this stabilised space-time finite element method, L?(Q) stability, L>(Q) and
H! (Q) error estimates are proven, see [146]. In the last part of Section 4.2, numerical
examples for a one-dimensional spatial domain and a two-dimensional spatial domain are
given, including spatially adaptive refined meshes. In Section 4.3 and Section 4.4, ex-
istence and uniqueness results for the wave equation as a partial differential equation in
L*(Q) and in a weaker sense than L*(Q) are derived, including isomorphic solution oper-
ators and corresponding inf-sup conditions.

Outlook for Possible Extensions of Chapter 4

The results of this chapter for the model problem (4.1) can be transferred to hyperbolic
equations for vector fields, e.g., the Maxwell’s equations, as well as to a more general
hyperbolic equation for scalar functions

P (x,1) hpu(x,1) — Zt} T (a,jxt 8x xt)
R () 2 (5 1) + g 1 (1) 2 (11
+a(x,t)u(x,t) flxr)  for(x,1)€Q, (4.2)
u(x,t) = gx,t)  for(x,t) €L,
u(x,0) = up(x) forx e Q,
du(x,0) vo(x) forx € Q,

where p, a; j, a;, a are given coefficients, f is a given right-hand side, g is a given Dirichlet
datum and ug, v are given initial conditions, which have to satisfy smoothness and bound-
edness conditions, see, e.g., the classical references [36,97, 102,103,160, 162, 164].

In particular, since the proofs of the results in Section 4.2, Section 4.3 and Section 4.4
mainly rely on the treatment of the second-order ordinary differential equation for the tem-
poral differential operator d;; + u with a parameter u > 0, a generalisation to differential
operators

O + Ay

with a spatial differential operator .4, acting on vector fields, is possible. Since the proofs
have to be done with great care, they are left for future work, including precise assumptions
on A, and the involved function spaces.
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4.1 Variational Formulation in Space and Pointwise in Time

In this section, a short overview of a pointwise in time variational formulation is given.
Furthermore, numerical examples for lowest order in space, i.e. piecewise linear, continu-
ous ansatz functions, combined with lowest order time stepping are presented.

The pointwise in time variational formulation of (4.1) is given, with the notations of Sec-
tion 2, as follows:

Find u € L*(0,T; H}(Q)) with dyu € L*(Q), dyu € L2(0,T; [HL(Q)]'), u(-,0) = up in H} (Q)
and dyu(-,0) = v in L?(Q) such that

<3ﬁu(',[)’ V>Q + <qu('7t),VxV>L2(Q) = <f(',t), V)LZ(Q) (4.3)
for almost all 7 € (0,T) and all v € H} (), where f € L*(Q), up € H}(Q) and vy € L*(Q)

are the given right-hand side and the given initial conditions. Here, dj, is the distributional
derivative on (0,T), i.e. equality (4.3) means that

S

P T T
() V) G 0+ [ (Taua0, V)2 @000 = [ (F0)0) 2y 900
0 0

for all ¢ € C5(0,T). The variational formulation in (4.3) is examined in many books, for
example, [102, Théoreme 8.1, Chapitre 3, page 287, and Théoreme 8.2, Chapitre 3, page
296], [97, Theorem 4.2, Chapter IV, page 167], [160, Satz 29.1, Kapitel V, page 422], [162,
Section 24.1, Chapter 24, page 453] or [36, Mathematical Example 1, Chapter X VIII, page
581]. In these books, the following existence and uniqueness result is proven.

Theorem 4.1.1. For given f € L*(Q), up € HL(Q) and v € L*(Q), a unique solution u of
the variational formulation (4.3) exists, satisfying

u € L*(0,T;Hy (Q)) NC((0,T]; Hy (Q)),
du € L*(Q)NC([0,T];LX(Q)),
O € Lz(oa T [H(} (Q)]l)’

and the stability estimate

\/||MH22<0,T;H5(Q)) + ||9t”Hi2(Q) <c (|”0|H'(Q) +voll 2) + Hf||L2(Q))

with a constant ¢ > 0.

Proof. See the books [36,97,102, 160, 162] as mentioned above. O
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For a discretisation scheme, let the bounded Lipschitz domain Q C R¢ be an interval

= (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
of Section 2.8, consider a discretisation of a tensor-product type (2.41) with the finite-
dimensional space Q}(Q) =V}, 0(Q) ®S}“ (0,T), see (2.42). Therefore, introduce for x € Q
and £ € {0,...,N;} the approximations

My
Up,o(x) := ZUflVi(x) ~ u(x,ty)
i=1

and

E

x

Uh) o(x): Z v;i(x) = du(x,ty),

where Uf, ljf € R are the unknown coefficients of Uy, Uy, ¢ € Vi, 0() C H}(Q) for
£e€{0,...,N,;}. Furthermore, set for (x,1) € Q

Ny M,
up(x,t) == ; ZU['V:(X o(t) = Z U, 0(x) @e(t) = u(x,t) (4.4)
0i=
and
Ny M, N .
Z Z () =Y, Uno(x)9u(1) = du(x,1), 4.5)
=0i=1 (=0

i.e. up, iy € Qh(Q)

For the pointwise in time variational formulation (4.3), a conforming discretisation in space

with V), o(Q) C H(i () in combination with the Newmark scheme with Newmark param-

eters f = %, Y = 3 leads to the so-called Newmark Galerkin method to find the functions

Unyts Ut € Vi 0(Q) C HY(Q) for £ € {0,...,N,} such that

U0 = Onuo,  Upo= Onvo,

andfor/=1,...,N;
1 A 1
2 (Unyt = Ungo—1 + by gUpy -1, v, >Lz<9) +2 (VaUn o+ ViUn -1, Vavi )12
10

1
= Z<f(‘vt/) JFf('al/f—l)th)LZ(Q) (4.6)
for all v, € V, 0(Q) and
1, . N R 1 R
E<Uhx,[ - UhX,Z—l, th>L2(Q) + E<Vth"’€ + Vthx,é—l ’vahX>L2(Q)
1,

1
= §<f("tl’) +f("téfl)a‘9hx>L2(Q) “4.7)
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for all ¥, € Vi, 0(Q), where @y, : L?(Q) — Vj,, o() denotes the L? projection (2.39). This
method is given in [127, (8.6-4), (8.6-5), (8.6-6), page 205], see also [18,22,27,28,44,95,
113,126]. The Newmark Galerkin method (4.6), (4.7) is equivalent to the linear systems

0 ~0
My U" =uy, MU =y,

andforall/=1,...,N,

1 ) 1 _ A~ l— 1 ) _
<th + thlAhx) U= (th - thfAhx) Ut 0 k2 (E +F ‘) :
(4.8)
N A l— 1 ) 1
M0 =M, 0" = Shg, (U407 ) + S (B EY) L 49)

where M;,, € RM+*Mx is the mass matrix (2.37), Aj,, € RMMx i the stiffness matrix (2.38)
and the vectors u, v, F' ¢ ¢ RMx are defined by

upli] = (0. ¥i) 2 volil:= (0. W) 2@y Ell = (a0 W) (410)

for i =1,...,M, with the nodal basis functions y; satisfying V}, o(Q) = span{l,l/,-}?i‘l. The
matrix M, + %hifAhx is positive definite and hence, the linear systems (4.8), (4.9) are
uniquely solvable for all £ = 1,...,N;. Stability of the numerical scheme (4.6), (4.7) holds
true without any CFL condition because the Newmark method is unconditionally stable,
see [22,95,113,127]. Concerning error estimates, it seems that error estimates of the
quantities |Ju(-,7;) — Uh,n[HLZ(Q) for each £ =0,...,N, are standard, which are of optimal
order (Q(h[2 +h§), see [127, Chapitre 8], [113, Section 4.2] or [18,27,28,44]. However,
here, error estimates in space-time norms ||-|| 2(p) and || ' (o) for the approximate solution

up € Q,II(Q), defined in (4.4), are considered. It seems that proofs of such error estimates
are not available. Hence, the proofs of such statements are left for future work.

In the last part of this section, some numerical examples are presented. So, for the space-
time cylinder Q = Q x (0,7) = (0,1) x (0,10), consider the solution of (4.3)

4y (x,1) = sin(7x) sin? Gm) . (wneo,

see also the numerical examples of Section 4.2 for a comparison. The discretisation is done
with respect to nonuniform meshes as shown in Figure 4.1, where a uniform refinement
strategy is applied. The appearing integrals for the initial conditions and right-hand side
in (4.10) are calculated by the usage of high-order integration rules, and the degrees of
freedom are denoted by
dof = dim Q}(Q) NHyy, (Q)

due to the homogeneous Dirichlet boundary condition and the initial conditions, see (2.14).
In Table 4.1 the errors in the space-time norms |-[|;>(o) and |51y are presented for
the smooth function u;, where the convergence rates are as expected. Note that no CFL
condition is needed because the Newmark method is unconditionally stable.
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Figure 4.1: Nonuniform meshes: Starting mesh and the mesh after one uniform refinement
step.

dof hx,max hxvmin ht,max hl,min |y — “lvhHLZ(QJ eoc |1 — u”"Hl(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 7.088e+00 - 2.622e+01 -

132 0.18750 0.03125 1.87500 0.31250 2.921e+00 1.20 1.276e+01 0.97
552 0.09375 0.01562 0.93750 0.15625 4.728e+00 -0.67 1.811e+01 -0.49
2256  0.04688 0.00781 0.46875 0.07812 1.670e+00 1.48 8.558e+00 1.06
9120 0.02344 0.00391 0.23438 0.03906 6.701e-01 1.31 4.571e+00 0.90
36672 0.01172 0.00195 0.11719 0.01953 2.023e-01 1.72 1.813e+00 1.33
147072 0.00586 0.00098 0.05859 0.00977 5.326e-02 1.92 7.733e-01 1.23
589056 0.00293  0.00049 0.02930 0.00488 1.349e-02 1.98 3.652e-01 1.08
2357760 0.00146  0.00024 0.01465 0.00244 3.384e-03 1.99 1.797e-01 1.02
9434112 0.00073 0.00012 0.00732 0.00122 8.467e-04 2.00 8.950e-02 1.01
37742592  0.00037 0.00006 0.00366 0.00061 2.117e-04 2.00 4.471e-02 1.00

Table 4.1: Numerical results of the Newmark Galerkin method (4.6), (4.7) with nonuni-
form meshes for Q = (0,1) x (0,10) and for the function u;.
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Remark 4.1.2. For a solution of (4.3)
up(x,1) = sin(mx)r2 (10— )4, (x,1) € (0,1) x (0,10),

as considered as numerical example in Section 4.2, the Newmark Galerkin method (4.6),
(4.7) is not applicable because the corresponding right-hand side f has a singularity with
respect tot =T = 10. However, an alternative is to adapt the treatment of the right-hand
side f.

Remark 4.1.3. The Newmark Galerkin method (4.6), (4.7) fulfils a conservation of the

total energy

E() 1= 3 10u(0) Py + 5 IVt 0l2qy 1€ 10.7),
see [22,95]. As illustration, consider a solution of the homogeneous wave equation, i.e.
uz(x,t) = (cos(mt) +sin(xr)) sin(nmx), (x,1) € 0 =(0,1) x (0, 10),
with the total energy
E(t) = % r € [0,10].
Here, the initial conditions are
uz(x,0) = up(x) = sin(mx), Ju3z(x,0) = vo(x) = wsin(nx), xe€Q.

For the solution uz and for the mesh as given in Figure 4.1, the discrete total energy

1, 1
En(0) 1= 51 (0) By 5 Vet (1) By 1€ 0.7,

is computed, where the approximation i, =~ du, given in (4.5), is used. In Figure 4.2 the

difference
2

En(t) — E(t) = Ex(t) — % 1 €10.10],

is plotted pointwise for the approximate solution u3 j, of the finest level of Table 4.2, where
a conservation of the total energy is observed. In addition, the errors in the space-time
norms H'”LZ(Q) and HHI(Q) are given in Table 4.2, where the convergence rates are as
expected.
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dof iy max J1x,min iy max Nt min lluz —us.plli2(0) eoc 13 — uz plgpn (©) eoc

30 0.37500 0.06250 3.75000 0.62500  2.561e+00 - 1.066e+01 -
132 0.18750 0.03125 1.87500 0.31250  2.503e+00 0.03 9.821e+00 0.11
552 0.09375 0.01562 0.93750 0.15625 2.243e+00 0.15 9.780e+00 0.01
2256 0.04688 0.00781 0.46875 0.07812  2.581e+00  -0.20  1.152e+01  -0.23
9120 0.02344 0.00391 0.23438 0.03906 1.082e+00 1.25 4.845e+00 1.24
36672 0.01172 0.00195 0.11719 0.01953 3.012e-01 1.84 1.444e+00 1.74
147072 0.00586  0.00098 0.05859 0.00977 7.695e-02 1.97 4.605e-01 1.65
589056 0.00293 0.00049 0.02930 0.00488 1.933e-02 1.99 1.804e-01 1.35
2357760 0.00146 0.00024 0.01465 0.00244 4.839¢-03 2.00 8.268e-02 1.12
9434112 0.00073  0.00012 0.00732 0.00122 1.210e-03 2.00 4.034e-02 1.03
37742592 0.00037 0.00006 0.00366 0.00061 3.026e-04 2.00 2.005e-02 1.01

Table 4.2: Numerical results of the Newmark Galerkin method (4.6), (4.7) with nonuni-
form meshes for Q = (0,1) x (0,10) and for the function u3.

0.1

0.05 !

E, (t) - E()

t

Figure 4.2: Difference of the total energy E(r) = ”72 and Ej,(¢) of the Newmark Galerkin
method (4.6), (4.7) with a nonuniform mesh for Q = (0, 1) x (0, 10) and for the
function uj.
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4.2 Space-Time Variational Formulation in H'(Q)

In this section, a space-time variational formulation in subspaces of H'(Q) of the homo-
geneous Dirichlet problem for the wave equation,

Ouu(x,t) —Awu(x,t) = f(xt) for (x,1) € 0 =Q % (0,T),

u(x,t) 0 for (x,1) e L =Tx[0,T], (4.11)
u(x,0) = dru(x,0) 0 forx e Q,

where Q C R, d = 1,2,3, is a bounded Lipschitz domain with boundary I' = 0Q, T > 0 is
a terminal time and f is a given right-hand side, is examined and space-time finite element
methods with piecewise linear, continuous functions are considered, see [146]. The unique
solvability of this space-time variational formulation is given in [97], where the proof of
the stability estimate is repeated in this section. A (natural) tensor-product approach by
piecewise linear, continuous functions leads to a CFL condition

hy < Chy

with a constant C > 0, where &; and h, are the uniform mesh sizes in time and space.
To gain a deeper understanding of the CFL condition, an ordinary differential equation
corresponding to the wave equation is analysed. For this ordinary differential equation,
an unconditionally stable numerical scheme is introduced. By transferring this idea to
the wave equation, a stabilised space-time finite element method for the wave equation is
obtained. In the last part of this section, unconditional stability in LZ(Q), error estimates
in the space-time norms [|-|;2(g) and || 1), and numerical examples are given.

4.2.1 Variational Formulation for J;,,u+ pu = f

As a model problem for pt > 0, consider the second-order linear equation,
Ouu(t)+pu(t)=f@) forre(0,T), u(0)=du(0)=0, 4.12)
and the variational formulation to find u € H&(O, T) such that
a(u,w) = (f,w)(or) (4.13)

for all w € H{y(0,T), where T > 0 and f € [H(0,T)]" are given. In (4.13), the bilinear
form
a(-,+): Hy(0,T) x Hy(0,T) - R
is defined by
au,w) := —(u,ow) 20,1y + LU W) 12 (0.7 (4.14)
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for all u € Hj (0.T),w € H(0,T). Note that (-,-) o 7) denotes the duality pairing as ex-
tension of the inner product in L*(0,7), and the Sobolev spaces Hy (0.T), H(0,T),
[H{,(0,7)] are introduced in Section 2.2.

Lemma 4.2.1. The bilinear form a(-,-): H&(O,T) X H})(O,T) — R is bounded, i.e. it
holds true that

AT?u
la(u,w)| < (14‘7) Ll g1 0.y Wl 0,1)

forallu € H; (0,T), w € Hy(0,T).
Proof. The Cauchy-Schwarz inequality and the Poincaré inequality of Lemma 3.4.5 yield
la(u,w)| < ‘M|H1(0,T) |W‘H1(O,T) +NHMHL2(O,T)||W||L2(0,T)
2
< (1+4272“) [l 0.7y Wla 0.7)
foru € H(}’(O, T),we H})(O, T) and therefore, the assertion. O

Forv e H&(O, T), one defines
(Hpv)(t) :=v(T)—v(t), te€(0,7T), (4.15)

i.e. it holds true that Hyv € H{,(0,T). The operator

Hr: HY(0,T) — H(0,7T)
is norm preserving, i.e.

HVHHCIL(O,T) =19l 20,7y = Ha[ﬁTVHLZ(O,T) = HﬁTV”H_{)(o,T)’

and bijective, where the inverse operator

Hy': HY0,T) — HL(0,T)

is given by

(Hy'w)(t) = w(0) —w(t), t€(0.T),
forw € H})(O,T). Then the variational formulation (4.13) is equivalent to the variational
formulation to find u € H(}’(O, T) such that

!

a(u,ﬁrv) = —(8tu,8,ﬁrv>Lz(0,T> +/.1<M,QTV>L2(0,T) = <f,gTV>(0,T) (4.16)

for all v € H&(O, T). Note that for the variational formulation (4.16), the ansatz and test
spaces are equal. So, the existence and the uniqueness of a solution of (4.16) follow by a
compact perturbation argument.



4.2 Space-Time Variational Formulation in H'(Q) 131

Theorem 4.2.2. For given f € [H{(0,T)]’, the variational formulation (4.13) admits a
unique solution u € H(}!(O, T), satisfying

|l o) < C(T 1) Hf”[H_},(o,T)]' 4.17)

with a constant C(T, 1) > 0 depending on T and L.

