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Zusammenfassung

In dieser Arbeit werden Raum-Zeit-Variationsformulierungen und deren Diskretisierung
mittels konformer, stückweise polynomieller Funktionen für die Wärmeleitungsgleichung
und Wellengleichung in einem beschränkten Raum-Zeit-Zylinder Q mit Endzeitpunkt T
betrachtet.

Für die Wärmeleitungsgleichung ist das Hauptresultat eine unbedingt stabile Galerkin-
Bubnov-Raum-Zeit-Finite-Element-Methode mit stückweise linearen, stetigen Funktionen
basierend auf einer Raum-Zeit-Variationsformulierung, welche in einem Unterraum ei-
nes anisotropen Sobolevraums formuliert wird. Diese Raum-Zeit-Variationsformulierung
wird mithilfe von Fourierreihen und einer Transformation, welche ähnlich zur Hilberttrans-
formation ist, analysiert. Daraus ergeben sich eine symmetrische und elliptische Variati-
onsformulierung und infolgedessen eine symmetrische Galerkin-Diskretisierung für die
erste Zeitableitung. Für die Wärmeleitungsgleichung wird unbedingte Stabilität für un-
strukturierte Raum-Zeit-Netze bewiesen. Weiters werden Fehlerabschätzungen in L2(Q),
in H1(Q) und in einer anisotropen Sobolevnorm für einen Tensorproduktansatz hergeleitet.
Schließlich werden numerische Beispiele, welche die theoretischen Ergebnisse bestätigen,
angegeben.

Für die Wellengleichung ist der Ausgangspunkt eine Raum-Zeit-Variationsformulierung in
Teilräumen des Sobolevraums H1(Q). Diese Raum-Zeit-Variationsformulierung ist nicht
inf-sup-stabil. Die Diskretisierung dieser Raum-Zeit-Variationsformulierung mittels einer
konformen Raum-Zeit-Finite-Element-Methode mithilfe von stückweise linearen, stetigen
Funktionen führt zu einer bedingten Stabilität des Verfahrens. Das heißt, für die Stabi-
lität muss eine CFL-Bedingung zwischen der Orts- und Zeitmaschenweite erfüllt sein.
Um die CFL-Bedingung zu vermeiden, wird für einen Tensorproduktansatz eine stabili-
sierte Raum-Zeit-Finite-Element-Methode mittels stückweise linearer, stetiger Funktionen
hergeleitet. Für diese Formulierung werden unbedingte Stabilität in L2(Q) sowie Fehler-
abschätzungen in L2(Q) und in H1(Q) bewiesen. Weiters werden numerische Beispiele,
welche die theoretischen Ergebnisse bestätigen, angegeben. Zu guter Letzt werden Exis-
tenz- und Eindeutigkeitssätze für die Wellengleichung als partielle Differentialgleichung
im L2(Q) und in einem schwächeren Sinne als L2(Q) bewiesen. Die zugehörigen Lösungs-
operatoren sind Isomorphismen, welche entsprechende inf-sup-Bedingungen garantieren.



Abstract

In this work, space-time variational formulations and their discretisations with conforming,
piecewise polynomial functions for the heat and wave equation are considered in a bounded
space-time cylinder Q with a terminal time T.

The main result for the heat equation is an unconditionally stable finite element method
of Galerkin-Bubnov type with piecewise linear, continuous functions, which is based on
a variational formulation in a subspace of an anisotropic Sobolev space. This space-time
variational formulation is analysed with the help of Fourier series, and a kind of Hilbert
transform is introduced. This leads to a symmetric and elliptic variational formulation
and hence, to a symmetric Galerkin discretisation of the first-order time derivative. For
the heat equation, unconditional stability for unstructured space-time meshes is proven.
In addition, error estimates in L2(Q), in H1(Q) and in an anisotropic Sobolev norm for
a tensor-product approach are derived. Finally, numerical examples, which confirm the
theoretical results, are presented.

For the wave equation, a space-time variational formulation in a subspace of the Sobolev
space H1(Q), which is not inf-sup stable, is used for a conforming space-time finite el-
ement method, which leads to a conditionally stable method, i.e. a CFL condition is
required. For a tensor-product approach, a stabilised finite element method with piece-
wise linear, continuous functions is investigated, where unconditional stability in L2(Q) is
proven. Furthermore, error estimates in L2(Q) and in H1(Q) are derived, and numerical
examples, confirming the theoretical findings, are given. In addition, existence and unique-
ness results for the wave equation as a partial differential equation in L2(Q) and in a weaker
sense than L2(Q) are proven, including isomorphic solution operators and corresponding
inf-sup conditions.
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1 INTRODUCTION

Standard approaches for the numerical solution of time-dependent partial differential equa-
tions are usually based on semi-discretisations in space and time, where the discretisation
in space and time is split accordingly, see, e.g., [150] for parabolic partial differential equa-
tions, and [32, 33] for hyperbolic problems. Interpreting such approaches in a space-time
sense, i.e. the time variable is considered as an additional spatial variable, these methods
are related to tensor-product space-time methods, see, e.g., [16,48–50,85] for the parabolic
case, and [19,22,55,86,164] for the hyperbolic one. An alternative is to discretise the time-
dependent problem without separating the temporal and spatial variables, i.e. a space-time
discretisation. This ansatz may lead to unstructured decompositions of the space-time do-
main. The approaches of unstructured meshes are considered, e.g., in [116, 142–144] for
parabolic equations, and [42, 63, 111, 130, 140] for hyperbolic ones. More references are
given in Chapter 3 for the parabolic equations, and in Chapter 4 for the hyperbolic prob-
lems. In general, the main advantages of space-time methods are space-time adaptivity,
space-time parallelisation and the treatment of moving boundaries. At a first glance, a
disadvantage is that a global linear system must be solved at once. Therefore, fast solvers
and preconditioning are essential, which are not investigated in this work, see, e.g., [56].
In this thesis only direct solvers and the GMRES method are used. However, space-time
approximation methods depend strongly on the space-time variational formulations on the
continuous level. The focus of this thesis is on space-time variational formulations for
the heat and wave equation, which result not only in inf-sup stable formulations but fit
also very well to conforming space-time methods with piecewise polynomial functions. In
addition, these space-time variational formulations might be useful for variational formu-
lations and their analysis of boundary integral equations and boundary element methods.

To motivate space-time approximation methods, space-time adaptivity is investigated in
the case of a space-time interpolation and in the case of an adaptive space-time boundary
element method for the spatially one-dimensional wave equation.

1.1 Space-Time Interpolation

For the approximation of a function u(x, t) depending on a spatial variable x ∈ Ω ⊂ ❘d ,
d = 1,2,3, and on a time variable t ∈ (0,T )⊂❘, where Ω is a bounded Lipschitz domain
and T > 0 is a terminal time, a better adaption of a sequence of arbitrary admissible and
shape regular decompositions (TN)N of the space-time cylinder Q := Ω× (0,T )⊂❘d+1 is
possible in contrast to a tensor-product meshing of Q. As illustration, consider the rectan-
gle

Q = (0,3)× (0,6)⊂❘2

1



2 1 Introduction

with Ω = (0,3) and T = 6 for the C2(Q) function u1 : Q →❘,

u1(x, t) =

{
1
2(t − x−2)3(x− t)3, x ≤ t and t − x ≤ 2,

0, else,
(1.1)

which is plotted in Figure 1.1, and for the piecewise smooth function u2 : Q →❘,

u2(x, t) =

{
1
2 |sin(π(x− t))| , x ≤ t,

0, else,
(1.2)

which is plotted in Figure 1.2.

Figure 1.1: The smooth function u1 of (1.1).

The given rectangle

Q = TN =
N⋃

ℓ=1

qℓ

is decomposed into N uniform space-time triangles qℓ ⊂ ❘2 with mesh size h as given
in Figure 1.3 for level 0, where M̃ is the number of vertices {(xi, ti)}M̃

i=1. The finite-
dimensional space S1

h(Q) = span{ψi}M̃
i=1 ⊂ H1(Q) is the space of piecewise linear, con-

tinuous functions on these space-time triangles with the nodal basis functions ψi, and the
space-time interpolation operator Ih : C(Q)→ S1

h(Q) is defined by

Ihv(x, t) =
M̃

∑
i=1

v(xi, ti)ψi(x, t) for (x, t) ∈ Q,
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Figure 1.2: The piecewise smooth function u2 of (1.2).

where v ∈ C(Q) is a given continuous function, see Section 2.8 for details. Next, the
interpolation errors in ‖·‖L2(Q) and |·|H1(Q) for the functions u1,u2 are investigated for a
sequence of uniform space-time meshes and for a sequence of adaptive space-time meshes.
The uniform refinement strategy is depicted for the levels 0,1,2 in Figure 1.3. As adaptive
refinement strategy, Dörfler marking [41] with parameter θ = 0.5 for the norm ‖·‖L2(Q) is
used.

For the smooth function u1, the adaptive meshing is given in Figure 1.4. The uniform
and the adaptive refinement strategies lead to optimal convergence rates with respect to
‖·‖L2(Q) and |·|H1(Q) , see Table 1.1 and Figure 1.5. However, a comparison between the
uniform and the adaptive schemes shows that the adaptive scheme needs considerably less
degrees of freedom M̃ for the same accuracy of the errors.