Proof. By using the Riesz representation theorem, the variational formulation (4.16) is
equivalent to the operator equation

Au+uCu = f,
where A: Hy (0,T) — [Hj (0,T)]', defined via
(Au,v) := —(du, atﬁTV)LZ(O,T) =(du,9v) 201y foru,ve H, (0,7),
is elliptic, and hence, invertible, and C: H; (0,T) — [H (0.T)]', defined via
(Cu,v) = <u,ﬂTV>L2(O’T> = (u,—v+v(T)) 207y foru,ve H(},(O,T),

is compact, see [12, Satz 5.12, page 148]. Furthermore, the corresponding right-hand side
f: Hj(0.T) — R is given by

) = (£ Hrv)or), vEH(0.T),
satisfying
[f)| < 1A ez 0,y ||ﬁTVHHL(o,T> = 1 a0 1Vl 0.0y = 1 gzt o,y VI 0.1

for all v € Hj (0,T), i.. fe [Hy (0.T)]'. Hence, by applying the Fredholm alternative,
it remains to ensure the injectivity of A+ uC. Let u € H(}’(O,T) be a solution of the
homogeneous equation (A+ pC)u =0, i.e.

(G, Ow) 207y = M{u, W) 20,y Forallw e H(0,7).
This is the weak formulation of the eigenvalue problem

—Jyu(t) = pu(t) forte (0,7), u(0)=du(0)=0,
which only admits the trivial solution u = 0. (]
To examine the dependency of the constant C(7,u) in (4.17) on T and p, the continu-

ous bilinear form a(-,-): Hj (0,T) x H{(0,T) — R is investigated. Hence, some basic
properties of the bilinear form a(-,-): Hy (0,T) x H{(0,T) — R are shown.



132 4 Wave Equation

Lemma 4.2.3. The bilinear form a(-,-): Hj (0,T) x H’})(O, T) — R satisfies the condition

(NM1), ie.
2 latw)
— 1 >~ T .
24T O = o o)

Sforallu e H&(O, T).

Proof. Letu € Hy (0,T) be fixed and set for € [0,7]
w(t) :==u(T)—u(r) +z(t)

with
T

2(1) = \/ﬁ/sin(\/ﬁ(s—t)) (u(s) — u(T)]ds.

t

It holds true that w(T') = 0 and w € H {,(0,T). Differentiation under the integral sign yields

T

32le) =~ cos (VA(s —1)) luls) —u(T)]ds,
T

Ouz(t) = " [ sin (s —0)) lu(s) — u(T )} + pu(r) ~ u(T)]

= —pz(t) + pu(t) —u(T)],
i.e. the function z € H}) (0,T) is the unique solution of the adjoint equation
Ouz(t) + uz(r) = ulu(t) —u(T)] forr e (0,T), z(T)=09z(T)=0.
Therefore, it holds true that
a(u,w) = a(u,u(T) —u)+a(u,z)
= (D, ) 20,7y + Mt u(T) = ) 20,7y + M1t — u(T)) 20,7
= ‘u|1%~1‘(0,T)'
Integration by parts gives

T

T
dzlt) = —,u/cos(\/ﬁ(s—t)) [u(s) — u(T)]ds — \/ﬁ/sin(\/ﬁ(s—t))afu(s)ds

and so, from the Cauchy-Schwarz inequality, it follows that

urT
lzlg1 0.y < fT‘”'H‘(O,T}'
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Finally, one gets the estimate

VET 2+ /T

Wlaio,r) < lulgor) + 12lg o) < (1 +T> |l 0.7y = #"’"HI(O,T)

to conclude

p awwl w2
0£weH ) (0.T) Wlaory — Wlmor — 2+VET 1)

and so, the inf-sup condition follows. O

Lemma 4.2.4. The bilinear form a(-,-): H&(O, T) x H’IO(O, T) — R satisfies the condition
(N2):

For each function 0 #w € H})(O, T), an element u € H&(O, T) with a(u,w) # 0 exists.

Proof. Let 0 # w € H{(0,T) be fixed. Set for 7 € [0,7]

ut) : w(s)sin (/p(r —s))ds

-5/

It follows that u € H (0,T) satisfies (4.12) for the right-hand side f = w € H(0,T).
Hence, one concludes

~ 2
a(i,w) = <W»W>L2(0,T) = ||W||L2(o,r) >0
and therefore, the assertion. O
With these properties of the bilinear form af(-,-): H&(O, T) % H})(O, T) — R, the next ex-

istence and uniqueness theorem is proven, including an explicit dependency relation of the
constant C(T, 1) on 7 and p.

Theorem 4.2.5. Let f € [H{(0,T)]' be given. There exists a unique solution u € H; (0,T)
of the variational formulation (4.13). Furthermore,

L: [HH0,T) —Hy(0,T),  Lf:=u,
is an isomorphism, satisfying

T
2Bl “.18)

|”‘H‘(O,T) = |£f|H‘(O,T) <
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Proof. For the Hilbert spaces (H&(O,T),(-;)H&(O,T)) and (H’})(O,T)’<"'>H{>(O.T))s use
the Necas Theorem 2.9.1 with the help of the previous lemmata to conclude the existence
and uniqueness of a solution u € H(}!(O, T) together with the a priori estimate. O

Theorem 4.2.6. There exist positive constants cy, ¢y and further, a family of functions
uur € HL(0,T) with

1
~1
£ oy €0 () and s lyn e asu—e
and with

HL "‘HTH ],€O< ) and |MH»T‘H1(O,T)4>C2 as T — oo.
In particular, the inequality (4.18) is optimal with respect to the order of L and T.

Proof. The asserted family of elements uy r € H&(O, T) is given by
1 t

uyr(t ::—/ssin us)ds, te|[0,T],

()= s [ 5Sn(VE) 0.7]

where the initial conditions uy 7(0) = dsuy 7(0) = 0 are fulfilled. One computes

1 sin(2yAT) sin(2y/HT)  cos(2,/uT)
‘”#,T|H10T): 6 4\/ET + 8u3/2T3 o 4uT?

and hence,

1
!”/,L,T|H1(0’T>*>\/; asi — oo orasT — oo, (4.19)
The corresponding right-hand side is
2
Sur () = yup 7 (t) + puy 7 (1) = i sin(v/ut), t€(0,T),

and by the usage of the Fourier series representation of H~||[H}) (o.7)» see Lemma 3.4.4, it
follows that '

£~ ”ﬂTHHI o,1)) ||fﬂT||[H1(0T]

- BE G e

k=0

_\/2+sm(2fT)83m(\fT)
uT

323
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With this last equality, it holds true that Hﬁ uy, T“ 1.0 €0 (T) as U — oo and
[ ul‘-THHl()T)’GO(T>aST_>°°' U

While for f € [H{(0,T)]’ the bound (4.18) shows an explicit dependence on \/fI, an esti-
mate independent of i is proven, when assuming f € L>(0,T).

Lemma 4.2.7. For a given right-hand side f € L*(0,T), the unique solution u € H&(O, T)
of the variational formulation (4.13) satisfies
1
2
|”‘H1(o,r) +u ||"‘H12‘2(0,T) < ETz Hf”ZZ(o,Ty
In addition, the estimate above is optimal with respect to the order of the terminal time T

and the order of the parameter [L.

Proof. For the solution u € H(; (0,T) and its first-order derivative, the representations

u(t) = ﬁ/sin(ﬁ(r—@)f(s)ds, 1€ (0.T),
0

and
t

() = / cos (VE(—5)) f(5)ds, 1€ (0.T),
0
hold true. With the calculations for 7 € (0,T)

1 ¢ 2
du(t)* +pu()? = /cos (ﬂ(tfs) + /sm VI —s )f(s)ds
0 0
< /tcos2 w(t—s) s/tf ds+/sm tfs)>ds/tf(s)2ds
0 0 0

t T
=1 [ f(s)2ds <t [ f(s)*ds,
[rores]

it follows that

T
0y + 1oy = [ { Qe + e b
0

IN

T
1
/ rdr / F(5Pds = ST s
0 0
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and so, the estimate.

For the optimality of this estimate, take the family u, 7 € Hol,(O, T) of the proof of Theo-
rem 4.2.6. The L? norm of Uy T is

1 Ssin(2y/aT) sin(z\/ﬁT)Jr 1 3cos (2/1T)

6'u 8u5/2T3 + 4“3/2T 2,LL2T2 4,LL2T2 ’

||“u,T||L2(o,T) =

1
o1) € o (ﬁ) as [t — oo and ||u“vTHL2(0,T) — 6u as T — oo. Fur-
thermore, for the corresponding right-hand side f,, 7(¢) = \/%sin(\/“ at), the L2 norm is
given by

2,/uT
el = 7~ k)

and so, with (4.19), the assertion follows. O

With the notations of Section 2.6, a conforming Galerkin-Bubnov finite element discreti-
sation of the equivalent variational formulation (4.16) is to find a function

r, € S},0,(0.T) = span{ e}’ © Hy (0.7)
such that
a(uh,,gTVh,) —(Aup,, a;Hthr>L2(0 )+ ,u<uh,’HTVh,>L2 0,7) (f 'HTV;,,> or) (4.20)

for all vy, €, 111,,0,(0’T)- Unique solvability of (4.20) and related error estimates follow as
for the numerical solution of elliptic operator equations with compact perturbations, which
is based on a discrete stability condition for a sufficiently small mesh size h;. Using the
optimal Poincaré constant of Lemma 3.4.5, it turns out that for a sufficiently small mesh

size
V3n

[ G L — 421
"= 22+ aT)uT @20

the discrete stability condition

a(uh ,ﬁT Vh, )
Tl ey < sup S
0wy, €8}, 0.(0.7) VR IH'(0.T)

holds true for all u, € 5;'.,,0,(0’ T) with a constant ¢(u,T) > 0, see [145] for a proof, im-
plying the error estimate

|u uhz‘H‘ or) < c(u,T)hy ||MHH2 (0.T)
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with a constant ¢(u, T') > 0, when assuming u € H*(0,T) N Hj (0, T).

Alternatively, the Galerkin-Petrov finite element discretisation of the variational formula-
tion (4.13) is to find uy, € S}, , (0.T) = span{@;};", C H} (0,T) such that

!

alupwi,) = —Orttn wn, ) 20,7y + W Wi, ) 20,7y = (> W) 0.1) (4.22)

for all wy, € S} (0.T) = span{@ }p ' € H}(0,T). The related system matrix of (4.22)
is given by

Ky, = —Ap, +uM,, € RMN (4.23)
with the stiffness matrix
—1
1 i 1 1
mj_1 & 1 ua 1 -1
Ap=| R  hxVhs By (4.24)
i L —1
hen—1 N1 Nl
and the mass matrix
he
2hi 1 +2hp hio
My, = 5 %) 2hyp+ 203 3 ) (4.25)

hen—1 2R n—1+2h N, hep,

Hence, unique solvability of (4.22) follows because K}, is a lower triangular matrix with
positive diagonal elements.

Remark 4.2.8. For a uniform discretisation with mesh size h;, one can interpret the matrix
K}, in (4.23) as a finite difference scheme

apvy = f1,
apvi +apv2 = f,
apvja+aivj_1+agvj=f; forj>2,

where
1 ph 6+uhf o 72+4,uh,_76+2/.1h,2

W= e T w0 T T e 3h,

and with given f; € R. The essential case f;j =0 for j > 2 is examined. The solution of
the homogeneous linear recurrence relation

apvj2+avj_1+apv; =0 forj>2



138 4 Wave Equation

is given for j > 1 by

i1 i1
6—2h2 3y /(R u—12 6—2h2u—/3h; [ (R2u—12
e/ ulumi) \ oI fu(iiu12) \ T > 12,

6-+hiu 6-+hiu
Vi= .
! (=17 M (Ao +A1(j— 1)), ifh2u
. 62 . 6217
Apcos ((]f 1)arccos 6+,2”) +Ajsin ((]7 l)arccosWrzi) , ifh?p < 12,

where the coefficients Ag, A1 € R are determined by f1, f» € R. Hence, in general, the
sequence (v;) jen is bounded as j — oo if and only if

Ru<l12 < < " (4.26)

see Table 4.6 for a numerical illustration.

From Remark 4.2.8, one concludes that the numerical scheme (4.22) is only conditionally
stable. To overcome the mesh conditions (4.21) or (4.26), the numerical scheme in (4.22)
is stabilised. Considering that the following technical lemmata are needed, where the
trapezoidal rule is used analogously as in [164, Chapter 2]. In addition to S}“ (0,T), also

the finite element space S2r (0,T) of piecewise constant functions on the same time mesh
is used, see Section 2.6.

Lemma 4.2.9. For all f € L*(0,T), the equalities

() ¢
oy, / f(s)ds = Q) f = oI, / f(s)ds 4.27)
0 T

are valid, where I,: C[0,T] — S}lr (0,T) is the piecewise linear interpolation operator
(2.27), and Qh L*(0,T) — S(L (0,T) denotes the L* projection (2.26) on the piecewise
constant finite element space SO 0 (0.T).

Proof. On the element 7, = (ty_1,7), { = 1,...,N,, it holds true that

oI, ff(s)ds /f(s )ds — [(]/]f ds| = / f(s)ds th
0

and
1 f—

() 7
1 1
o, / F(s)ds = — / F(s)ds— / F(s)ds| = — / Fls)ds =00 f.
ht,é P hr,é
T T T (7

Hence, the assertion follows. O
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Lemma 4.2.10. For all u;, € S,lhyoy(O,T) and wy, € S}ll,,,o(o’ T), the representation

1N
(s W, ) 1207y = 2 Z bt ((Ortn Orwi,) 125y + (1> O Wi, ) 12(0.7) (4.28)

holds true, where Qh L*(0,T) — SO (0,T) denotes the L? projection (2.26) on the piece-
wise constant finite element space ng 0,T).

Proof. With the error representation of the trapezoidal rule, one obtains on each finite
element 75, £ =1,...,N;,

)
Qg/wh,(s //wh, )dsdr
)‘T hf

tr1 T
f—1

Liy ' iy
=3 / wi, (s) ds+/ wp, (s)ds | — Ea,whtm
T T
) hze
= Qg,lhr /Wh, (s)ds— 1’—2 B,Whm.[.
Further, using integration by parts and (4.27), it follows that

/a,uh, /)wh,(s)ds (1)dr = — /T w, (1) | a, })wh,(s)ds (1)dr
T

T

u/u Qh, w/h ) 1)dr.

o\'ﬂ

With this, by using integration by parts and the local definition of the L? projection le,
one concludes that
r < r 0
(W W) 20 / w, (1) | & / wh, (s)ds | (1) dr = — / uap, (1) / wa,(s)ds | (1) dr
0 T 0 T
as well as
N, . ()
own)om ==Y [ o, 0) | & [wnas | @
8:11/—1 T

hz‘ ty N, Iy ()
= ):%2‘ / Oy, (t) Ay, (1) dr — ¥ / I, (1) | O I, / wi, (s)ds | (1) dt
=1 =1, T
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and further,

1 N N, U )

(o) i20) = 13 1 e @ o ey~ X [ O 0) ( B, [ 945 | ()
T

T )
1
= o5 X 0000 ) e~ [ B (1) B [ (9)ds | )
= 0 T
1 M

= P Z hzz,k'(atuh,, arWh,>L2(f/) + <Mh,, Qgtwhz>L2(0,T)’
=1

i.e. the representation (4.28). O

Next, an alternative representation of the bilinear form a(-,-) is given.

Corollary 4.2.11. For wy, € S}, , (0,T) and w, € S}, (0, T), the equalities

a(uhz »Wh, ) == <(9[Mh[ ’ atwhz >L2(0,T) +u <uhz »Wh, >L2(0,T)

N, 2
t ‘uh ’
= <<9fuht’ afWhr)Lz(O,T) + ; ]7; (8,14;,, > atwh: >L2<T[) + u <uhr’ QZ, Whr)Lz(O,T)
_ v ”htzf 0
- Z 12 -1 <atuhr’ afwhr)Lz(‘rg) +u <uht’ Qh, Wht)Lz(O,T) (429)
(=1

are valid.

Motivated by the representation (4.29), one defines the perturbed bilinear form
ap, (uhf’ Whr) == <afuhz s afwhr)Lz(O,T) + u <Mh1 > Q2, th)LZ(O,T) (430)

for up, € S, }l/qO,(O, T) and wy, € S}lmo(o, T), and consider the perturbed variational formula-
tion to find i, € S, 111,,0,(0’ T) such that

an, (in, s wi,) = (fswn ) 0.1) (4.31)
for all wy, € S},I”O(O,T).
Lemma 4.2.12. The perturbed bilinear form (4.30) is bounded, i.e. it holds true that
lan, (un,wr,)| < (H‘%HTZ) lutn, |11 0,1y Wh |11 0.1)

forall up, € S}Lho’(O,T), wp, € S},,,,O(O’T)-
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Proof. With the Cauchy-Schwarz inequality, the L? stability of Qgr, and the Poincaré in-
equality of Lemma 3.4.5, it follows that

\an, (1t Wi )| < e .0y W L 0.0y + 1 1 20, 1@ w20,
< (1 + %HTZ) [, |51 0.7y Wi |11 (0.7)
for uy, € S}l;,o,(O’T)’ wp, € Silz,,,o(O’T)’ and so, the assertion. O
The related system matrix of (4.31) is given by
Kj,, = —Ay, +uMj, € RN (4.32)

with the stiffness matrix A, in (4.24) and the perturbed mass matrix

hr,l
ht,l + h[,2 hz,z
My, = 7 %) hip+hz i3 . (4.33)

hn—1 hen—1+heN, e,

Hence, unique solvability of (4.31) follows because I?h, is a lower triangular matrix with
positive diagonal elements.

Remark 4.2.13. Note that the Galerkin-Petrov finite element discretisation (4.31) can be
realised as a two-step method, which differs from the Newmark scheme, see Section 4.1,
only in the treatment of the input data.

To prove a discrete stability condition for the perturbed bilinear form (4.30), the following
lemma is needed, which is analogous to [164, Theorem 2.1, page 168].