For the piecewise smooth function u2, the uniform refinement strategy results in reduced
orders of convergence, see Table 1.2. With the adaptive refinement strategy, the optimal
convergence rates are obtained, see Figure 1.7, and see Figure 1.6 for the meshes produced
by the adaptive scheme.

To summarise, a main advantage of space-time methods is the space-time adaptivity, as
depicted in Figure 1.4 and Figure 1.6, which is difficult to realise for standard approaches
based on semi-discretisations, where the discretisation in space and time is split accord-
ingly.
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Figure 1.3: Uniform refinement strategy: Starting mesh, the meshes after one and two
uniform refinement steps.

level M̃ N ‖u1 − Ihu1‖L2(Q) eoc |u1 − Ihu1|H1(Q) eoc
0 15 16 5.122e-01 - 1.947e+00 -
1 45 64 2.302e-01 1.46 1.397e+00 0.60
2 153 256 5.797e-02 2.25 6.973e-01 1.14
3 561 1024 1.477e-02 2.11 3.537e-01 1.04
4 2145 4096 3.744e-03 2.05 1.788e-01 1.02
5 8385 16384 9.386e-04 2.03 8.957e-02 1.01
6 33153 65536 2.348e-04 2.02 4.481e-02 1.01
7 131841 262144 5.872e-05 2.01 2.241e-02 1.00
8 525825 1048576 1.468e-05 2.00 1.121e-02 1.00
9 2100225 4194304 3.670e-06 2.00 5.603e-03 1.00

10 8394753 16777216 9.176e-07 2.00 2.801e-03 1.00
11 33566721 67108864 2.294e-07 2.00 1.401e-03 1.00
12 134242305 268435456 5.735e-08 2.00 7.003e-04 1.00

Table 1.1: Interpolation errors for the function u1 of (1.1) for Q = (0,3)× (0,6) for a uni-
form refinement strategy with the meshes of Figure 1.3.
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0 1 2 3
x

0

1

2

3

4

5

6

t

Level 15

Figure 1.4: Adaptive refinement strategy for the function u1 in (1.1).

level M̃ N ‖u2 − Ihu2‖L2(Q) eoc |u2 − Ihu2|H1(Q) eoc
0 15 16 7.373e-01 - 5.653e+00 -
1 45 64 7.423e-01 -0.01 5.437e+00 0.07
2 153 256 2.970e-01 1.50 4.021e+00 0.49
3 561 1024 1.044e-01 1.61 2.821e+00 0.55
4 2145 4096 3.613e-02 1.58 1.939e+00 0.56
5 8385 16384 1.257e-02 1.55 1.365e+00 0.51
6 33153 65536 4.404e-03 1.53 9.491e-01 0.53
7 131841 262144 1.549e-03 1.51 6.749e-01 0.49
8 525825 1048576 5.463e-04 1.51 4.717e-01 0.52
9 2100225 4194304 1.929e-04 1.50 3.364e-01 0.49

10 8394753 16777216 6.815e-05 1.50 2.355e-01 0.51
11 33566721 67108864 2.409e-05 1.50 1.681e-01 0.49
12 134242305 268435456 8.514e-06 1.50 1.177e-01 0.51

Table 1.2: Interpolation errors for the function u2 in (1.2) for Q = (0,3)× (0,6) for a uni-
form refinement strategy with the meshes of Figure 1.3.
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Figure 1.5: Interpolation errors for the function u1 of (1.1) for Q = (0,3)× (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.4.

1.2 Boundary Element Method for the One-Dimensional Wave

Equation

As a second example, an adaptive boundary element method for the spatially one-dimen-
sional wave equation is investigated, see [161] for a summary. For details of the boundary
element method, see [70, 131, 141]. As a model problem, consider the wave equation

∂ttu(x, t)−∂xxu(x, t) = 0 for (x, t) ∈ Q = (0,L)× (0,T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ = {0,L}× [0,T ],

u(x,0) = ∂tu(x,0) = 0 for x ∈ (0,L),





(1.3)

where g is a given Dirichlet datum and L > 0, T > 0. Define

L2(Σ) := L2(0,T )×L2(0,T ) =

{
v =

(
v0

vL

)
: v0 ∈ L2(0,T ), vL ∈ L2(0,T )

}
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Figure 1.6: Adaptive refinement strategy for the function u2 in (1.2).