Lemma 4.2.14. For a given function zj, € S111,,,0(0’ T), represented by

M
2, (1) = Y zigilt)  with zy, =0,
i=0

and a fixed index j € {0,...,N; — 1}, a function
v €58),0(0.7)

exists with the following properties:

1. Fort € [0,t;], it holds true that V{;’ (r)=0.
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2. For{= j+1,...,N,, the equalities

- 1
(9, Oz ) 12(r)) = 5 (Z? - Z%—1>

and
2

17 fy
¥ O 2 ) r2(s,) :% /Zh, (s)ds —% /Zh, (s)ds
1 1
are valid.
3. The estimate )
7, o) < lem 207
holds true.

Proof. For zj, € S}%O(O,T), consider the piecewise linear interpolation of the antideriva-
tive, i.e. for r € [0,T], one defines

N, i ()
() =Y / an()ds | o) = [ In / o (s)ds | (1), 7, €5)0(0.T).
k=0"\ o 0

The relation 9,vy, = Qg,Zh, follows from (4.27). For a fixed index j € {0,...,N; — 1}, one

defines N .
) [ . —1)/7z; fori=0,...,j
; ; i ' A
Z )= Z -[, = . .
7 (1) l;) 19i0), 7 { % fori=j+1,....N;.

Note that z{;r es }ln,,,o (0,T), and according to Z;;, one introduces Vi,’ satisfying 8,V£r = le zﬁl.
In particular, for j > 0 and ¢ € 7y for £ = 1,..., j, it follows that

afvh (t)= h,Zh, ~ e /h, Z( 1+Zz) 0,

and due to Vf;t(O) =0, one concludes V;;, (r) =0fort € [0,1;], i.e. the first assertion.

To prove the second assertion, one computes for £/ = j+1,...,N;

(073,22 12(sy) = (@ 25D 12y

1 .
= 5(@,, +1z <zz—zz71>
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as well as
1 )
.00 2 = / I / 2 (s)ds | (1) 0%z, (1)
11 0
tp |t

LT R EACISOR /zh<s>ds<p/<> ar

ti—1 LO
1 Iy | I
=_— /Zh, (s)ds =hy g /zi (s)ds-i—/z{l (s)ds
ht,e 2 J 't J t
t—1

Iy I 7]
= % / zp,(8)ds / zp,(8)ds+ /th (s)ds
1 1 7
and with completing the square,

17 2 1y t—1

_j 1
<V;,,’Q2tzhr>L2(rﬁ):§ /Zh,(s)ds +/Zh,(5)d5 /Zhr(s)ds

-1 t—1 fj

1 Iy i 7
=3 /zh, dv—l—/zh, /zh,
(—1 r/
t 2 I
=3 Jawas| =3[ [ata
=5 Zp,(s)ds > Zp, (8)ds
Ul ]

Finally, from the L? stability of Qg,’ one concludes the third assertion, i.e.

» > 0 i

|V;,,|H1(0,T) = |V;l,|H](t,-,T) = HQh,Zﬁ, HLZ((,»,T)

= HQg,ZhI HLZ(zj,T) < HQg,th”LZ(O,T) < th1||L2(0,T)~

Hence, the lemma is proven. (]
Lemma 4.2.15. The variational formulation to find zj, € S }l 0(0,T) such that

an, (V> zn,) = (80:vi ) 0.1y + (81,9 Vi) 2001y + Zh[z 82,0V} 12(z)) (4.34)

(=1

for all v, € Sh (0, T) is uniquely solvable, where the right-hand sides g € [HO 0,7))

and g1,82 € LZ(O,T) are given. Moreover, the stability estimate

2|l 20,7y < 2T {HgOH[H& oy Tlgtlzon +hzZHzé’zHU(o,T)} (4.35)
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holds true for any mesh with maximal mesh size h;.

Proof. The related finite element system matrix E}I of the variational formulation (4.34)
is upper triangular with positive diagonal elements, see (4.32), and hence, there exists a
unique solution z;, € S}lmo(O, T) of (4.34).

For the estimate, consider for each index j € {0, .. — 1} a function v b € s 10,0, T) as

given in Lemma 4.2.14. Plugging these functions v Vh, into (4.34) and by usmg the properties
of Lemma 4.2.14, this gives

an, (v, ,zn,) = —(9V, Iz 1201 +”<V{,,’Q2[th>Lz(0,T)
N . N P o
== L 0m,9m)ee 1 Y, T Ohan)re
(=j+1 (=j+1
| N N Ly 2 Iy 2
1 “ 1
==3 Y (Z% _Z%—1> +5 Y /zh,(s)ds - /Zh,(s)ds
(=j+1 e=jr1 \ \/ ;
J J
1 r ’
2 H
= 5% + 5 /zh, (s)ds
1j
and so,
. . M ) . .
(80,7, ) 0.1) + (81,97}, ) 20,7 + 421 h;. (82,07}, ) 12(z,) = an, (. 2n,)
1 f ’
= Ez? —I—% /Zh, (s)ds
i)
This result yields
Ny h[
|Zh,||L2 07) ZHZh,HLz (%) Z 35 <z,+zzzz \+z 1) thi(2/+1/ 1)
N, 1 1N, 1

Z h[jzj+ Z h,le]

. N .
Z h;,{ gOth (0,7) <gl,9tV//1,>L2(o,T)+thz,é<g2’atvﬁ,>L2(n)}
(=1

N-1 . , N, )
+ ) hijn {(go,vf,)(o,n + (21,07 )20y + ) hi((&’z,atvf,)y(n)} :
=0 =1
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With the last inequality, the Cauchy-Schwarz inequality and the use of the properties of
Lemma 4.2.14, one concludes

N—1 .
thz Hiz(o,r) < Z by {HgOH[H({ 0,7 + g1 ||L2(0,T) +ht2||g2||L2(o,T)} ‘Vi,,‘Hl(O’T)
Jj=1 ’ —

< ‘ ‘ ny H 12(0.T)
Ni—1 .
+ Dy j1 {”80”[11(; or T g1 ”LZ(O,T) +ht2||82||L2(0,T)} |V;“ ‘HI(OYT)
j=0 : ———
< th: ||L2(O,T)

<27 { gl oy + 81 lz0.r) + B 2l 207y } Nan ez
i.e. the assertion. O

Corollary 4.2.16. The variational formulation to find vy, € S ilt,,o,(o’ T) such that

N,
an, (Vi swi,) = (o wa ) 0.1y + (1, 0wn ) 200y + Y hi((f%atwhzhz(n») (4.36)
=1

Sfor all wy, € S}l;,,O(O’T) is uniquely solvable, where the right-hand sides fy € [H,IO(O, 7))
and fi, > € L*(0,T) are given. Moreover, the stability estimate

Vi Nl 20,y < 2T { 1ol 0.y + 112 0,) +hr2Hf2HL2(O,T)} (4.37)

holds true for any mesh with maximal mesh size h;.

Proof. The related finite element system matrix I?h, of the variational formulation (4.36)
is lower triangular with positive diagonal elements, see (4.32), and hence, there exists a
unique solution vy, € § }1:,,0,(0’ T) of (4.36).

The proof of the stability estimate is analogous to the proof of (4.35) with the help of a
corresponding lemma analogous to Lemma 4.2.14. O

Lemma 4.2.17. For each u;, € Slltr,O,(O’ T), the discrete inf-sup condition

l |ahz(uht’wh1)‘
1 et |1 0r) < sup T E—
L gur? T est or) o)

holds true.
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Proof. For a fixed function uy,, € S111,,0,(0’ T),letwy, € Silz,,,o(o’ T') be the unique solution of
(4.34) for go = go =0 and g| = duy, € L*(0,T), i.e.

an, (Vs Wh,) = (Grttn,s rvi) 12(0.1) (4.38)
is valid for all vy, € S} (0, T). For the particular choice vy, (t) = w, (0) —wy, (1), 1 € [0, T],
it holds true that v, € S, ;11“0’(0, T') and so, it follows that

(9w, ‘9tWhr>L2(0,T> = p(wn, —wi, (0), Qg, th>L2(O,T) = —(hun, atWh,>L2(o,T)-

Hence, using the Cauchy-Schwarz inequality, the Poincaré inequality from Lemma 3.4.5
and the L? stability of the L? projection QQ,’ one concludes

‘Wht|12-11(o,r) = *<at”hpatwh,>L2(o,T) + 1 (wp, — wi, (O)’Q2,W/11>L2(0,T)
< [up, |Hl(0,T) [Wh, |H‘(O,T) + 1 [[wp, — wh, (O)HLZ(O,T) HQ;I),WhI HLZ(O,T)

2
< lun, [ 0.0y Wn |l 0.y + EﬂT Wi, i1 0,1) 1w 20,1

4 5
< (14 0T ) s o) 9 o)

where in the last step, the stability estimate |[wy, [|;2(0,7) < 27 [un,|g1(,r) from (4.35) is
used.

The choice vj, = uy, €S }1,,0,(0’ T) in (4.38) and the estimate above yield

2
an, (un, wi,) = |“h,‘H1(o,T) |uh;|H1(O,T)|Whr‘H‘(O,T)

z 4;2
I+ ZuT
and hence, the discrete inf-sup condition follows. O

Theorem 4.2.18. For given f € [H})(O,T)]/, let the unique solution u of the variational
formulation (4.13) satisfy u € Hy (0.T) NH*(0,T) for some s € [1,2]. Then, there exists a
unique solution u, € S}h,o,(o’ T) of the Galerkin-Petrov finite element discretisation (4.31),
satisfying the stability estimates

||’7htHLZ(o,T) < ZTHf”[H}O(o,T)]/,

~ 4
leth, | 0.7y < (1 +;HT2> 1A e 0.1y

and the error estimate
~ 4 2 ) s—1
Ju=iinlivorry < |1+ (14 —5072) (14 2072 [ Qb ull o

1 4 o\,2
Tk (1 +;#T >hr lutl1710,7)

where the constant Cy > 0 is coming from standard interpolation error estimates.
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Proof. First, the unique solvability of the variational formulation (4.31) and the first sta-
bility estimate follow from Corollary 4.2.16 for fy = f, fi = f> = 0. The second stability
estimate is a consequence of the discrete inf-sup condition given in Lemma 4.2.17.

Second, for any v, € S,'%,O,(o, T), it holds true that

|ue — i, ‘HI(O,T) < u—vp, ‘HI(O,T) + [un, — th|H‘(0,T)

and it remains to estimate the second term. With the usage the discrete inf-sup condition of
Lemma 4.2.17 and using the Galerkin orthogonality for the variational formulations (4.13)
and (4.31), it follows that

1 - ap, (, — v, W,
T lan, (i, = v, wa,)|
I+zuT owyest yor)  Wnlaor)

- sup |an, (i, wr,) — an, (Vi wh, )|

()%whtesl;“o(oj) |th |H‘ 0,7)

_ sup ‘a(u’wh,) - ah,(vhpwh,)‘
0w, €5, 4(0.7) W, [ 10,1
— s A vewn) (v, wi) = an (h )|

0wy, €S}, o(0.T) W[ 0.7)

Further, with the boundedness of the bilinear form a(-,-) and the Poincaré inequality of
Lemma 3.4.5, one concludes

alu—vp,wp,) = =0 (u—vp, ), 9wn, ) 12(0,7) + B = Vi Wi, ) 12(0.7)
<lu=vu o) Wh a0 + 1w =il 20,0 Wn | 20,7

4
< (1 + ﬁﬂTz) |t =i | gt 0.0 Wh |11 (0.7)-

Moreover, using the representation (4.29), one estimates the consistency error by

IR
|a(ns Wi, ) = an (Vi wa, )| = 751 [Z,lhl‘2,€<atvhuatwhz>L2(n;)

1
< Il hE Vi g ©.0)Wn a1 o.m)-

Hence, it follows that

1

~ 4 1
m\’% =il o) < (1 + p#ﬂ) |t =i, |1 0.7y + H 1 Vi a1 0.1
y
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and therefore,

~ 4 5 4
|u7uht|H|(0’T) < |:1+ (1+?HT )(14‘;[,17“ ):| |u7vh,\H1(o’T)
1 4 _o\,2
g <1 +ENT >ht Va1 (0,17)-

In particular, for the piecewise linear interpolation v;, = I, u, it holds true that

s—1
= Inull 0.7y < Coly ™ Nlullgso,ry> nttl o,y < lutlg o,y

see Section 2.6 and thus, the assertion. O

Remark 4.2.19. The proof of the error estimate in Theorem 4.2.18 is also given by [51,
Lemma 2.27, page 95].

Remark 4.2.20. The discrete inf-sup constant of Lemma 4.2.17 depends on the parameter
W with order w='. Numerical experiments for the optimal discrete inf-sup constant

, 1
e (Top) = inf sup lan O wn )l (4.39)

=7, 4
02, €8},0,0.7) 02, 5}, o0.7) Vil o) Wl o) 14 ZpT?

show only a dependency of order ,ufl/z, where a corresponding generalised eigenvalue
problem is solved to compute cyi (T, 1), see [84, Subsection 3.6.6, page 124]. In Table 4.3
the optimal discrete inf-sup constant cy (T, L) is presented for p € {125,250,500, 1000}

with T = 10 and a uniform mesh size hy = T /N;.

For the optimal discrete inf-sup constant with respect 1o ||"|| ;2 (o

1
2T’

cp2(T,u) := inf sup (V1 )|

>
0£vi, €5}, ,(0.T) 0wy, €8} o(0.T) [V, ||L2(0,T) (Wi, [ 1 (0,1)

(4.40)

where the last inequality follows from Corollary 4.2.16, numerical experiments with the
same discretisations as for ¢y (T, 1) confirm the independence of c¢;2(T, 1) from the pa-
rameter [, see Table 4.4.

Numerical experiments for the bilinear form (4.14), i.e. without stabilisation, show a
similar behaviour as for the perturbed bilinear form (4.30), provided the mesh size h; is

sufficiently small, i.e. hy < \/m

Next, an LZ(O,T) error estimate is stated, where the proof is based on the proof of [164,
Theorem 3.1, page 175].
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N, hi e (10,125)  ¢;1(10.250)  ¢;1(10,500)  cg1(10,1000)
4 25000000 1.12365¢+01 2.21744e+01 4.40526e+01 8.78100e+01
8 1.2500000 9.77956e-01 1.62745¢+00 2.96357¢+00 5.65355¢+00
16 0.6250000 3.33189¢-01  4.22413¢-01  6.05756e-01  6.80010e-01
32 03125000 1.12684e-01 1.35639%¢-01 1.79762¢-01  2.31985¢-01
64 0.1562500 4.89792¢-02 4.96583¢-02  5.60224e-02  6.97641e-02
128 0.0781250 3.33683¢-02 2.72126¢-02 2.47568¢-02  2.50579¢-02
256 0.0390625 2.91545¢-02 2.16312e-02  1.66440e-02  1.36724e-02
512 00195312 2.83866e-02 2.02092¢-02  1.46513¢-02  1.08659¢-02
1024 0.0097656 2.81193e-02 1.98896¢-02 1.41544¢-02  1.01405¢-02
2048 0.0048828 2.80366e-02 1.98239¢-02  1.40306¢-02  9.98949¢-03
4096 0.0024414 2.80160e-02  1.98080e-02  1.40038¢-02  9.93791e-03
8192 0.0012207 2.80108e-02 1.98041e-02  1.39974e-02  9.92346e-03
16384  0.0006104 2.80096e-02 1.98031e-02  1.39958¢-02  9.91987e-03
32768 0.0003052 2.80092e-02 1.98029e-02 1.39954e-02  9.91898e-03

Table 4.3: Optimal discrete inf-sup constant ¢ (7, 1) of (4.39) for the perturbed bilinear
form (4.30) for u € {125,250,500,1000} with T = 10.

N, 3 c2(10.125)  ¢;2(10,250)  ¢,2(10,500) ¢;2(10, 1000)
4 25000000 1.40996e+01 2.77886e+01 5.51608e+01 1.09934e+02
8 1.2500000 2.65957e+00 4.41397e+00 8.01919e+00 1.52769e+01
16 0.6250000 1.68707e+00 2.25321e+00 3.30172e+00 3.74737e+00
32 03125000 8.80041e-01 1.24605e+00 1.79212e+00 2.45043e+00
64 0.1562500 4.89981e-01 6.40430e-01  8.88048¢-01 1.26819¢+00
128 0.0781250 3.59196e-01 4.07852e-01 4.91438e-01  6.42682e-01
256 0.0390625 3.26162e-01 3.37548¢-01 3.62111e-01  4.07958e-01
512 00195312 3.14474e-01  3.19977e-01  3.26189%-01  3.37739¢-01
1024 0.0097656 3.12185¢-01  3.14389e-01  3.16821e-01  3.19974e-01
2048 0.0048828 3.11659¢-01 3.12923e-01 3.14473e-01  3.14727e-01
4096 0.0024414 3.11531e-01 3.12570e-01 3.13677e-01  3.13615¢-01
8192 0.0012207 3.11499e-01 3.12482e-01  3.13481e-01  3.13370e-01
16384 0.0006104 3.11491e-01  3.12460e-01  3.13432¢-01  3.13310e-01
32768 0.0003052 3.11489e-01 3.12455¢-01  3.13420e-01  3.13295¢-01

Table 4.4: Optimal discrete inf-sup constant ¢;2(7, ) of (4.40) for the perturbed bilinear
form (4.30) for u € {125,250,500,1000} with T = 10.
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Theorem 4.2.21. Let the unique solution u of (4.13) satisfy u € Hy (0,T) NH*(0,T) for
some s € [1,2]. Then, the unique solution u,, € S,',[’O,(O,T) of the Galerkin-Petrov finite
element discretisation (4.31) from Theorem 4.2.18 satisfies

2

[JT
=lulgi o7

~ 4
=i lsr) < (14 272 ) Bl o+ L
with a constant ¢ > 0 independent of L and h;.
Proof. With the representation (4.29) and the H& projection Q},,” of (2.33), it holds true
that
ahl (ﬁhz - Q;l, u, th) = ahz (ﬁhl ’ th) _ahz (Qlll,u’ th)
———

=a(u,wy,)
N;

= a(u,wy,) —a(Qy,u.wp,) + (91,1 0w ) 12 ()

— (Ghu, O wn, ) 20,1 +“<”’Wh1>L2((),T) + (9 Q). 9wn,) 120.7)
—_—

=(0 0, 10wn,) 207
h2
<Qh,“ Wi 20,1y + Z ‘9rQ1u“ Wi, )12(z,)

= [(u—Qj,u,w,) 12 (0 Q4. 9wn, ) 12z

for all wy, € S}l!!!O(O, T) and so, up, — thu € Sh,,o,(o’ T) is the unique solution of the varia-
tional formulation (4.36) for
fo=t-(u=0lu) eXO.T), fr=30L,uc*O.T) and fi=

Therefore, the stability estimate (4.37), the Poincaré inequality from Lemma 3.4.5 and the
stability of the H(% projection give

. 1 1 :uThtz 1
[h, — O ull 20,7y < 2T pt || — Qh,”H[H}O(o,r)y % HatQh,””LZ(o,T)
4 Th?
< ETZHH” - Ql]zr””LZ(o,T) + %‘”'H‘(O,TY

With the last estimate, the triangle inequality and the error estimate (2.34) for the H(},
projection, it holds true that
llw—tin, | 207y < Nl = Qhull 20,7y + i, — Qe 20,7
4 , uTh?
c (H'ETZIJ) h;”uHHY(O,T)+TT|M‘H‘(O,T)

with a constant ¢ > 0 independent of u and /. Hence, the assertion follows. O
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As a numerical example for the Galerkin finite element methods (4.22) and (4.31), a
uniform discretisation of the time interval (0,7) with 7 = 10 and a uniform mesh size
hy =T /N, is introduced. For yu = 1000, consider the solution

u(t) = sin’ (Zm) , telo,T],

where calculations of the appearing integrals for the related right-hand side in (4.22) and
(4.31) are done by the usage of high-order integration rules.