with the inner product

〈v,w〉L2(Σ) := 〈v0,w0〉L2(0,T )+ 〈vL,wL〉L2(0,T ) for v,w ∈ L2(Σ)

and introduce the Sobolev space

H1
0,(Σ) :=

{
v =

(
v0

vL

)
: v0 ∈ H1(0,T ), vL ∈ H1(0,T ), v0(0) = vL(0) = 0

}

with the inner product

〈v,w〉H1
0,(Σ)

:= 〈∂tv0,∂tw0〉L2(0,T )+ 〈∂tvL,∂twL〉L2(0,T ) for v,w ∈ H1
0,(Σ),

see Section 2.2 for more details. In general, for w ∈ L2(0,T ), set w(t) := 0 for t < 0 or
t > T . The solution u(x, t) of the wave equation (1.3) admits the representation

u = Ṽ∂nu−Wg in Q (1.4)

with the single layer potential Ṽ and the double layer potential W , where ∂nu denotes the
unknown normal derivative of u on Σ. The single layer potential Ṽ is defined by

Ṽw(x, t) =
1
2

t−|x|∫

0

w0(s)ds+
1
2

t−|x−L|∫

0

wL(s)ds, t ∈ [0,T ], x ∈ (0,L),



8 1 Introduction

101 102 103 104 105 106

10−5

10−4

10−3

10−2

10−1

100

101

degrees of freedom M̃

‖ u
2
−

I h
u 2
‖ L

2
(Q

),
| u

2
−

I h
u 2
| H

1
(Q

)

‖u2 − Ihu2‖L2(Q)

|u2 − Ihu2|H1(Q)

M̃−1

M̃−1/2

Figure 1.7: Interpolation errors for the function u2 in (1.2) for Q = (0,3)× (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.6.

for a density w = (w0,wL)
⊤ ∈ L2(Σ) with w = 0 outside of Σ. The single layer operator

V : L2(Σ)→ H1
0,(Σ) is given by

Vw(t) :=
1
2




t∫

0

w0(s)ds+

t−L∫

0

wL(s)ds

t−L∫

0

w0(s)ds+

t∫

0

wL(s)ds




, t ∈ [0,T ],

for a density w = (w0,wL)
⊤ ∈ L2(Σ) with w = 0 outside of Σ. Hence, it holds true that

∂t(Vw) ∈ L2(Σ), i.e. ∂tV : L2(Σ)→ L2(Σ). In [7], ellipticity and boundedness in L2(Σ) of
the bilinear form aE(·, ·) : L2(Σ)×L2(Σ)→❘,

aE(w,v) := 〈∂tVw,v〉L2(Σ) = 〈(∂tVw)0,v0〉L2(0,T )+ 〈(∂tVw)L,vL〉L2(0,T )

for w, v ∈ L2(Σ), are proven. Therefore, the following variational formulation is uniquely
solvable:
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Find ∂nu ∈ L2(Σ) for a given g ∈ H1
0,(Σ) such that

∀v ∈ L2(Σ) : aE(∂nu,v) =
1
2
〈∂tg,v〉L2(Σ)+ 〈∂t(Kg),v〉L2(Σ), (1.5)

where the double layer operator K is given for g = 0 outside of Σ by

Kg(t) =K
(

g0

gL

)
(t) =−1

2

(
gL(t −L)
g0(t −L)

)
for t ∈ [0,T ].

For a boundary element approximation, consider a decomposition of the lateral bound-
ary

Σ =
N0+NL⋃

i=1

τ i

into N0 +NL boundary elements τi with maximal mesh size h = maxi |τi| , where N0 is the
number of boundary elements for x = 0 and NL is the number of boundary elements for
x = L. The conforming ansatz space of piecewise constant functions

S0
h(Σ) := S0

h0
(0,T )×S0

hL
(0,T ) = span

{
ϕ̂0

i

}N0+NL

i=1 ⊂ L2(Σ)

is used to define an approximate solution wh ∈ S0
h(Σ). Then, the discretisation of (1.5) to

find wh ∈ S0
h(Σ)⊂ L2(Σ) such that

∀vh ∈ S0
h(Σ)⊂ L2(Σ) : aE(wh,vh) =

1
2
〈∂tg,vh〉L2(Σ)+ 〈∂t(Kg),vh〉L2(Σ) (1.6)

is equivalent to the global linear system

Vhw = g

with the related system matrix Vh ∈ ❘(N0+NL)×(N0+NL), the right-hand side g ∈ ❘N0+NL

and the vector of unknown coefficients w ∈ ❘N0+NL of wh ∈ S0
h(Σ). Note that the system

matrix Vh and the discretisation of the double layer operator K are calculated analytically,
whereas all other appearing integrals are computed by the usage of high-order integration
rules. Since the bilinear form aE(·, ·) : L2(Σ)× L2(Σ) → ❘ is bounded and elliptic, the
discrete variational formulation (1.6) is uniquely solvable and unconditionally stable. By
Céa’s Lemma and standard error estimates, there follows the a priori estimate

‖∂nu−wh‖L2(Σ) ≤C hs‖∂nu‖Hs(Σ) (1.7)

for some s ∈ [0,1] and a constant C > 0, where Hs(Σ) = Hs(0,T )×Hs(0,T ), see Sec-
tion 2.2. An approximate solution ũh ≈ u in the space-time cylinder Q is given by inserting
the approximate normal derivative wh ≈ ∂nu into the representation formula (1.4), i.e.

ũh := Ṽwh −Wg in Q. (1.8)
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To derive an adaptive mesh refinement on Σ, an a posteriori error estimator [136] is used,
which is based on the application of the normal derivative ∂n to the approximate represen-
tation formula (1.8),

w̃h := ∂nũh =
1
2

wh +K′wh +Dg on Σ.

Here, the adjoint double layer operator K′ and the hypersingular boundary integral operator
D are used. Hence, the local error estimators

η̃i := ‖w̃h −wh‖L2(τi)
≈ ‖∂nu−wh‖L2(τi)

for i = 1, . . . ,N0 +NL are computable, where the adjoint double layer operator K′ and the
hypersingular boundary integral operator D are calculated analytically. For an adaptive re-
finement strategy, a parameter θ ∈ [0,1] is chosen and all elements τi are refined, where

η̃i ≥ θ max
j

η̃ j. (1.9)

As numerical examples, consider L = 3 and T = 6, i.e. Q = (0,3)× (0,6), for the exact
solutions u1 and u2, which are given in (1.1) and in (1.2), with the smooth Dirichlet datum
g1 := u1|Σ ∈ H1

0,(Σ) and the piecewise smooth Dirichlet datum g2 := u2|Σ ∈ H1
0,(Σ). In the

case of the smooth Dirichlet datum g1 = u1|Σ, the optimal order of convergence, i.e. s = 1
for the error estimate (1.7), is achieved by a uniform refinement strategy, see Table 1.3,
and by the adaptive refinement strategy (1.9), see Figure 1.8. Furthermore, the L2(Q)
error for the approximate solution (1.8) is given in Table 1.3. However, in the case of
the piecewise smooth Dirichlet datum g2 = u2|Σ, only reduced orders of convergence are
obtained, when using a uniform refinement strategy, see Table 1.4 and Figure 1.9. Note
that the full order of convergence is attained for the adaptive refinement strategy (1.9), see
Figure 1.9. A resulting sequence of adaptive meshes is depicted in Figure 1.10, where
different decompositions for x = 0 and x = 3 are used, i.e. a decomposition without time
slabs.

Remark 1.2.1. Acoustic scattering problems are often formulated in exterior domains,
i.e. in an unbounded domain. The boundary element method is suited very well for
such scattering problems, since only a meshing of the surface of the bounded interior
domain is needed. The starting point of the boundary element method is the correspond-
ing boundary integral equation. The standard approach of boundary integral equations
for the wave equation uses the Laplace transform with respect to the time variable, see
[20, 21, 71–73, 87, 132]. This Laplace transform method results in space-time varia-
tional formulations, where the related bilinear form is bounded and elliptic in differ-
ent norms, i.e. the Lax-Milgram Theorem is not applicable in the space-time domain
and related error estimates for a boundary element method are not optimal. See also
[1, 57–62, 70, 121, 155, 156] for recent developments in this direction. In [6, 8, 69], an
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level N0 +NL ‖∂nu1 −w1,h‖L2(Σ) eoc ‖u1 − ũ1,h‖L2(Q) eoc
0 2 1.33823e+00 - 7.26168e-01 -
1 4 1.14684e+00 0.22 4.49627e-01 0.69
2 8 1.10072e+00 0.06 3.24885e-01 0.47
3 16 8.06608e-01 0.45 1.46335e-01 1.15
4 32 4.02738e-01 1.00 3.75263e-02 1.96
5 64 2.04198e-01 0.98 9.55880e-03 1.97
6 128 1.03212e-01 0.98 2.49973e-03 1.94
7 256 5.17114e-02 1.00 5.95579e-04 2.07
8 512 2.58723e-02 1.00 1.56495e-04 1.93
9 1024 1.29381e-02 1.00 3.71371e-05 2.08

10 2048 6.46928e-03 1.00 9.78807e-06 1.92
11 4096 3.23467e-03 1.00 2.40515e-06 2.02
12 8192 1.61734e-03 1.00 5.99227e-07 2.00
13 16384 8.08670e-04 1.00 1.49398e-07 2.00
14 32768 4.04335e-04 1.00 3.77370e-08 1.99