In Table 4.5 the results for the stabilised variational formulation (4.31), which is uncon-
ditionally stable, are presented, where the error estimate in the energy norm of Theo-
rem 4.2.18 is confirmed. In addition, the error in L2(0, T) is presented, where a quadratic
convergence, as expected from Theorem 4.2.21, is observed.

N h lu—tn, || 20000  €0c  [u—iip,|g10.00)  €0C
4 2.5000000 1.7722e+00 - 9.0867e+00 -

8 1.2500000 6.0704e+00 -1.78 2.0130e+01 -1.15

16 0.6250000 1.2687e+00 2.26 9.4204e+00 1.10
32 0.3125000 5.7861e+00 -2.19 6.0121e+01 -2.67

64 0.1562500 3.3966e-01 4.09 6.1941e+00 3.28
128 0.0781250 7.6647¢-02 2.15 2.2955e+00 1.43
256 0.0390625 2.0315e-02 1.92 9.4091e-01 1.29
512 0.0195312 5.2649¢-03 1.95 4.1539¢-01 1.18
1024 0.0097656 1.3365e-03 1.98 1.9803e-01 1.07
2048 0.0048828 3.3682e-04 1.99 9.7671e-02 1.02
4096 0.0024414 8.4229e-05 2.00 4.8663¢-02 1.01
8192 0.0012207 2.1057e-05 2.00 2.4310e-02 1.00
16384 0.0006104 5.2644¢-06 2.00 1.2152e-02 1.00
32768 0.0003052 1.3161e-06 2.00 6.0758e-03 1.00

Table 4.5: Numerical results for the stabilised variational formulation (4.31), u = 1000,
T =10.

In Table 4.6 the related results for the variational formulation (4.22) without stabilisation
are presented, convergence is observed for a sufficiently small mesh size only. Note that

12/~ 0.1095.

4.2.2 Variational Formulation for the Wave Equation

Instead of the ordinary differential equation (4.12), the wave equation (4.11) is considered.
The aim is to extend the results of Section 4.2.1 to the wave equation. So, for u € H&;’é’ (Q)
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N hy lu—unll2000)  €0¢  u—up |y 9 e0C
4 25000000  7.0573e+01 - 9.8785e+01 -
& 1.2500000 1.6871e+03 -4.58 3.7166e+03 -5.23
16 0.6250000  9.1421e+07  -15.73  3.7247e+08  -16.61
32 0.3125000  2.3915e+15 -24.64  1.9496e+16  -25.64
64 0.1562500 1.6337e+22  -22.70  2.9536e+23  -23.85
128 0.0781250 3.1417e-02 78.78 1.7859+00  77.13
256  0.0390625 9.2885e-03 1.76 8.2361e-01 1.12
512 0.0195312 2.4767e-03 1.91 3.9567e-01 1.06
1024 0.0097656 6.3105e-04 1.97 1.9532e-01 1.02
2048 0.0048828 1.5839¢-04 1.99 9.7325e-02 1.00
4096 0.0024414 3.9633e-05 2.00 4.8620e-02 1.00
8192 0.0012207 9.9106e-06 2.00 2.4304e-02 1.00
16384 0.0006104 2.4778e-06 2.00 1.2152e-02 1.00
32768 0.0003052 6.1946e-07 2.00 6.0757e-03 1.00

Table 4.6: Numerical results for the variational formulation (4.22), u = 1000, T = 10.

andw € Hol;' }O(Q), one defines the bilinear form

a(u,w) := 7(8,u,8,w>Lz(Q> +(Vyu, VXW>L2<Q),

see Section 2.5 for the details of the Sobolev spaces. The boundedness of the bilinear form
a(-,-) is stated in the next lemma.

Lemma 4.2.22. The bilinear form a(-,-): H(;;Y(;, (Q) x H(};”]O(Q) — R is bounded, i.e.

la(u.w)[ < [ulg ) Wlg1(0)

forallue Hg;’& (Q).we H(%lo(Q)

Proof. The assertion follows immediately from the Cauchy-Schwarz inequality. O

The variational formulation of the wave equation (4.11) is to find u € H(;;’(l)’ (Q) such that

a(u,w) = <f’W>L2(Q) 4.41)
for all w € Hé;’}O(Q), where f € L*(Q) is given. Note that the initial condition u(-,0) = 0
is considered in the strong sense, whereas the initial condition d,u(-,0) = 0 is incorporated
in a weak sense.
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For the analysis of (4.41), the adjoint problem to find w € H&”'O(Q) such that
a(u,w) = (g.u)12(g) (4.42)

forallu € Hg;’& (Q), where g € L*(Q) is a given right-hand side, occurs.

Next, an existence and uniqueness result for the variational formulation (4.41) is given.
Such a result is contained in [97, Chapter IV], see also [145]. To summarise and to examine
also the adjoint problem (4.42), the following theorem is stated.

Theorem 4.2.23. Let f, g € L*(Q) be given. There are unique solutions u € Hé;’é’ (Q) of
(4.41) and w € Hy'\y(Q) of (4.42), satisfying

1
[ulig) \[TIIfHLz and — |wlg (g \[TIIgIILz

Proof. For the variational formulation (4.41), there exists a unique solution u € Héé (Q),
see [97, Chapter IV, Theorem 3.1, page 157, and Theorem 3.2, page 160]. The estimate
follows by a Fourier series ansatz as in [97, Section 7, Chapter IV], see [145]. When using
the representation (3.66), any u € H(};’é’(Q) admits the representation

Mx

i ,ka iUi(l)d’i(x)’ (x,t) c Q, (4.43)

i=1

Il
-

i

where V;(t) are the temporal eigenfunctions given in (3.26), and ¢;(x) are the spatial L>(Q)
orthonormal eigenfunctions of the Laplacian with homogeneous Dirichlet boundary con-
ditions, see (2.4). For the solution of the variational formulation (4.41), consider the ansatz
(4.43), where the unknown functions U; € H(}q (0,T) are to be determined. When choosing,
for a fixed j € N, v(x,7) = V(£)¢;(x) with V € H,IO(O,T) as test function, the variational
formulation (4.41) results in finding U; € H&(O, T) such that

T T T
—/8,Uj(t)3tV(t)dt+uj/Uj(t)V(t)dt — /Fj(t)V 1)dr
0 0 0
forall V € H{(0,T), where the functions F; € L*(0,T),
1) = /f(x,t)q)j(x)dx, 1€ (0.7),
Q
are the coefficients of the Fourier expansion

Fen) =Y Y faVi0)95(x) = 2F(r>¢, (x.1) € 0,

j=1k=0
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see again (3.66). From this, one concludes

191 g) = / / 7o) P = 2121 O/F !@(xm,-(x)

4

JIE@OF d =Y 11720,
=1

Theorem 4.2.5 yields the uniqueness and the existence of the functions U; € H, (0,T)

c\ﬂ

Hence, one obtains

T
0 = Il o —// 9. 1) P+ V)
0
=YY /B, (1)oU z)dt/¢, x)9;(x)
i=1j=1
/ (U0 [ V,6,00 - V10 (x)dx
0 Q
and by using Lemma 4.2.7,
=) T oo
M|H1 Z /|8,U,(l‘ |2dt+/,t, /|U, ‘2dt Z “Ui'%-ll(O,T) Jr:l“Ll‘HUl‘HIZ,Z(O,T)]
i=1 0 i=1
E Z 2(0,T) Tz HfHLZ
Analogous results hold true for the adjoint problem (4.42) O
The variational formulation (4.41) is equivalent to find u € H&é’ (Q) such that
(4.44)

a(u, Hyv) = (f,ﬁr\/),_z(Q)

(Q), where the transformation operator #Hr, given in (4.15), acts only on

for all v € H(};’&
the time variable ¢, i.e.
(H10)(x,1) = 9(x,T) = D(x,1), (%) € Q, (4.45)
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for v € H(};’(;, (Q). Note that in (4.44) the ansatz and test spaces are equal and so, discretisa-
tion schemes of Galerkin-Bubnov type are possible.

The solution operators from Theorem 4.2.23 are not isomorphisms and hence, to derive
from Theorem 4.2.23 an inf-sup condition, like

la(u,w)|

Vu € Hyy (Q): sup > Cs|uly(g) (4.46)
osweni o) Wl o)
with a constant Cs > 0, is not possible.

Theorem 4.2.24. There does not exist a constant C > 0 such that each right-hand side
f € L*(Q) and the corresponding solution u € H&’é’ (Q) of (4.41) satisfy

lulm (@) < ClA i oy (4.47)
In particular, the inf-sup condition (4.46) does not hold true.
Proof. Consider the eigenfunctions ¢ € H(% (Q) and eigenvalues p; > 0 of the Dirichlet

eigenvalue problem of the Laplacian, see (2.4). For k € N, take the eigenpair (¢, ) and
for (x,1) € Q, set

(1) = Be(x) / ssin(y/igs) ds,
0

S 1) := ypug(x, 1) — Aguag (x,1) = 2y (x) sin( /Uyt ).

The initial and boundary conditions u(+,0) = dru(-,0) = 0, uyx = 0 and w; € H&’é’ (0)
are fulfilled. One computes as in Theorem 4.2.6 that

T3
|uk|H1(Q) — A/ ? and kaH[HUHO(Q)]/ —0 as k—>oo.
So, the first assertion is proven.
To show that the inf-sup condition (4.46) does not hold true, the bilinear form
a(.): Hyp (Q) x Hyo(Q) = R

is investigated. Because of Lemma 4.2.22, the bilinear form a(-,-) is bounded. In addi-
tion, for 0 # w € H()l;”lo(Q), there exists, according to Theorem 4.2.23, a unique solution

i € Hyjy (Q) of (4.41) for g = w € L(Q), satisfying

Vze Hy'\y(Q):  al(iiz) = (w.2)12(g)-

Hence, for z = w, it follows that a(it,w) = (w,w);2(g) > 0, i.e. the condition (A2) holds
true. If the inf-sup condition (4.46) would be true, the bilinear form a(-,-) would fulfil all
assumptions of the Necas Theorem 2.9.1, which gives the estimate (4.47). But this would
be contradictory to the first part of this proof. O
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To overcome this problem with the inf-sup condition (4.46), two different approaches are
introduced in Section 4.3 and in Section 4.4. However, in the remainder of this section,
conforming finite element discretisations for the variational formulation (4.41), resulting
in Galerkin-Petrov schemes, are introduced and examined. Alternatively, the variational
formulation (4.44) is discretised, which leads to a Galerkin-Bubnov scheme. In any case,
for the bounded Lipschitz domain Q C R, it is assumed that Q = (0,L) is an interval for
d =1, or Q is polygonal for d = 2, or Q is polyhedral for d = 3. In this thesis, only the
tensor-product space-time finite element space

04(0) = Vi 0(Q) ®S},(0,T),

given in (2.42), is investigated for (4.41). Therefore, the Galerkin-Petrov finite element
discretisation of the variational formulation (4.41) is to find

up € 04(Q) ﬂH(};’é,(Q) =V30(Q) @5}, 0.(0.T)

such that
a(uh,wh) = <f,Wh>L2(Q) (4.48)

for all wy, € 0}(Q) ﬂHOI;‘,lO(Q) =V,0(Q) ®S}l;,,0(0’T)' The approximate function uy, ad-
mits the representation

ZZWJ ZUh,,tW](, Up,j(1) Zu,w (4.49)

for (x,t) € Q, see (2.43). After an appropriate ordering of the degrees of freedom, the
discrete variational formulation (4.48) is equivalent to the global linear system

Kyu=F
with the system matrix
Ky = —Ap, @ My, + M), @Ay, € RNMoxNeMe

where M), € RM>Mx and A, € RM>Mr denote spatial mass and stiffness matrices given
in (2.37) and (2.38), M), € RN>N and Ay, € RN>N: denote temporal mass and stiffness
matrices given in (4.25) and (4.24), and with the corresponding vector F € RN "Mx of the
right-hand side.

Remark 4.2.25. Note that the Galerkin-Petrov finite element discretisation (4.48) can be
realised as a two-step method.

Using a conforming semi-discretisation approach for the variational formulation (4.41)
leads to find iy, € Vj, 0(Q) @ Hy (0.T) C Hyj (Q) such that

altinwn,) = (f-Wn)12(0) (4.50)
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for all wy, € V,,0(Q) @ Hy(0,T) C H(}”IO(Q). The semi-discrete function u;,_admits the
representation

ME

Ui(yjx).  (n1) €0,

i, (x,1) =

J

with the unknown temporal functions U €H, ! (0,T) to be determined. With this represen-
tation, the semi-discrete variational formulanon (4.50) is equivalent to the M, equations to
find

r7 r7 r7 T 1 M,
U= (Ul,...,UMX> € [HL.(0,7)]"
such that

/Mh U dz+/Ah ()W (t)dt = /f(t (¢)dr 4.51)

forall W H 1(0,T), where M), € RM~>Mx and A, € RM~Mx denote mass and stiffness
matrices glven in (2.37) and (2.38) together with the right-hand side

f=f o fu) " € L0, T,
defined by
1) = /f(x,t)wj(x)dx, 1€ (0,7),
Q
forj=1,....M
By using the Cholesky decomposition
My, =Ly L,

and for the symmetric, positive-definite matrix A, := L;XIA;,XL,;T, the decomposition

Ay, = VhXDhXV]I’ Dy, = diag (,ak (Ah))> s W= <£1’ e ,EMX> > AAhXEj = ﬁk(AAhx)st
the variational formulation (4.51) is equivalent to find
ViaLlyU=2=(Z1,....7m,)" € [Hg (0,T)]™

such that
T

T T
- / AZ(1)AW (1)di + / Dy Z()W(1)dt = / VL W ()de
0 0

0

for all W € H{,(0,T). The related approximation

Zh = Zn1se - Znom,)
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is defined by finding, for j = 1,...,M,, the functions
Zy,j € 5},0.0,T) =S, (0,T)NHy (0,7T)
such that
—(9Zpjs Wi, )12 0,1) fj(An,) - (Zn, P Whr20r) = (&jsWh) 12(0.1)

for all wy, € S}lmo(O, T)= S}lt (0,T) ﬂH})(O, T), where

g=(g,--nam) =V, L' f
is the transformed right-hand side. By construction, it holds true that
Z, = Vi Ly Uy,
where
Uy = Upas s Unm) "
is the vector of coefficients of the representation (4.49).

Stability and related error estimates for the finite element solutions Z;, ; € S ,1“’0’(0, T) fol-
low for sufficiently small time mesh sizes h;, see (4.21). However, as in Remark 4.2.8,
for a uniform time mesh size A, the stability of the corresponding finite difference scheme
holds true for

[T A B Hvxuil ”iz 12

- - = < -
/] T My, I ”"‘j ” @ h?

f1j(An,) =

for j=1,....,M,,

where u/ = L, v/ € R are the transformed eigenvectors and uh € V;,0(Q) are the
related functions. With the inverse inequality

Vv, € th,O(Q): HVxthHiZ(g) <c h;z HthHiZ(g)’

see [141, (9.19), page 217], with a constant ¢; > 0, this condition is satisfied for

112
hy <\ — hy, (4.52)
cr

i.e. a CFL condition is needed for stability. In the particular case d = 1, it holds true that
cr = 12, see the derivation of [141, (9.19), page 217] and therefore, stability follows for

hy < hy.

When Vj,_o(Q) C HJ(Q) is also of tensor-product structure, ..

Vi o(Q) = (S},Xl OL)@..eS) (O,Ld)> NHY(Q),
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for example, when considering Q = (0,L;) x ... x (0,L;) C R? with uniform mesh sizes

hy,,...,hy,, one concludes ¢; = 12d, and therefore, the stability condition
T min
h < ==,
t \/g
where iy min = min{hy,, ..., hy, }.