Table 1.3: Numerical results for the boundary element method (1.6) for the function u1 in
(1.1) for Q = (0,3)× (0,6) for a uniform refinement strategy.

level N0 +NL ‖∂nu2 −w2,h‖L2(Σ) eoc ‖u2 − ũ2,h‖L2(Q) eoc
0 2 3.95477e+00 - 2.59835e+00 -
1 4 3.33217e+00 0.25 5.78383e-01 2.17
2 8 3.11643e+00 0.10 4.73586e-01 0.29
3 16 3.16575e+00 -0.02 4.10036e-01 0.21
4 32 2.37997e+00 0.41 1.77812e-01 1.21
5 64 1.66423e+00 0.52 6.10341e-02 1.54
6 128 1.15613e+00 0.53 2.28464e-02 1.42
7 256 8.07589e-01 0.52 8.15019e-03 1.49
8 512 5.67073e-01 0.51 3.29593e-03 1.31
9 1024 3.99491e-01 0.51 1.33215e-03 1.31
10 2048 2.81940e-01 0.50 5.98854e-04 1.15
11 4096 1.99168e-01 0.50 2.74489e-04 1.13
12 8192 1.40764e-01 0.50 1.32773e-04 1.05
13 16384 9.95104e-02 0.50 6.47539e-05 1.04
14 32768 7.03558e-02 0.50 3.21587e-05 1.01

Table 1.4: Numerical results for the boundary element method (1.6) for the function u2 in
(1.2) for Q = (0,3)× (0,6) for a uniform refinement strategy.
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Figure 1.8: Numerical results for the boundary element method (1.6) for the function u1 in
(1.1) for Q = (0,3)× (0,6) for the adaptive refinement strategy (1.9).

approach without the Laplace transform is considered for a screen problem in a two-
dimensional spatial domain, see also [2–5] for further investigations. In addition, the
work [77, 132] examines the boundary integral equations via semigroup theory and their
discretisations via the convolution quadrature method [105,106], see also [23], and [104]
for a generalisation to variable time stepping. Note that this list of references is highly
non-exhaustive. However, a complete analysis of space-time variational formulations for
boundary integral equations of the wave equation seems to be still open. This motivates the
investigations of space-time variational formulations for the wave equation in the interior
and exterior of the space-time domain, see Chapter 4, since variational formulations of
boundary integral equations are highly related to the variational formulations within the
domain.

To summarise Section 1.1 and Section 1.2, one main advantage of space-time approxima-
tion methods, i.e. the space-time adaptivity, is realisable and leads to significantly lower
numbers of the degrees of freedom for achieving a desired accuracy.
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Figure 1.9: Numerical results for the boundary element method (1.6) for the function u2 in
(1.2) for Q = (0,3)× (0,6) for the adaptive refinement strategy (1.9).
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the function u2 in (1.2).
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Outline

The rest of this thesis is organised as follows: In Chapter 2 notations of distributions,
Sobolev spaces and discretisation methods are fixed and their most important properties
are repeated. In Chapter 3 the heat equation is examined, whereas in Chapter 4 the wave
equation is investigated, where a more extensive overview of the literature and an outline
of the different sections are given at the beginning of each chapter. In Chapter 5 a short
summary of this thesis and an outlook for future work are given.



2 PRELIMINARIES

In this chapter, notations for function spaces, distributions and discretisation schemes are
introduced and their most important properties are repeated. Furthermore, a short summary
for variational methods is given.

In the whole thesis, Ω ⊂ ❘d , d = 1,2,3, is a bounded Lipschitz domain and (0,T ) is a
time interval with the terminal time T > 0. The bounded space-time cylinder is defined as
Q :=Ω×(0,T )⊂❘d+1, Σ := ∂Ω× [0,T ]⊂❘d+1 is the lateral boundary, and Σ0 := Σ∪Ω0

with Ω0 := Ω×{0}, ΣT := Σ∪ΩT with ΩT := Ω×{T} are parts of the boundary ∂Q of
the space-time cylinder Q.

2.1 Distributions

As a reference for the theory of distributions see, e.g., [68, 138, 152]. In this work, C∞
0 (Q)

is the set of infinitely differentiable real-valued functions with compact support in Q. The
set C∞

0 (Q) endowed with the, usual for distributions, locally convex topology is denoted
by D(Q) and is called the space of test functions on Q. The set of (Schwartz) distributions
D′(Q) is given by all linear and sequentially continuous functionals on D(Q), see [138].
For a locally integrable function v ∈ L1

loc(Q), the distribution Tv : D(Q)→❘, defined by

Tv(ϕ) :=
∫

Q

v(x, t)ϕ(x, t)dxdt for all ϕ ∈ D(Q),

is associated uniquely with that function v ∈ L1
loc(Q). Hence, the function v ∈ L1

loc(Q) and
the related distribution Tv : D(Q)→❘ are identified. Throughout this work, � := ∂tt −∆x

denotes the classical (pointwise) derivative for sufficiently smooth functions. Furthermore,
let �Q : D′(Q)→D′(Q) be the distributional wave operator for distributions D′(Q), where
for a distribution T : D(Q)→❘, derivatives are defined as usual:

�QT (ϕ) = T (�ϕ), ϕ ∈ D(Q).

In particular, for Q− := Ω× (−∞,T )⊂❘d+1, let �Q− : D′(Q−)→D′(Q−) be the distri-
butional wave operator for distributions D′(Q−).

The sets C∞
0 (0,T ), C∞

0 (Ω) and the spaces of test functions D(0,T ), D(Ω) are introduced
analogously.

15
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2.2 Sobolev Spaces in (0,T )

For an introduction to Sobolev spaces on intervals, see the references in the Section 2.3 and
in addition, see [13, Kapitel 5] or [96, Chapter 8]. With the usual notations, the Hilbert
space Hs(0,T ), s ≥ 0, is the Sobolev space of real-valued functions endowed with the
Sobolev-Slobodeckij inner product 〈·, ·〉Hs(0,T ) and the induced norm ‖·‖Hs(0,T ). Analo-
gously, for s ≥ 0, Hs(❘) is the usual Sobolev space on the whole real line. Note that
Hs(0,T ) ⊂ C[0,T ] for s > 1/2, see [64, (1.4.4.6), page 27]. Hence, for s ∈

(
1
2 , 3

2

)
, one

defines the closed subspaces

Hs
0,(0,T ) := {v ∈ Hs(0,T ) : v(0) = 0} ,

Hs
,0(0,T ) := {v ∈ Hs(0,T ) : v(T ) = 0} .

In particular, for s = 1, the Sobolev spaces H1
0,(0,T ) and H1

,0(0,T ) are endowed with the
inner products

〈u,v〉H1
0,(0,T ) := 〈u,v〉H1

,0(0,T ) :=

T∫

0

∂tu(t)∂tv(t)dt

and with the induced norm

|u|H1(0,T ) := ‖∂tu‖L2(0,T ) =

√√√√√
T∫

0

|∂tu(t)|2 dt.

For s = 1/2, one defines via function space interpolation the Sobolev space

H1/2
0, (0,T ) := [H1

0,(0,T ), L2(0,T )]1/2

with the Hilbertian norm

‖u‖
H1/2

0, (0,T )
:=

√√√√√‖u‖2
H1/2(0,T )+

T∫

0

|u(t)|2
t

dt,

which is equivalent to the interpolation norm ‖·‖[H1
0,(0,T ),L2(0,T )]1/2

, see [102, Théorème

11.7, page 72] and [102, Remarque 11.4, page 75]. Analogously, set

H1/2
,0 (0,T ) := [H1

,0(0,T ), L2(0,T )]1/2

with the Hilbertian norm

‖u‖
H1/2

,0 (0,T )
:=

√√√√√‖u‖2
H1/2(0,T )+

T∫

0

|u(t)|2
T − t

dt.
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The representations

H1/2
0, (0,T ) =

{
U|(0,T ) : U ∈ H1/2(−∞,T ) with U(t) = 0 for t < 0

}

=



u ∈ H1/2(0,T ) :

T∫

0

|u(t)|2
t

dt < ∞



 (2.1)

and

H1/2
,0 (0,T ) =

{
U|(0,T ) : U ∈ H1/2(0,∞) with U(t) = 0 for t > T

}

=



u ∈ H1/2(0,T ) :

T∫

0

|u(t)|2
T − t

dt < ∞



 (2.2)

hold true, see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Be-
cause the test functions C∞

0 (0,T ) are dense in H1/2(0,T ), see [64, Theorem 1.4.2.4, page

25], the sets H1/2
0, (0,T ) and H1/2

,0 (0,T ) are dense in H1/2(0,T ). Note that the constant

function 1(t) := 1 for t ∈ (0,T ) fulfils 1 ∈ H1/2(0,T ), 1 /∈ H1/2
0, (0,T ) and 1 /∈ H1/2

,0 (0,T )
due to the representations (2.1) and (2.2). Because the set

C∞
0 (0,T ] =

{
ϕ|(0,T ] : ϕ ∈C∞

0 (0,∞)
}

is dense in H1
0,(0,T ), it follows by interpolation arguments that the set C∞

0 (0,T ] is dense in

H1/2
0, (0,T ), see [102, Chapitre 1, Section 2.1, page 11], and analogously, the set

C∞
0 [0,T ) =

{
ϕ|[0,T ) : ϕ ∈C∞

0 (−∞,T )
}

is dense in H1/2
,0 (0,T ). It even holds true that the set C∞

0 (0,T ) is dense in H1/2
0, (0,T ) and

in H1/2
,0 (0,T ), see Theorem 2.2.2.