As a numerical example, consider for d = 2 the spatial domain Q = (0, 1)? with uniform
discretisations with mesh sizes iy = hy, = h,, and the exact solution

u(x1,x2,1) = 2 sin(mxy ) sin(7x;)  for (x1,x2,1) € @ = Q% (0,T)

with different terminal times 7' € {% il % } Then stability follows when choos-
ing

hy 1

— < — = 0.7071068. 4.53
PR (4.53)
In Table 4.7, Table 4.8, Table 4.9, Table 4.10 and Table 4.11, the L*(Q) error, the H'(Q)
error and the maximal and minimal singular values of the related system matrix K}, of the
Galerkin-Petrov formulation (4.48) are given, where the observed convergence rates are
as expected, provided the CFL condition (4.53) is satisfied, i.e. the CFL condition (4.53)
seems to be sharp. Here, the number of the degrees of freedom is denoted by

dof = dim Q}(Q) N Hyy (Q) = dim Q},(Q) N Hy:\y(Q).

dof hy hy lu—uy H,‘z(g) eoc |u—uy|m (o) eoc Omax(Kn)  Omin(Kn)

2 0500 0.3500 2.034e-02 - 4.204e-01 - 4.8¢-01 4.7e-01

36 0.250 0.1750 4.737e-03 2.1  2.089¢-01 1.0 9.4e-01 5.4e-02

392 0.125 0.0875 1.161e-03 2.0 1.040e-01 1.0 6.5e-01 7.0e-03
3600 0.062 0.0438 2.887e-04 2.0 5.193e-02 1.0 3.5¢-01 1.2¢-03
30752 0.031 0.0219 7.207e-05 2.0 2.595e-02 1.0 1.8e-01 2.3e-04
254016 0.016 0.0109 1.801e-05 2.0 1.298¢-02 1.0 89e-02 3.6e-05

Table 4.7: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)? x (0, 170) satisfying the CFL condition (4.53).

From (4.52), one only expects conditional stability of (4.48). To stabilise the numerical
scheme in (4.48), Zlotnik’s idea [164], as in (4.29), is used again, and the following repre-
sentation is proven.
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dof hy hy | — MhHLz(Q) €0C  |u— up|g (o) eoc Omax(Kn)  Omin(Kpn)

2 0500 0.3536  2.094e-02 - 4.303e-01 - 4.7e-01  4.7¢-01

36 0.250 0.1768  4.888¢-03 2.1 2.141e-01 1.0 9.3e-01 5.2¢-02

392 0.125 0.0884  1.198¢-03 2.0 1.066e-01 1.0 6.4e-01 6.1e-03
3600 0.062 0.0442 2981e-04 2.0 5.323¢-02 1.0 3.4e-01 7.6e-04
30752 0.031 0.0221  7.444e-05 2.0 2.661e-02 1.0 1.8e-01 9.6e-05
254016 0.016 0.0110  1.860e-05 2.0 1.330e-02 1.0 8.8e-02 1.2e-05

Table 4.8: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 x (0, %) for the limit case of the CFL condition (4.53).

dof By hy lu—will2o) €0¢  |u—unlgiig) €0C  Omax(Kn)  Oumin(Kn)

2 0500 03750  2.476e-02 - 4.937e-01 - 5.0e-01  4.3e-01

36 0.250 0.1875 5.862e-03 2.1 2.469e-01 1.0 8.7e-01 4.1e-02

392 0.125 0.0938  1.443e-03 2.0 1.231e-01 1.0 6.0e-01 2.7e-03
3600 0.062 0.0469  3.594e-04 2.0 6.153e-02 1.0 3.2e-01 4.5e-05
30752 0.031 0.0234  8.977e-05 2.0 3.076e-02 1.0 1.7e-01  3.5e-08
254016 0.016 0.0117 2.244e-05 2.0 1.538e-02 1.0 83e-02 5.7e-14

Table 4.9: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)? x (0,3), violating the CFL condition (4.53).

dof hy hy (e — up| 2o  ©oc [ —up | (@) ©€0C  Omax (Kn)  Omin(Kn)

2 0500 0.5000 5.418e-02 - 9.782¢-01 - 7.2e-01  2.7¢-01

36 0.250 0.2500  1.353e-02 2.0 4.986e-01 1.0 7.2e-01  1.5e-02

392 0.125 0.1250 3.381e-03 2.0 2.502e-01 1.0  4.6e-01 1.7e-04

3600 0.062 0.0625  8.453e-04 2.0 1.252e-01 1.0 2.4e-01  6.6e-08

30752 0.031 0.0312  2.113e-04 2.0 6.263e-02 1.0 1.2e-01 2.8e-14
254016 0.016 0.0156 8.621e+08 -41.9 4.635e+11 -42.8 6.2¢-02 ~0

Table 4.10: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1) x (0,1), violating the CFL condition (4.53).
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dof Ay hy lu—unl2g) €0C  |u—uplyg) €0C  Omax(Ki)  Omin(Kn)

2 0.500 1.0000 2.777e-01 - 5.638e+00 - 1.7e+00  1.8e-01

36 0.250 0.5000  7.355e-02 1.9 2.798e+00 1.0 1.5e+00 6.9e-03

392 0.125 0.2500  1.863e-02 2.0  1.404e+00 1.0  9.3e-01  2.4e-05

3600 0.062 0.1250  4.732e-03 2.0  7.028e-01 1.0 49e-01 7.0e-10
30752 0.031 0.0625  7.852e-01  -74  1.796e+02 -8.0  2.5e-01 ~0
254016 0.016 0.0312  1.710e+21  -70.9 7.642e+23 -71.8 1.2e-01 ~0

Table 4.11: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)? x (0,2), violating the CFL condition (4.53).

Lemma 4.2.26. For all u, € 0}(Q) ﬁH(};’&(Q) and wy, € 0} (0) ﬂHé;’}O(Q), the bilinear
form in (4.48) has the representation

a(up,wp) = — (9 un, hrwp) 2o+ Z 3x,,,’/ihth O, Wh) 12 L2(Q)
m=1
d N j

+ZZ a,axmuh,a,amwmz(ﬂm) (4.54)

m=1{=
where Qh L*(Q) — L*2(Q)® Sgt (0,T) denotes the extended L? projection (2.60) on the
space LZ(Q) ® Sg, (0,T) of piecewise constant functions with respect to time.

Proof. Let u, € Q}(Q) NHy (Q) and wy, € Q}(Q) NHy;\)(Q) be given. With the repre-
sentation (2.43), it follows for (x,z) € Q that
Nf A

My
Z Zu Vi@ e(t) =Y U j(0Owix),  Up,(t) Zu (t)
j=1

and
N—1 M, N—1

ZZWWJ ZW/I:J (), Wiy (1) ZWW

Hence, form=1,...,d and by usmg 4. 28), it holds true that

M

(Ot 1) 20) = /% mddﬁ%w X135, W) dx
! 0

i=1j=1

M, M,

£
=

1
[12 Y 17 (OUn, i OWa, 125,y + (Un,is O Wiy ) 12(0,7)
=1

1j

YERCERTELE

te)
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and thus,

N, h2
(axm”h’ame11>L2<Q) = (axm“h’Qg,amehh?(Q) + Z %;<at&xmuha8taxmwh>L2(Q><‘rg)’
(=1

where the relation (2.61) is used. So, the assertion is proven. O

Due to the representation (4.54), one defines for the functions uy, € Q,ﬁ(Q) N H&’é, (Q) and
wy € Q}I(Q) n H&’}O(Q) the perturbed bilinear form

d
an(upwi) == — (Ot Awi) 20+ Y, (Futtn O O, Wi) 12(0)
m=1
d
= —(B,uh,&[wh>Lz(Q> + Z <Q2’ 8,(,,lu;1,8xmwh>Lz(Q). (455)
m=1

So, the perturbed variational problem is to find i, € Q}(Q) ﬂH(};’é, (Q) such that
an(tp, wi) = (fwn)12(0) (4.56)

for all wy, € Q}l(Q) OH&’}O(Q). After an appropriate ordering of the degrees of freedom,
the discrete variational formulation (4.56) is equivalent to the global linear system

Ehﬂ =F
with the system matrix
Ky = —Ap, @ My, + My, @ Ay, € RN MMMy

where M), € RM>Mx and A, € RM>Mr denote spatial mass and stiffness matrices given
in (2.37) and (2.38), 1\7[;[, € RM*N: ig the temporal perturbed mass matrix (4.33), and
Ay, € RN>*N: s the temporal stiffness matrix (4.24), and with the corresponding vector
F € RN"Mx of the right-hand side.

Remark 4.2.27. Note that the Galerkin-Petrov finite element discretisation (4.56) can be
realised as a two-step method, which differs from the Newmark Galerkin method (4.6),
(4.7) of Section 4.1 only in the treatment of the input data.

To prove the existence and uniqueness of a solution u;, of (4.56), the following lemma,
which is analogous to Lemma 4.2.14, is shown.
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Lemma 4.2.28. For a given vy, € Q,l1(Q) ﬂH(;;’(;, (Q), represented by
VhXI th /)C)(P/( Vlu ZVWJ for XI)GQ
with Vi o(x) = 0 for x € Q and Vy, o € V;, o(Q), and for a fixed index j € {1,...,N;}, a
function )
7 € 04(Q) NHy(Q)
exists with the following properties:
1. For (x,t) € Q@ x [t;,T), it holds true that 2i(x,t) =0.
2. Fort{=1,...,jandforx € Q, the equalities
(2] ). 05y = 5 (Vhoto1 (O~ Vs W)
and
2 i 2
i 1
(94,25, 00, 8o, i) = / dums)ds | = | [onuxs)ds
ui
are valid form=1,...,d.

3. Forx € Q, the estimate
119:25, (%, ) 207 < Vi)l 207

holds true.

Proof. For vy, € 0}(Q) DHS;’& (Q), one defines for (x,t) € 0

. Vi i(x) fori=0,...,J,
) (x,1) : ZUh er), Ul (%) 1_{ (—1)i
i=0

and further,

k=0

Hen)=-Y /u;;(x,s)ds o) = — Ih,/u;;(x,s)ds ),
T

where
Iy: C([0,T];L*(Q)) = L*(Q) ®5, (0.T)

=177, i(x)  fori=j+1,....N
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is the extended time interpolation operator, see (2.44). Note that Z{; €0(0) ﬂH(;;’,]O(Q).
For x € Q, it follows from relation (4.27) that

EEACOESUATICD
In particular, for j < N;, x € Q, and for t € 7, for £ = j+1,...,N,, it holds true that

7

: . 1 . 1/ . .
0,7} (x,1) = Q) ] (x,1) = — / uy (x,5)ds = = (U}{ () +U] [(x)) =0,
't ht,[ 2 X ot

-
and due to Z{; (x,T) = 0, one concludes Z{; (x,t) =0forr € [t;,T], i.e. the first assertion.

To prove the second assertion, one computes for x € Qandfort=1,..., j

(0T} 5. B Npzgey = [ AZ](er) A

t—1

L
1 ; .
-1 (Ul 10+ U] ) / (1) dr

_ _% <U;{X,z71 (x)+ U,{;’((x)> (Vh_h[ (x) = Vioo1 (x)>

= % (Vige—1(x) + Vi o(x)) (th,Zfl (x) - th,z(x)>

= 5 (Virma P~ Wi (02).

Moreover, for m = 1,...,d, it follows for x € Q and for ¢ = 1,...,j that

" .
(90,7051, 5 )) 20 = O Doy, [ 00,7t
t—q

I

thaxmvh e /me /uh (,8)ds @p—1 ( +/uh(x s)ds @(z) | dt

f—1
T

=~ /mevh(x t)dr = h,g /axmuh X,8 dv—l—/z?xmuh(x s)ds
té
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and further,

fr—y

1y
i 1
(90,2} 051 2 5Ny = = | [ rmnCerr = [ 9y
1

1
i1 [(.

. /axmv{l(x,s)ds-l-/8xmvf1(x,s)ds
1 U

- 2 2

iy
1 i 1 ' i
=35 / O, vi(x,8)ds | — 5 /8xmvfl(x,s)ds
I I

The L? stability of Q21 and using

|9,z (x.)

L2(0,T) = ||arzi(xv')||L2(o,rj) = ‘|Q2,M£(xa')HL2(0,tj)

= 1195, va (M2 < 190 va (el < Va0

for x € Q yield the third property. O

With the last lemma, the existence, uniqueness, and stability of a solution i, of (4.56) are
proven with the help of the next lemma.

Lemma 4.2.29. Let fj € [H})(O,T;LZ(Q))}' and fi, f>» € L*(Q) be given. The variational
Sformulation to find wy, € Q}l(Q) ﬂH&’OI,(Q) such that

N
an(wi,vi) = (fovdo + (f1:0vir20) + Y B o (20 0vh) 12 (@) (4.57)
(=1
forall v, € Q}(Q) HH&’})(Q) is uniquely solvable, and the stability estimate

Iwillzzig) < 2T {Ifollay o2y + il i 1 Rllzg) b (458)

holds true.

Proof. Letw) € 01(Q) ﬂHé;’&(Q) be any solution of the homogeneous variational formu-
lation (4.57) with f; = 0, and with the representation (2.43), i.e.

Ny o
whxt) = Y WP (x)@u(t) for (x,1) €0, Wy, €Vho(Q), W o(x)=0.
(=0
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For each index j € {1,...,N;}, consider an element 2£ € 0}(0) ﬂH(;;‘,]O(Q) as given in
Lemma 4.2.28. Plugging v;, = Z;l into (4.57), it holds true that

0= ah(ngf,) = —<3tWh’9rZh 2o+ Z Qh,axmwmaxmzh)l_z

m=1

d J .
0 05 =
<atWh’ach iaxe) T 2 (0 05, Whs 06,Zh) 12(0x 1)

m=1

II
M\.

4

Il
~

and by using the properties of Lemma 4.2.28,

o=t~/ 3 (30081007 = 300

. 2 ‘
i F, 174 o
/ = /axmwh(x,s)ds - = /8meh(x,s)ds dx
1) 1 2 2 :;

2

2/thj dx+ Z/ /8xmwhxs dx.

ml

™~

+

ﬁma

1

This result yields, with the Cauchy-Schwarz inequality and the use of the properties of
Lemma 4.2.28,

IWillZ2(0) Hwhlle (@x1)

e mz

[
(W O+ W Wy () + Wy (1)) e

Iy ji1
Y oacs [ 5P P <o

Z
[

which implies wh = 0. Therefore, by using
dim }(Q) NHy, (Q) = dim 0}(Q) N Hy.y(Q),

one concludes unique solvability of the variational formulation (4.57) for any right-hand
sides fp € [H}](O, T;L2(Q))] and fi, f» € L*(Q). Following the approach as above, it holds
true that

N

(fozo+ (f1,9Z)2 2g) Zhrl fz’atzh>L2 (@xz) = an(Wn, z) > /[th;
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and

M h; ; Nl*lh il
il gy < / Y LW P+ [ Y (0P
j=1 F=

. N .
< Zhu{ foZ)o+ (11,97 12(0) + thz,€<f2’alzljl>L2(Q><n)}
=

N—1 . A N; .
+ ) hjn {(fo,Zf,>Q+ (f1:97Z1)12(0) + Y h?,f(fz,ard,hz(gxm}
j=1 =1

N .
< th,j{HfOH[H})(o,T;LZ Al JrthszLZ }Hai//l“Lz(Q)
J=1 ’
N—1 )
+ z e { Mol o2y + WAilliz) + i 12l 2o HIAZ i)

<27 { I f0ll s 0,200 + fillz20) + 1 | fallez ) } Wil 2(g)»
and hence, the stability estimate is proven. O

Theorem 4.2.30. For f € L*(Q), there exists a unique solution i, € Q}(Q) ﬂHéé (Q) of
the Galerkin-Petrov finite element discretisation (4.56), satisfying the stability estimate

- 4
H”h”LZ(Q) < 2T||f“[f({)(o,r;L2(g))]/ = ;TZHfHLZ(Q)-
Proof. Setting fo = f € L*(Q), fi = f> =0 in (4.57) and the Poincaré inequality with

respect to time, see Lemma 3.4.5, give the assertion. O

Remark 4.2.31. Note that there exists a unique solution of the Galerkin-Petrov finite el-
ement discretisation (4.56) in the situation of Lemma 4.2.29, i.e. for a right-hand side f
weaker than L*(Q).

To derive an estimate for the L2(Q) error ||u — 5| 12(0)- the space-time projection

0},0h.v € 0L(Q) NHy, (Q).

is used, which is well-defined for a sufficiently smooth function v € Hé;& (Q), for details
see Lemma 2.8.2.

Theorem 4.2.32. Let u € H&‘&(Q) be the unique solution of the variational formulation
(4.41), satisfying du € L*(0,T;H}(Q)) and dy,u € H(},(O,T;L2(Q)), m=1,....d, and
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Aw e Hol’(O, T;L*(Q)). Then, the unique solution iy € Q}(Q) HH&’& (Q) of the Galerkin-
Petrov finite element discretisation (4.56) satisfies the error estimate

l[u—tnl| 2 (g) < ||”*Q}],,”||L2(Q) + flu— Q}IXMHLZ(Q) + chyhe|| 0 Vaul| 2 )
h2
+ 27 { 1A= Oh )l 0.2y + 190 @h e = )|z + 75 1tz o)

with a constant ¢ > 0.

Proof. Since the solution u € Hol;’é’(Q) fulfils the assumptions of Lemma 2.8.2, the space-
time projection

05,05, € 04(Q)NHy, (Q)

is well-defined. When using the representation (4.54), the properties of Q}h Q,'lx as given in

Lemma 2.8.2, and applying integration by parts, it follows for all wy, € 0} (Q) QHS;’}O(Q)
that

ap(ity — Q4 Qp uswi) = an(itn, wi) — an(Qj, Of 4 wh)

= a(u,wy) — ap(Q}, O}, 1, w,)
= a(u,wy) — (Qh,Qh‘u wp) + Z M@t xQ;ll,Q/IM, VW) 12(ax)
- <a[l/t, &twh>L2(Q) +(Vyu, wah)Lz (8,Q},, Q,]lxu, atwh)Lz@

— (V0}, Q1. Vwi) 12() + Z (0, V.0}, 0}, 1, 0V Wh)12(Qx 7))

and further,
ap (it — Q4 O, - wn) = — (9t owp) 2 () + (Vs wah>L2 o)+ (90w 0z g)
- <VxQ;1,,u, VaWh) 12(0) + Z 3 "thu AV 12 @7
= <a,(QA M—u)’atwhhz(Q) +< =04, Vo) 2(0)
n Z SEANIIAR Wh) 12 (Qx 1)
_ <a,<Qh 9l + A= Ol i

- Z at XQh/u atWh>L2(Q><‘L';)
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In particular, one observes that i), — Q}ll Q}hu is the unique solution of (4.57) in the case

1
fo=—Adu=0Qju), fi=0(Qu—u), fr=—13080}u.
Therefore, the stability estimate (4.58) and the stability of Q}l! in H&(O, T) give

in — Q4 O ullr2(0)

h2

<2r { [l A (e — Q/i,“)”[[{g(o,r;y(g))]' +1191(Qpu—w)ll2(0) + TIZHatAXQIlu””LZ(Q)}
h2

<27 { A= 0 ) iy o.rzcayy + 19 (Qht = 0)l2(0) + 15 1kl 20) -

With the last estimate, the triangle inequality, and the error estimate of Lemma 2.8.2, it
holds true that

llue — 2| 20y < lJu— QII1,Q}1XMHL2(Q) + [|en — Q};,Q},X”HLZ(Q)
<lu— Q};,MHB(Q) + [lu— Q},XWHLZ(Q) +chyhy |0, Vaul| 12

hZ
1 1
+ 27 { 1A= 04 )220y + 190 Ch = )l 20 + T 1l 2 o)

with a constant ¢ > 0 and so, the assertion. O

Corollary 4.2.33. Let the assumptions of Theorem 4.2.32 be satisfied. If, in addition, the
unique solution u of (4.41) is sufficiently smooth and the spatial H& projection Q}l)_ Sulfils
the standard L? error estimate

lu— 0 ull 20y < CHENlull 20, 7302(02))

with a constant C > 0, see (2.48), then, for the unique solution uy, € Q,11(Q) OHS;’& (Q) of
the Galerkin-Petrov finite element discretisation (4.56), the error estimate

||”*’7h||L2(Q) < Cthc (”“HLZ(O,T;HZ(Q)) + Hat”HLZ(o,T;HZ(Q))>

+chohy |9Vl 2y + I (||a”u||Lz(Q) 1At 20) + ||atAquL2<Q>) (4.59)

holds true with a constant ¢ > 0.

Proof. By using the error estimates (2.50) for the H(}! projection Q}]l, and (2.48) for the H(;
projection Qfl:; it follows from Theorem 4.2.32 the asserted error estimate. O
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Corollary 4.2.34. Let the assumption of Theorem 4.2.32 be satisfied. Furthermore, let
ue H'*5(Q) ﬁH(};’&(Q) for some s € [0,1] and let the H&;&(Q) projection Q}, given in
(2.45), fulfil the standard error estimate

flu— Qll1u||L2(Q) < Ch1+s||uHH‘“(Q)

with a constant ¢ > 0, see (2.46). Moreover, assume for Q,ll(Q) ﬂH(;;’& (Q) the inverse
inequality
Yo € Q4(Q)NHyp (@) [vil (o) < cin i Ivall ()

with a constant ciny > 0 and h = max{h, h,}. Then, the estimate
\u — ilthl(Q) S CCinvh'YHuHH:H(Q) + Cinv l’l_l Hﬁh — u”LZ(Q)

is valid with a constant C > 0 independent of h. If, in addition, the assumption of Corol-
lary 4.2.33 is fulfilled, then, the error estimate

Ju— |1y < Ch (4.60)
holds true with a constant C > 0.

Proof. 1t follows with the triangle inequality, standard error estimates for Q,11 and the in-
verse inequality in O} (Q) N HOI;‘& (Q) that

=l ) < 1= Qe ) + | Qhtt = W 1 g
< ChSHu“H.\H(Q) +Cinvh7] ||Qllzu - ﬁh”Lz(Q)
< Cl'llul g1 ) + €ine B~ || @bt — ul 2+ €ine Bl =l 2

< Cciny h*|ull s gy + Cime B i — ull 2 g)
with a constant C > 0 and hence, the assertion. O

Remark 4.2.35. The assumptions on the spatial Hd projection Q}I:X and on the Holz’é’ (Q)
projection Q}l in Corollary 4.2.33 and Corollary 4.2.34 are fulfilled, if Q is sufficiently
regular. Thus, for less regular Q, one expects reduced orders for the error estimates given
in Corollary 4.2.33 and Corollary 4.2.34.

As a numerical example for the Galerkin-Petrov finite element method (4.56), consider
the one-dimensional spatial domain Q = (0,1) and T = 10, i.e. the rectangular space-time
domain

0=Qx(0,T)=(0,1) x (0,10).
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The discretisation is done with respect to nonuniform meshes as shown in Figure 4.1 of
Section 4.1, where a uniform refinement strategy is applied. Note that these meshes do not
fulfil the CFL condition (4.52). As exact solutions, the functions

w1 (x,1) = sin(7x) sin? Gm) . () eo,
up(x,1) = sin(mx)2(10—1)*4,  (x,1) € O,

are chosen. The appearing integrals to compute the related right-hand side in (4.56) are
calculated by using high-order quadrature rules and the number of the degrees of freedom
is denoted by

dof = dim Q},(Q) N Hyy (Q) = dim Q}(Q) NHy: |, (Q).-

The numerical results for the smooth solution #; are given in Table 4.12, where uncondi-
tional stability and quadratic convergence in || - || 12(g)> @ predicted by the error estimate
(4.59), are observed. Moreover, linear convergence is seen, when measuring the error in
| |11(@)» Which confirms the error estimate (4.60).

For the singular solution u;, the related results are given in Table 4.13, where reduced
orders of convergence in || -[|2(g) and in | - [;1(p) are observed. These convergence rates
correspond to the reduced Sobolev regularity

u € H4¢(Q), &>0.

dof  hymax Iy min ht max It min llus —itinllzg)  €0C  |ui—iulyg — €OC

30 0.37500 0.06250 3.75000 0.62500 3.579e+00 - 1.289¢+01 -
132 0.18750 0.03125 1.87500 0.31250  1.975e+00  0.86  9.849e+00  0.39
552 0.09375 0.01562 0.93750 0.15625 9.213e-01 1.10 6.534e+00 0.59
2256  0.04688 0.00781 0.46875 0.07812 6.829¢-01 0.43 5.210e+00 0.33
9120 0.02344 0.00391 0.23438 0.03906 2.466e-01 1.47 2.848e+00 0.87
36672 0.01172  0.00195 0.11719 0.01953 7.029¢-02 1.81 1.435e+00  0.99
147072 0.00586 0.00098 0.05859 0.00977 1.819¢-02 1.95 7.159¢-01 1.00
589056  0.00293 0.00049 0.02930 0.00488 4.588e-03 1.99 3.576e-01 1.00
2357760 0.00146 0.00024 0.01465 0.00244 1.149¢-03 2.00 1.788e-01 1.00
9434112 0.00073  0.00012 0.00732 0.00122 2.875e-04 2.00 8.938e-02 1.00
37742592 0.00037  0.00006 0.00366 0.00061 7.189¢-05 2.00  4.469e-02 1.00

Table 4.12: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0, 1) x (0, 10) and for the function ;.

Remark 4.2.36. The Galerkin-Petrov finite element method (4.56) fulfils a kind of conser-
vation of the total energy

1 1
E(t) = 3100y + 5 Va0 gy 1€ 10,7,
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dof Py, max Ny min ht max It min 2 =220 €oC  |uy il g eoc

30 0.37500 0.06250 3.75000 0.62500  7.836e+01 - 3.173e+02 -
132 0.18750 0.03125 1.87500 0.31250  2.166e+01 1.86 1.191e+02 1.41
552 0.09375 0.01562 0.93750 0.15625 5.487e+00 1.98  5.225e¢+01 1.19
2256 0.04688 0.00781 0.46875 0.07812 1.777e+00 1.63  2.696e+01  0.95
9120 0.02344 0.00391 0.23438 0.03906 6.476e-01 1.46 1.593e+01 0.76
36672 0.01172  0.00195 0.11719 0.01953 3.001e-01 1.11 1.076e+01 0.57
147072  0.00586 0.00098 0.05859 0.00977 1.393e-01 1.11 8.077e+00  0.41
589056 0.00293  0.00049 0.02930 0.00488 6.156e-02 1.18  6.452¢+00  0.32
2357760 0.00146  0.00024 0.01465 0.00244 2.650e-02 1.22 5.308e+00  0.28
9434112 0.00073  0.00012 0.00732  0.00122 1.126e-02 1.23  4.423e+00  0.26
37742592  0.00037 0.00006 0.00366 0.00061 4.758e-03 1.24  3.704e+00  0.26

Table 4.13: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0, 1) x (0, 10) and for the function u;.

since the Galerkin-Petrov finite element method (4.56) is related to the Newmark Galerkin
method (4.6), (4.7), see Remark 4.2.27. As illustration, consider a solution of the homoge-
neous wave equation, i.e.

uz(x,t) = (cos(mt) +sin(mt))sin(zwx)  for (x,t) € Q

with the total energy

NG

E(t)= fort €[0,10],
where the space-time cylinder is given by
0=(0,1) % (0,10).
Here, the initial condition
uz(x,0) = up(x) =sin(mx), x€Q,
is treated via homogenisation, while the initial condition

Jiuz(x,0) = vo(x) = wsin(nmx), x€Q,

is incorporated in a weak sense. For the solution us, the discrete total energy

1, 1 ~
En(r) = 190 o + S IV gy 1€ (0T,

is computed. In Figure 4.3 the difference

”2
Ey(t)—E(t) = Ey(t) — > fort €10,10]
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is plotted pointwise for the refinement level with uniform mesh sizes

10
hy = el ~ 0.00162760
and
hy = 310 ~ 0.00016276.

Note that oy, is piecewise constant in time. Probably due to the used space-time approx-
imation, some oscillations within the finite element accuracy are observed, but no energy
loss occurs, see also Figure 4.2.

For a comparison with the Newmark Galerkin method (4.6), (4.7) of Section 4.1, the errors
in the space-time norms ||-||;2g) and || () are given in Table 4.14, where the conver-
gence rates are as expected, when the nonuniform meshes as in Figure 4.1 are used.

0.1 T T T T

0.05 | b

E, (- EO)

Figure 4.3: Difference of the total energy E (1) = %z and Ej, () of the Galerkin-Petrov finite
element discretisation (4.56) with a uniform mesh for 0 = (0,1) x (0,10) and
for the function us3.

Remark 4.2.37. A comparison of Table 4.12 with Table 4.1 and Table 4.14 with Ta-
ble 4.2 shows that the Newmark Galerkin method (4.6), (4.7) of Section 4.1 and the
Galerkin-Petrov finite element discretisation give similar results, provided the right-hand
side f € L*(Q) has no singularity with respect to time. Note that the Newmark Galerkin
method (4.6), (4.7) is not applicable to the solution uj;.

Remark 4.2.38. The to (4.56) related inf-sup constant

inf sup _ an(wwwn) es(h) (4.61)
0£,£0}(Q)PHE () 04m,c0l @)t () 1411 ) Whlan (o)
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dof  hiymax Iy, min it max Dyt min llus —tznll 2o €0C  us—izplyig)  €OC
30 0.37500 0.06250 3.75000 0.62500 2.503e+00 - 1.051e+01 -

132 0.18750 0.03125 1.87500 0.31250  2.496e+00  0.00  9.798e+00  0.09

552 0.09375 0.01562 0.93750 0.15625 2.241e+00 0.15 9.774e+00 0.00
2256 0.04688 0.00781 0.46875 0.07812 2.580e+00 -0.20 1.152e+01 -0.23
9120 0.02344 0.00391 0.23438 0.03906 1.082e+00 1.24 4.846e+00 1.24
36672 0.01172  0.00195 0.11719 0.01953  3.013e-01 1.84 1.445e+00  1.74
147072  0.00586 0.00098 0.05859 0.00977 7.697e-02 1.97 4.606e-01 1.65
589056  0.00293  0.00049 0.02930 0.00488 1.934e-02 1.99 1.804e-01 1.35
2357760 0.00146  0.00024 0.01465 0.00244 4.841e-03 2.00 8.268e-02 1.12
9434112 0.00073 0.00012 0.00732 0.00122 1.211e-03 2.00 4.034e-02 1.03
37742592 0.00037 0.00006 0.00366 0.00061 3.027e-04 2.00 2.005e-02 1.01

Table 4.14: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0, 1) x (0, 10) and for the function u3.

seems to depend linearly on the mesh size h = max{hy,hy}. The inf-sup constant cs(h) is

given as
cs(h) = v/ Amin,
where Amin is the minimal eigenvalue of the generalised eigenvalue problem [84, Subsec-

tion 3.6.6, page 124]
khTA}:’lOEhg =AApo.u
with the matrices
Kilk,i] = ap (i),

Ano. kil = (026 9 2k) 12(0) + (Vi Vali) 12 )
and

Ap,olk.i] = <9mf,<9mk>L2(Q) + <Vx77i»vx77k>L2(Q)
fori,k=1,...,dof, where y; are the nodal basis functions of Q,l1(Q) ﬂH(;;’& (Q) and My are
the nodal basis functions of Q}(Q) ﬂHS;’}O(Q), ie.

04(Q) NHy (Q) = span{x:}{]

and
01(0) NHy ') (Q) = span{m; .

As illustration, consider the rectangular space-time domain
0=Qx(0,T)=(0,1) % (0,2)

with uniform discretisations with mesh sizes hy = hy max = lxmin and hy = by max = ¢ min,
where a uniform refinement strategy is applied. The inf-sup constant cs(h) of (4.61) is
given in Table 4.15, where a linear dependency on the mesh size h is observed.
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dof hx,max hx,min hz,max ht,min CS(h)

30 0.16667 0.16667 0.33333 0.33333 0.13867820
132 0.08333 0.08333 0.16667 0.16667 0.07504415
552 0.04167 0.04167 0.08333 0.08333 0.03971295

2256 0.02083 0.02083 0.04167 0.04167 0.02028705
9120 0.01042 0.01042 0.02083 0.02083 0.01012171
36672 0.00521 0.00521 0.01042 0.01042 0.00510211

Table 4.15: Optimal discrete inf-sup constant cs(h) of (4.61) for the perturbed bilinear
form (4.55) with a uniform temporal mesh size s, and a uniform spatial mesh
size h, for the space-time cylinder Q = (0,1) x (0,2).

In the remainder of this section, the two-dimensional spatial L-shaped domain
Q:=(—1,1)%\([0,1] x [-1,0]) € R? (4.62)
and the terminal time 7 = % are considered for the solutions
. . . 2 5
ua(x1,x2,1) = sin(7mx; ) sin(7x2) sin Zm . (x1,x0,0) €0,
2

us(x1,x2.1) = r(x1,x2)*/3 - sin (5 arg(xl,x2)> -sin(mwt),  (x1,x2,t) € O,

where

(r(x1,x2),arg(x;,x2)) C [0,00) % [0,27)

are polar coordinates located in 0 € R? with the radial coordinate r(x1,x;) and the an-
gular coordinate arg(x;,x;). For the solution us, the inhomogeneous Dirichlet boundary
condition

us(x1,x2,1) = g(x1,x2,1), (x1,x2,1) €L,

is treated via homogenisation, and the second initial condition
dus (x1,%2,0) = vo(x1,%2),  (x1,%2) €Q,

is incorporated in a weak sense. The spatial domain Q is decomposed into uniform trian-
gles with uniform mesh size /i, = Ay max = hymin as given in Figure 4.4 for level 0. The
temporal domain

(0,1/4) = (0,T)

is decomposed into nonuniform elements with the nodes

tpo=0.0, t =0.125, t =0.1875, 13=025=T.
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The appearing integrals to compute the related right-hand side in (4.56) and the vector,
related to the second initial condition

deus(+,-,0) = v,

are calculated by using high-order quadrature rules. The numerical results for the smooth
solution u4, when a uniform refinement strategy is applied as in Figure 4.4, are given
in Table 4.16, where unconditional stability and quadratic convergence in || - || 12(Q) a8
predicted by the error estimate (4.59), are observed. Moreover, linear convergence is seen,
when measuring the error in | - | (0)» Which confirms the error estimate (4.60). For the
singular solution us, the related results are given in Table 4.17, where a reduced order of
convergence in || - [|2(g) and in |- |51 (g are observed. However, for a fixed uniform time
mesh with
1
= Zo00°

an adaptive meshing for the spatial domain € is considered with respect to the time element
)= (t[_l,l@) with

?=min <argmax|u5 _’75.h||L2(er()> ,

(=1,..N,

i.e. the spatial decomposition

is adaptively refined with respect to the local error indicator
lus = s il 2@y 8= 1o N,

where Dorfler marking [41] with parameter 6 = 0.2 is used.

This adaptive scheme seems to lead to optimal convergence rates in ||-|| 12(g) and || H(Q)
with respect to the spatial variable, see Figure 4.5, Figure 4.6, and see Figure 4.7 for the
meshes produced by the adaptive scheme. Since the stabilised method (4.56) is uncondi-
tionally stable, the usage of spatially adaptive refinement strategies is possible, which is
confirmed by this example. Note that without the stabilisation such spatial refinement, as
in Figure 4.7, is only possible for a sufficiently small temporal mesh size /, due to the CFL
condition (4.52). However, adaptive refinement strategies are left for future work. See
also [115], for the approach of spatially graded meshes.
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! Level 0 ! Level 1 w! Level 2
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
1 -1 1
-1 -0.5 0 0.5 1 Xy -1 -0.5 0 0.5 1 Xy -1 -0.5 0 0.5 1 Xy

Figure 4.4: Uniform refinement strategy: Starting mesh, the meshes after one and two
uniform refinement steps.

dof hx,max hx,min ht,max ht,min HM — iy HLZ(Q) €oc ‘”4 - l74,h‘1-11 Q) €oc

15 0.35355 0.35355 0.12500 0.06250 5.400e-02 - 7.381e-01 -
198 0.17678 0.17678 0.06250 0.03125 1.160e-02 1.79 3.280e-01 0.94
1932 0.08839 0.08839 0.03125 0.01562 2.627e-03 1.96 1.565e-01 0.97
16920  0.04419 0.04419 0.01562 0.00781 6.379e-04 1.96 7.719e-02  0.98
141360  0.02210 0.02210 0.00781  0.00391 1.582e-04 1.97  3.846e-02  0.98
1155168 0.01105 0.01105 0.00391 0.00195 3.948e-05 1.98 1.921e-02  0.99
9339072  0.00552 0.00552 0.00195 0.00098 9.865e-06 1.99 9.604e-03 1.00
75104640 0.00276  0.00276  0.00098  0.00049 2.466e-06 2.00  4.802e-03 1.00
602407680 0.00138  0.00138 0.00049  0.00024 6.165e-07 2.00 2.401e-03 1.00

Table 4.16: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
for the L-shape (4.62) and T = }1 for the function u4 for a uniform refinement
strategy.

dof  Mymax Ny min Rt max Ry min llus — its.1ll2(0) €0C  |us —isnly (o) eoc

15 0.35355 0.35355 0.12500 0.06250 4.897e-03 - 8.597e-02 -
198 0.17678 0.17678 0.06250 0.03125 1.729e-03 1.21 5.026e-02 0.62
1932 0.08839 0.08839 0.03125 0.01562 6.675e-04 1.25  3.016e-02  0.67
16920 0.04419 0.04419 0.01562 0.00781 2.737e-04 1.23 1.844e-02 0.68
141360 0.02210 0.02210 0.00781 0.00391 1.159¢-04 1.21 1.140e-02 0.68
1155168 0.01105 0.01105 0.00391 0.00195 4.888e-05 1.23 7.106e-03 0.68
9339072  0.00552 0.00552 0.00195 0.00098 2.034e-05 1.26  4.448e-03  0.67
75104640 0.00276 0.00276  0.00098  0.00049 8.352e-06 1.28 2.792¢-03 0.67
602407680 0.00138 0.00138 0.00049 0.00024 3.395e-06 1.30 1.755e-03 0.67

Table 4.17: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
for the L-shape (4.62) and T = 1 for the function us for a uniform refinement
strategy.
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degrees of freedom dof = M

Figure 4.5: L%(Q) error of us for (4.56) for the L-shape (4.62) and T = 1 for h, = Wloo and

for a spatially adaptive refinement strategy with the meshes of Figure 4.7.
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Figure 4.6: H'(Q) error of us for (4.56) for the L-shape (4.62) and T = % for h; = m and
for a spatially adaptive refinement strategy with the meshes of Figure 4.7.



4.2 Space-Time Variational Formulation in H'(Q) 179

o Level 10 s Level 15 s Level 20
1 1 1
05 05 05
0 0 0
-0.5 -0.5 -0.5
1 -1 1
-1 -0.5 0 0.5 1x1 -1 -0.5 0 0.5 1x1 -1 -0.5 0 0.5 1x1

Figure 4.7: Spatially adaptive refinement strategy for the function us.

Outlook for Possible Extensions of Section 4.2

Since the constructions of the methods and the proofs in this section mainly rely on the
treatment of the second-order temporal differential operator d;; + 1 with a parameter u > 0,
the results of this section for the model problem (4.11) can be transferred to hyperbolic
equations for vector fields, e.g., the Maxwell’s equations, as well as to a more general
hyperbolic equation (4.2) for scalar functions with inhomogeneous initial and boundary
conditions under certain assumptions of the involved functions and function spaces, where
details are left for future considerations.
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4.3 Space-Time Variational Formulation in a Strong Sense

In this section, the wave equation (4.11) is considered in LZ(Q). Therefore, with the nota-
tions of Section 2.1, define

HY(:0) = {ve H'(Q): DgveL*(Q)}
with the inner product

(W v) (o) 7= (V) 120) + (01, 9) 12 g) + (Vatt, Viv) 12 ) + (DQu,DQv>L2<Q>

and the induced norm

el gy = /iy = /Il g + 1Dl -

For a function v € H'(Q;0), the condition Uov € L2(Q) involves that there exists a func-
tion f, € L*(Q) with

OoT,(9) = /fv(x,t)(p(x,t)dxdt for all ¢ € D(Q),
0

where

T,: D(Q) - R, T,()= / V(o) (xnr)drds  for ¢ € D(Q),
(0]

is the distribution related to v € L*(Q). Note that the function f, € L?(Q) is unique, because
Cg(Q) is dense in L2(Q).

Clearly, (H'(Q;00), (-, g1 (0:)) 18 an inner product space.

Lemma 4.3.1. The inner product space (H'(Q;0), ()1 (o,)) is @ Hilbert space.

Proof. Consider a Cauchy sequence (v,),en C H'(Q:0J). Hence, (v,)pen C H'(Q) is
also a Cauchy sequence in H'(Q) and (Jgvy)nen C L*(Q) is also a Cauchy sequence in

L(Q). So, there exist v € H'(Q) with [[v, —v[|;1(g) — 0 as n — e and f € L*(Q) with
|[mpy —f||L2(Q) —0asn—o.LetT,: D(Q) = R, T,,: D(Q) — R, with

v € D(0): Tv(q)):/ V(1)@ (x, ) dndr, Tvn((p):(/ v (6,1 @ (6, 1)l
) (9]
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be the distributions related to the limit v € H'(Q) and to v, € H'(Q; D) for every n € N.
It follows for all ¢ € D(Q) that

EIQTV((p):TV(I:I(p):/v(x,t)D(p(x,t)dxdt: 15n/vn(x,z)m¢(x,z)dxdz
Q0 Q

— lim 7,,(Op) = lim Do, (9) = lim | Doy (x:1)px. )l
9]

- / F0r)@(xr)drds
0
and so, it holds true that gy = f € L2(Q). Hence, v € H'(Q;0). U
Set
H; (0.T;L%(Q)) :== {v € H*(0,T;L*(Q)): v(,0) = 9v(-,0) = 0in L*(Q)}
and

HY(QA) == {w € H}(Q): Aw € L*(Q)},

where A, is the distributional Laplace operator for distributions D’(Q). Furthermore, de-
fine the subspace

H; (0:0) := L*(0,T; Hy (QA)) NHy, (0,T: Hy (Q)) NH (0,T;L*(Q)) € H'(0:0)

and by completion the Hilbert space

~ =l o

Hj,(Q:0) =3 (0:0) "7 c H'(@:0)
endowed with the inner product {,-) yj1(.ry)- That means,

Hy (0:0) = {v e H(@:0): 3(va)nex C Hp (@:0) with [[v,— vl .0 = O}
Lemma 4.3.2. It holds true that
H3,(0:00) © Hoy (),

ie. foruc I:I(}’(Q; 0), it follows that

where 75“; L2(0,T;H(Q)) — L2(Z) is the extended trace operator (2.15).

int
O,XM

= [[u(-.0)llz2() = 0,

L*(Z)
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Proof. Letu e FI(},(Q; O) be fixed. Because of the completion, there exists an approximat-
ing sequence (u)nen C Hg (Q:0) with [Ju— 1y || 1 (o:07) — 0 as n — co. With the constant
Ct > 0 from the extended trace operator, see (2.15), it holds true that

H (e —uy) L2(%) < Crellu—unll 20701 (0)) < Crell = ttnll o) =0 asn— oo
and hence,
Hy(’)";u = hm H’)/(’),Cun L :O.
_,_/
=0

With the continuous embedding (2.12), it follows that
[[u(+,0) — (-, 0) | 2y < Cllu = ttnll 1 (@) < Clltt = ttnl gy o) =0 asn— oo

and so,
(-, 0) 2y = lim Jn(,0) 20, = -
=0
Hence, the assertion is proven. O

Lemma 4.3.3. Foru € I:I(%‘(Q; 0), the estimate

[ ar?
iz ) < A/ 1+ —5 [l )

Proof. Letu e FI&(Q; [0) be fixed. Because of the completion, there exists an approximat-

holds true.

ing sequence (uy)nen C Hg (Q:0) with [[u— || g1 ;) — O as n — co. Hence, it holds
true that u,(x,-) € Hj (0,T) for almost all x € Q. By using the Poincaré inequality with
respect to time, see Lemma 3.4.5, it follows that

T T
4712 4712
2 2
lunlaigy = [ [mnteyarar <= [ [ e Pards = = g
Q0 Q0

and with
2 2 2 2
llunllgr @) = llunllz2 ) + 1 9rtnllz2 ) + I Vattnllz2 )
2
< (1422 13 + 1Vl 2
<\ nllz2(g) + 1 Vattallzz g)-

the assertion by completion. O
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Lemma 4.3.4. For u € A} (Q:0), it holds true that

T t
lulz ) :2//<3,u(~,s),DQu(-,s»LZ(Q)dsdt (4.63)
00

and hence,

lul i) < 2TH|:|Q”HL2(Q)~

Proof. Letu e FIO (Q;0) be fixed. Because of the completion, there exists an approximat-
ing sequence (un)nen C Hj (Q:0) with [lu— || g1 ;) — 0 @s m — eo. With integration
by parts for almost all s € (0,7, it holds true that

(Gl () = antonh Ttz

+ (Opttn(-9), Axttn (-,5)) 12(q2)
= <VXM,1(',S), antun("s»Lz(Q)
— <VX(9;M,1(',S),qun('ss)>L2(Q)
+¢ 0“‘8,14,,(-,5),an“n('»‘))lﬁ(ag)
—

=0
=0,

where y(i)“‘ is the trace operator and d, is the normal derivative, see Section 2.5.

The function u, satisfies du,(-,0) = 0 in L>(Q) and V,u,(-,0) = 0 in [L>(Q)]¢ and so, it
follows that

2 2 2
‘un‘Hl(Q) = ”at”nHLZ ks [Vz ”nHLZ(Q

d

T t
/ |: a,u,, ) 3,u,,( 5 )>L2(Q) Jrz <axl.un(.,s),8xiu,,(.’s)>Lz(Q):| dsdr
0

i=1

0
T t
20/0/ |:<atun(~,5)sattun(~ LZ(Q)+Z a Mn S) ax,tun( )> :|de),‘
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and together with the help of the last relation,

i =2 (S (55
() (), oo

=0

< (8:::( ) (a,,un(.,s) %Axun(',s)) >Lz(g)dsdz

(Orttn(+5), Oretn(+,5) — Axttn (-, 5)) 12y dsdr.

2

o\_ﬂ o

Il
S}

2

St T —~

/
/

The completion procedure gives the equality (4.63). The Cauchy-Schwarz inequality
yields the asserted estimate. O

Corollary 4.3.5. The inner product space (I:I&(Q;D),<DQ(-),DQ(-))L2(Q)) is a Hilbert
space.

Proof. The assertion follows immediately from Lemma 4.3.3 and Lemma 4.3.4. O

In the following, FIOI’(Q;D) is endowed with the inner product (DQ(~),DQ(~)>L2<Q) and
hence, with the norm [[Og(-)][,2 (g)- The strong variational formulation of the wave equa-
tion (4.11) for given f € L*(Q) is as follows:

Findu € FI(}’(Q;IZI) such that
as(u,v) = (f,v)Lz(Q) (4.64)

for all v € L2(Q), where the bilinear form
as(): Hy,(Q:0) x1%(Q) = R

is defined by
ag(u,v) = (I:IQu,v)Lz(Q)
for u € Hj (0:0),v € L*(Q).

Next, properties of the bilinear form ag(-,-): ﬁ(i(Q;EI) x L*(Q) — R are shown and fi-
nally, unique solvability of the strong variational formulation (4.64) is proven.
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Lemma 4.3.6. The bilinear form as(-,-): H0 (0;0) x L2(Q) — R is bounded, i.e.
|as(u.v)| < HDQ”HLZ(Q)HV“LZ(Q)
forallu e ﬁ&(Q;D), veL*(Q).

Proof. The assertion follows immediately from the Cauchy-Schwarz inequality. O

Lemma 4.3.7. The bilinear form as(-,-): ﬁ&(Q;D) x L2(Q) — R fulfils the condition
(N1), i.e. the inf-sup condition

|as(u,v)|
sup B oo
over2(o) Vlr2(g)
forallu e I:I&(Q;EJ).
Proof. The inf-sup condition follows by the representation of the norm ||-[| 2. O

Lemma 4.3.8. The bilinear form as(-,-): I:I(%,(Q;D) x L2(Q) — R fulfils the condition
(N2):

For each function 0 # v € L*(Q), an element u € FI&(Q; 0O) with as(u,v) # 0 exists.

Proof. Letv € L*(Q) be fixed. There exists an approximating sequence (¥,),en C Cg(Q)
such that ||, —v||;2(g) — 0 as n — co. Consider the eigenfunctions ¢; € HJ(Q) and eigen-
values y; > 0 of the Dirichlet eigenvalue problem of the Laplacian, see (2.4). Write v and
v, for n € N as Fourier series

oo

v(x,r) =Y vit)gi(x)

i=

—_

and

oo

D(x,t) = Z Vi (1) ()

i=

for (x,7) € Q with coefficients v; € L2(0,T), ¥,; € L*>(0,T), see (3.66). It holds true that
2 o 2
oo > |Vl (g) = ) Ivillz20.7)
i=1
and forn € N

2 ST 2 e 12
0> HVnHLZ(Q) = Z an,l'”Lz(O,T)’ > HVanHLZ(Q) = Z:uiHVn,i“LZ(O,T)'
i= i=1
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Fix an index n € N. Define for M € N

["]E

Un.p(x,1)

lo/n, sin (/i (t —s))ds- ¢i(x), (x,1) € Q,

1:1\/1'7’
and
un(x,1) :i ! /tn, )sin (/i (t —s))ds- ¢i(x), (x1) € Q.
1:1\/'I’T’O
Since
p 2
a2 ;Ni / 2 i(s) sin (VEE(f — s)) ds

0
t

/nz )st/qmz(\/»(t—s))dsdt
0

/
Z

IA
iyl
|-

2

s 1T
HV”*"”LZ(O,T) < — I 3 ||Vn||L2 < oo,

IN
t\)"‘]
HMg

1
‘i
it holds true that u, € L*(Q) and uy 3y — uy, in L*(Q) as M — oo

To compute the time derivative J; of uy, set for M € N

Ma

W”Mxl‘

/,,, cos (y/i(t —s))ds- ¢i(x), (x,t)€Q,
0

1

Mx

/,” cos (VI (t —$))ds- ¢i(x),  (nr) € O,
0

Il
—-

i

and compute
. 2

T
O//,,,s)cos JE(—s)ds| di
;

Ms

2
”WnHLZ(

Il
-

0
Tz L2
”Vn”LZ(Q) < oo,

”VIHHLZ OT

N"‘]
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i.e. w, € L2(Q) and wy, a1 — wy, in L?(Q) as M — oo, It follows that
T
//u,, x,1)0,¢(x,1)dxdt = 11m //unM (x,1) 0y (x, 1) dxds
0

— lim //a,unM (x, 1)@ (x,1)dxdr

M—e0

:—11m//w,,Mxt (x,1)dxds

M—yoo0

—/T/wn(x,z)(p(x,t)dxdt
0 Q

forall ¢ € C5(Q), i.e. du, =wy, € L?(Q). Analogously, the weak derivatives iy, Vyity,
V0, and Auy, are derived, since one formally computes for (x,7) € Q

oo

nattn (1) = Zf/vn,(s sin (V(t — ) ds- di(x Z (6,

Vaan(e6) = ¥ [ ls)sin (VEils —5)) ds- Vi),
0

8

i=1

Adi(t) = — Y \/;Ti/ﬁn,i(s) sin (VI (f — ) ds- 9:(x),
0

where the term-by-term differentiation is allowed because of the estimates

Tl ¢ 2

utta122 ) <22u,/ /v,,, Jsin(VE(t —s))ds | dr+2] 920

0
~ 2 A 112
<71° Z.uiHVn.iHLZ(o,T) +2||V11||L2(Q)
i=1
2 A 112 A 112
=T HVanHy(Q) +2HVHHL2(Q) < oo,
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LT[ 2
1¥annlg = X [ / 9a(s)sin (y/Hi(t —s))ds | o
1:10
T2 X
7 Z ‘Vn.i”iZ(o,T) = 7||Vn|‘i2(g) <
' 2
1V 9hal 22 Zu,/ / Yeos (VE(t —s))ds| dr
il 0
<*Z#'||9 17 =*HV-ﬁ I72(0) < o
=7 ~ ilVnill2(0,1) ) xVallr2(g)
and
¢ 2
1A 220 Zu,/ / )sin (VE(t —s5))ds | de
P

0

T2 A2 A2
< Tgﬂiuvn,iﬂy(o,r) = 7“VXV"“L2(Q) < oo,

Therefore, u, € A (Q;0).
Analogously, define for (x,¢) € O

and partial sums

S

Z N v,(s sin (/i (t — 5)) ds - @i (x)
i=1
for M € N. With the same arguments as above, it holds true that

lim upy =u  in L*(Q),
M—so0

lim dupy = du  in L*(Q),
M—o0

lim Vo =V in [L2(Q)).
M—ro0
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For each M € N, one computes for (x,7) € Q
M

mf vz(s sin (Vi (t —5)) ds- 9i(x ; i(1)9i(x)

and hence, it follows that

Oupr(x,1) =

(1,00) 120 = //u(x 0@(x,1)dxdr =
0Q

—o0

T
//qut Oo(x,)dxdr
0

T T M
= gnm//Elqut) (x.)dxds = Tim //Zv,-(t)(l)i(x)(p(x,t)dxdt
0 Q 0Q

T
://v x,)@(x,1)dxdt = (v, 9) 20
0

for all ¢ € C3(Q), i.e. Ogu = v € L*(Q). The estimates
|utn _u‘Hl(Q) < Cl[on— VHLZ(Q) and  [|Oo(un — “)HLz(Q) < |[¥n— VHLZ(Q)
yield [|un —ul| 1 (.7 — 0 as n — e and hence, u € H'(0;0).

To summarise, the sequence (u,),ex C Hg (Q;0) converges tou € H' (Q;0) in [|-[| 1 o1

and hence, u € A} (Q;0) by the completion procedure. With Ogu = v € L*(Q) and there-
fore,
2
as(u,v) = |[vll;2g) >0,

the assertion follows. O

Theorem 4.3.9. For each given f € L*(Q), a unique solution u € FI&(Q;D) of the varia-
tional formulation (4.64) exists. Furthermore,

Ls: L*(Q) — Hy (0:0), Lsf:=u,

is an isomorphism satisfying
||DQ“HL2(Q) = HDQ‘CSf”LZ(Q) = Hf||L2(Q)

Proof. With the help of the Necas Theorem 2.9.1, the results in Lemma 4.3.6, Lemma 4.3.7
and Lemma 4.3.8 yield the existence and uniqueness of a solution u € I-NI&(Q; 0). In addi-
tion, with the variational formulation (4.64), the equalities

|(f, V>L2(Q)‘ ‘(DQ“’ V>L2(Q)|

Wl = sp Vel el _yp
PO snerie) Mg omerie Mg etllz(o)

hold true and therefore, the assertion. O
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Remark 4.3.10. The following functions are given to get a first impression of the solution
space I:I(}’(Q; 0.

1. Functions u € C*(Q) with Uz, = 0, dus, = 0 and Vyuq, = 0 are contained in
Hj (0:0) C Hy (0:0).
2. A function u € H'(Q;0) with

H%n*tu L2

(Z>:||u(-,0)||Lz(Q>:0 and Ogu=0 inQ

isin FI(}’(Q; 0O) if and only if u =0 in Q. This follows immediately from the represen-
tation (4.63).

3. Consider the smooth function
u(x,t) = sin(zx) sin(zwt)  for (x,¢) € (0,1) x (0,1) = Q,

satisfying

[

= [u(-0)l (@) =0 and Ogu=0inQ.

The representation (4.63) yields that u ¢ I:I(}(Q, 0).

Outlook for Possible Extensions of Section 4.3

Since the constructions of the spaces and the proofs in this section mainly rely on the treat-
ment of the second-order temporal differential operator d;; + i with a parameter g > 0,
a generalisation of the results of this section to differential operators d;; + Ay, acting on
vector fields or scalar fields, is possible, where the second-order spatial differential oper-
ator A, has to fulfil certain properties. To transfer existence and uniqueness results, as in
Theorem 4.3.9, to the more general differential operator

I+ Ax,

the analysis has to be done with great care, where the proofs are left for future work,
including precise assumptions on A, and the involved function spaces.
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4.4 Space-Time Variational Formulation in a Weak Sense

In this section, the wave equation (4.11) is considered in a weaker sense than LZ(Q), There-
fore, with the notations of Section 2.1 and Section 2.5, define

H(Q) :={vjp: v € L*(Q-). Vjax(—w0) = 0.0g_v € [Hy |, (Q)]'}

with the norm

__ 2 2
Vlls0) = \/HV||L2(Q) + 150 v/l 0y
where
0. =Qx (=00, T) C R¥!
is the unbounded domain with respect to time. For a function v € 7(Q), the condition
Op ve [Hé;}O(Q)}/ involves that there exists an element f, € [Hé;‘}O(Q)]/ with

Do To(¢) = (fn00), forallg eD(Q-),

where

T,: D(O_) >R, T,(p)= / V(1) (x.r)duds = / V(o) r)dads  for ¢ € D(Q_),
o Q

is the distribution related to v € L*>(Q_) and as in Section 2.5, (-,+)g denotes the dual-

ity pairing in [H, [ ( 0)]' x H0 0( ) as extension of the L?(Q) inner product. Note that

P € HS'IO(Q) for ¢ € D(Q-) and that C§'(Q-))p is dense in H&’}O(Q). Hence, the ele-

ment f, € [H] o: 0( 0)]’ is unique.

Clearly, (H(

(Q)) is a normed vector space and it is even a Banach space.

Lemma 4.4.1. The normed vector space (H(Q), (0)) is a Banach space.

Proof. Consider a Cauchy sequence (v,),en C H(Q). Hence, (v;)nex C L*(Q) is also a
Cauchy sequence in L?(Q) and (Og vi)neN C [H(};’}O(Q)]’ is also a Cauchy sequence in
[Hé;’}O(Q)]/. So, there exist v € L2(Q) with ||v, — vl 20y —+0asn—coand f € [H(;;’}O(Q)]’
with

<DQ Va—f W>Q
HDQ—V" 7fH[H(;IO(Q)]’ = sup g

‘ | as n — oo,
w
07&W€H(])f?4)(Q) H'(Q

LetT,: D(Q_) » R, T,,: D(Q_) — R, with

Tv((p):(/ V(1)@ (x, 1) dxdlr, Tvn((p):/ va(61)@(xr)dxds  for all @ € D(Q_).
(9] (9]
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be the distributions related to the limit v € L2(Q) and to v, € L*(Q) for every n € N. It
follows for all ¢ € D(Q_) that

Do To(¢) = T,(0p) = /v(x,t)l](p(x,t)dxdl = lim /v,,(x,t)D(p(x,t)dxdt

Jim
0 9]

= lim 7,, (Og) = lim T _T,,(¢) = lim (Do _va.90), = (f-9l0),

because @ € H(;;}O(Q). So, it holds true that
Do v=1 € [Hyy(Q)]"
Hence, v € H(Q). O

Since the norm |- |40, is a Hilbertian norm, see Section 2.5, H(Q) is even a Hilbert space
with respect to an abstract inner product (-, )¢y, Which induces the norm [[-||3;(g)-

Lemma 4.4.2. It holds true that
Hy,(Q) € H(Q).
Furthermore, each function u € H(;(; (Q) fulfils
(Og_u,w) 0 = (,w) 1= —(u, 9 w) 2 g) + (Vxtt, Viw) 12 ) (4.65)
forallw e H(;IO(Q)

Proof. Letu e Hg;’é’ (Q) befixed. Setv:=uin Qand v:=0in Q_\ Q. Clearly, it holds true

that v € L*(Q_) and V|Qx (—eo,0) = 0. It remains to prove that g v € [Hol;’}O(Q)]’. Therefore,
let7,: D(Q-) — R, with

T,(¢) = /v(x,t)(p(x,t)dxdt - /lu(x,t)(p(x,t)dxdt forall p € D(Q_),
o Q
be the distribution related to v € L?(Q_) and define f, € [H(%;}O(Q)]’ by

(fusw)g = ag (u,w) = =9, Iw) 2 () + (Vxut, Vaw) 2 () forallw e H(;;’,]O(Q).

Note that f, € [H(i"lo(Q)]/ is bounded by the Cauchy-Schwarz inequality, satisfying the
estimate ||qu[H|,1 oy < |ul g1 (@) > see Lemma 4.2.22. It follows for all ¢ € D(Q-) with
0:,0

integration by parts with respect to time and space that

Op () = T,(Og) = / (o, )0 (x, 1) dxdr = / (1) (9 — A (x,1)duds
) 0
= _<afu’ a’(P\Q>L2(Q) + <qu’ Vx(P\Q>L2(Q) = <f"’(PIQ>Q'
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Hence, it holds true that g v = f, € [H(;;‘}O(Q)]’ and so, u € H(Q). The equality (4.65)
follows also from the last relation, because Ci(Q- ), is dense in H(}lo(Q) O

Define by completion the Hilbert space

H0,(0):=Hyp (@) " cH(Q)
endowed with the Hilbertian norm ||-|4,). That means,
Ho.(Q) = {veH(Q): F(Vu)nen C H&’&(Q) with [[v, = v[|30) — O}

Lemma 4.4.3. For u € Ho (Q), it holds true that
f
B ull g1 oy = 7 liz)-

Proof. Let 0# u € H(Q) be fixed. Because of the completion, there exists an approximat-
ing sequence (up)uen C Hé;’é’ (Q) with [lu—un|3yg) — 0 as n — eo. Assume without loss
of generality that u,, # 0 for all n € N. Because of Theorem 4.2.23, for each n € N, there
exists a unique solution w, € Hé;}O(Q) of

Vv e H(;;’(i, (Q): ag (viiwn) = —(Wn, 9v) 12y + (Viitn, Viv) 12 ) = (Un,v) 2 () (4.66)

satisfying [Wn|g1g) < %Tuunuy@. With equality (4.65), with v = u, € Hy; (Q) in the
variational formulation (4.66) and with the stability estimate |, 1oy < \%T\\un l2(0)- it
follows that

(Bo unw)ol Dot Wu)ol  |ap (o)

Uo_un|| 11 (o = sup > — =
100l 501 0 simerttie) Ml Wl o) Wl o)
, Villuling _ V2,
= Tl me
and hence, the assertion by completion. O

Corollary 4.4.4. The inner product space (Ho,(Q),<DQ7(-),I:IQ7(~)>[H8_,10<Q)],> is com-
plete, i.e. a Hilbert space. )

Proof. The assertion follows immediately from Lemma 4.4.3. O
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In the following, Ho (Q) is endowed with the Hilbertian norm ”DQ—(')H[H“ (o) The
0;,0
weak variational formulation for given f € [H(}IO(Q)]' is as follows:

Find u € Ho,(Q) such that
aw (u,w) = (f,w)g (4.67)

for all w € Hy; (Q), where the bilinear form aw (-,-): Ho,(Q) x Hy\y(Q) — R is defined
by
aw (u,w) = <DQ7u,w>Q foru € Ho (Q), we H(;;’,IO(Q),

Next, properties of the bilinear form aw (-,-): Ho,(Q) x H&;‘,IO(Q) — R are shown and
finally, unique solvability of the weak variational formulation (4.67) is proven.

Lemma 4.4.5. The bilinear form aw (-,-): Ho (Q) X H&;’}O(Q) — R is bounded, i.e.

law (u,w)| < HDQilAH[HOl:,VIO(Q)]/ Wiy forallueHo(Q).we Hé;}O(Q),

Proof. The assertion follows immediately by the definition of the space Ho (Q). O

Lemma 4.4.6. The bilinear form aw(-,-): Ho,(Q) X Hol;"lO(Q) — R fulfils the condition
(N1), i.e. the inf-sup condition

Jaw ()| _

sup |0g_ul| forallu € Ho(Q).

L1 '
0#WwEH; (Q) W) [Hy: (0)]

Proof. The inf-sup condition follows by the definition of the norm HDQ— () || HEL Q) (]

Lemma 4.4.7. The bilinear form aw(-,-): Ho (Q) X H&’}O(Q) — R fulfils the condition
(N2):

Foreach 0 #w € Hé;’}O(Q), an element u € Ho (Q) with aw (u,w) # 0 exists.
Proof. Let0#w € H&'}O(Q) be a given function. Because of Theorem 4.2.23, there exists
a unique solution & € H(;;’& (Q) of
1
V2 € Hy'0(Q):  ap(i,2) = —(9hih 912)12(g) + (Vlk, Va2 p2(g) = (W:2)12(0)y  (468)

satisfying g |t 1(g) < Iwll12(g)- With the help of representation (4.65) and the varia-
tional formulation (4.68) forz=w € Hé;’}O(Q), it follows that
aw (iH,w) = <|:|Q712,W>Q
= ap (i, w) = —(9,i1, ) 12(g) + (Vall, Vaw) 12 g) = (W, W) 2(g) > 0

and hence, the assertion. O
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Theorem 4.4.8. For each given f € [H(;;‘}O(Q)]’, a unique solution u € Ho (Q) of the vari-
ational formulation (4.67) exists. Furthermore,

Lw: [Hyo(Q) = Ho(Q).,  Lwf:=u,
is an isomorphism satisfying
1Bl = 1B Lw s s o = 1m0
Proof. With the help of the Nec¢as Theorem 2.9.1, the results in Lemma 4.4.5, Lemma 4.4.6

and Lemma 4.4.7 yield the existence and uniqueness of a solution u € H (Q). In addition,
with the variational formulation (4.67), the equalities

[(fsw)ol aw (u,w)]
M gsor = swp oo ol_ o ||W| ) = (1004l 11
" o#weHy 1 (0) "IHNQ)  o£weHy (@) TH'(Q) B
hold true and therefore, the assertion. O

Remark 4.4.9. The following functions are given to get a first impression of the solution
space Ho (Q).

1. Functions u € C*(Q) with uz, = 0 are contained in H(;;’& (Q) C Ho,(0).
2. Consider the smooth function
u(x,t) = sin(zx) sin(zwt)  for (x,t) € (0,1) x (0,1)=Q
satisfying }/(i)mu =01in Xy and Ugu = 0 in Q. But there is
Oo_u#0
because the related distribution
T.(9) = [ulur)p(ur)dxdr forall € D(Q-)
Q
Sulfils with integration by parts for all ¢ € D(Q_)
Do T(9) = Tu(09) = [ uler)Dor)dxd = [ u(x.t)(3 — ) (et dudr

Q 0
1

— (00,319} 2(g) + (0u1t. 01 P) 2 ) = / sin(7tx) @ (x,0)dx.
0

On the other hand, it holds true that u € H(;;’&(Q) C Ho.(Q). In other words, the
second initial condition

du(,0)=0 inQ

is not incorporated in the ansatz space Ho (Q).



196 4 Wave Equation

Outlook for Possible Extensions of Section 4.4

Since the constructions of the spaces and the proofs in this section mainly rely on the
treatment of the second-order temporal differential operator d,, + 1 with a parameter u, a
generalisation of the results of this section to differential operators dy, + Ay, acting on vec-
tor fields or scalar fields u, is possible, where the second-order spatial differential operator
Ay has to fulfil certain properties, e.g., constant coefficients. In more detail, consider the
more general ansatz and test spaces

Xo, == H.(0,7; [12(Q)]) N L2(0,T3V) € [12(0)]“,

Xo:=H}0,7; [L3(Q)])) nL(0,7;v) c [L2(Q)]“,

endowed with the usual inner products, where V C [L?(Q)]? is a given Hilbert space such
that the set [C(Q-) o] is dense in Xo. Assume that the space-time variational formula-
tion to find u € Xy, such that

T
V€ Xo: — (At dw) 2 )+ / aA (1) w(0)d = (o) s o)
0

admits a unique solution for each right-hand side f € [LZ(Q)}d, satisfying the stability
estimate

llully, < CHI”LZ(Q)

with a constant ¢ > 0. Further, assume that the to A, corresponding spatial bilinear form
ay,(--): VxV — R fulfils some properties, e.g., ellipticity and continuity. Then, exis-
tence and uniqueness results, as in Theorem 4.4.8, can be transferred to the more general
differential operator

Ot + Ay.

Since the proofs have to be done with great care, they are left for future work, including
precise assumptions on A, and V.



5 CONCLUSIONS AND OUTLOOK

In this work, space-time variational formulations and their discretisations with conforming,
piecewise polynomial functions for the heat and wave equation are considered in a bounded
space-time cylinder Q with a terminal time 7.

The main result for the heat equation is an unconditionally stable finite element method
of Galerkin-Bubnov type with piecewise linear, continuous functions, which is based on
a variational formulation in a subspace of the anisotropic Sobolev space H L1/ 2(Q). This
space-time variational formulation is analysed with the help of Fourier series, and a kind of
Hilbert transform Hr is introduced. This leads to a symmetric and elliptic variational for-
mulation and hence, to a symmetric Galerkin discretisation of the first-order time derivative
;. For the heat equation, unconditional stability for unstructured space-time meshes, error
estimates in L%(Q), in H'(Q) and in the anisotropic Sobolev space H(;’/ 2 (0,T;L*(Q)) for a
tensor-product approach are proven. Furthermore, numerical examples, which confirm the
theoretical results, are presented. The main advantage of this formulation is the possibility
of a combination with the standard boundary element method for the heat equation, i.e.
a FEM-BEM coupling, see [39]. An investigation in such directions is a possible future
work. In addition, proving a discrete inf-sup condition and error estimates for unstruc-
tured space-time meshes and a fast realisation of the kind of Hilbert transform H7 given
in (3.68) are also of interest in future.

For the wave equation, a space-time variational formulation in a subspace of the Sobolev
space H'(Q), which is not inf-sup stable, is used for a conforming space-time finite el-
ement method, which leads to a conditionally stable method, i.e. a CFL condition is re-
quired. For a tensor-product approach, an unconditionally stable method with piecewise
linear, continuous functions is investigated. An extension to a space-time approximation
with unstructured space-time meshes remains open for the future. A first possibility is the
use of locally refined meshes with hanging nodes, including related constraints to satisfy
the continuity requirements of the ansatz space. A second possibility is to transfer the
stabilisation to unstructured but admissible space-time meshes. In both cases, one con-
stant source of difficulties is the situation of different initial and terminal conditions of the
ansatz and test spaces Hé;& (0), H(;;}O(Q), which may lead to a nonsquare system of linear
equations for discretisations based on unstructured space-time meshes. Using the transfor-
mation H7 given in (4.45), i.e. a Galerkin-Bubnov scheme, is a possible way out.

Moreover, existence and uniqueness results for the wave equation as a partial differential
equation in L?>(Q) and in a weaker sense than L?(Q) are proven, including isomorphic
solution operators and corresponding inf-sup conditions. These inf-sup stable space-time
variational formulations in the strong or weak sense might be useful not only for other
discretisation methods, e.g., wavelets, but also for the analysis of the related boundary
integral equations.

197



198 5 Conclusions and Outlook

For both equations, i.e. for the heat equation and for the wave equation, moving bound-
aries, space-time adaptive schemes, space-time parallelisations and especially fast solvers
and preconditioning, which are based on space-time variational formulations given in this
thesis, are left for future considerations. Finally, any extensions to more involved equa-
tions, e.g., Stokes equations or Maxwell’s equations, are of interest in future, see also the
outlooks for possible extensions in each chapter.
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