Lemma 2.2.1. The norm |||·|||
H1/2

0, (0,T )
, defined by

|||u|||
H1/2

0, (0,T )
:= inf

{
‖U‖H1/2(❘) : U ∈ H1/2(❘) with U|(0,T ) = u, U(t) = 0 for t < 0

}

for u∈H1/2
0, (0,T ), is equivalent to ‖·‖

H1/2
0, (0,T )

. Analogously, the norm |||·|||
H1/2

,0 (0,T )
, defined

by

|||u|||
H1/2

,0 (0,T )
:= inf

{
‖U‖H1/2(❘) : U ∈ H1/2(❘) with U|(0,T ) = u, U(t) = 0 for t > T

}

for u ∈ H1/2
,0 (0,T ), is equivalent to ‖·‖

H1/2
,0 (0,T )

.
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Proof. The proof is given only for the case of H1/2
,0 (0,T ), the other case is proven anal-

ogously. By interpolation arguments, see [102, Proof of Proposition 5.2, page 276], the

extension operator ET : H1/2
,0 (0,T )→ H1/2(0,∞), defined by

ET u(t) :=

{
u(t), t ∈ (0,T ),

0, t ≥ T ,

for u ∈ H1/2
,0 (0,T ), and the restriction operator RT : H1/2(0,∞)→ H1/2

,0 (0,T ), given by

RTU(t) :=U(t)−U(2T − t), t ∈ (0,T ),

for U ∈ H1/2(0,∞), are bounded. For u ∈ H1/2
,0 (0,T ), it holds true that RTET u = u and so,

it follows that

‖u‖
H1/2

,0 (0,T )
= ‖RTET u‖

H1/2
,0 (0,T )

≤CRT ‖ET u‖H1/2(0,∞) ≤CRT CET ‖u‖
H1/2

,0 (0,T )
,

i.e. the norms ‖·‖
H1/2

,0 (0,T )
and u 7→ ‖ET u‖H1/2(0,∞) are equivalent. Since ‖·‖H1/2(0,∞) is

equivalent to the norm

w 7→ inf
{
‖U‖H1/2(❘) : U ∈ H1/2(❘) with U|(0,∞) = w

}
for w ∈ H1/2(0,∞),

see [160, Satz 5.3, page 100] with a natural extension by reflection in t = 0, the assertion
follows.

Theorem 2.2.2. The set C∞
0 (0,T ) is dense in H1/2

0, (0,T ) and H1/2
,0 (0,T ).

Proof. The proof is given for H1/2
,0 (0,T ). Because of the density of the set C∞

0 [0,T ) in

H1/2
,0 (0,T ), it remains to prove the density of C∞

0 (0,T ) in C∞
0 [0,T ) with respect to the norm

‖·‖
H1/2

,0 (0,T )
. Therefore, fix an element ϕ ∈C∞

0 [0,T ) with supp(ϕ)⊂ [0,R], T >R> 0. Take

an arbitrary extension V ∈ C∞
0 (❘) ⊂ H1/2(❘) with V|[0,T ) = ϕ and V (t) = 0 for t ≥ T ,

i.e. V|[0,∞) ∈ C∞
0 [0,∞). The result [102, Lemme 11.1, page 60] yields for X = Y =❘ that

there exist sequences (ψn)n∈◆ ⊂ C∞
0 (❘) and (εn)n∈◆ ⊂ (0,T ) such that ψn(t) = 0 for

t ∈ (−εn,εn), i.e. ψn vanishes in a neighbourhood of t = 0, and ‖ψn −V‖H1/2(❘) → 0 as
n→∞. Consider a cutoff function χ ∈C∞

0 (❘) satisfying 0≤ χ ≤ 1, χ|[0,R] = 1 and χ(t) = 0
for t > T+R

2 , see [160, Folgerung 1.2, page 18] for the existence of such function. Note
that supp(χ)⊂ (−∞,T ) and hence, ((ψn ·χ)|(0,T ))n∈◆ ⊂C∞

0 (0,T ) is the desired sequence.

With Lemma 2.2.1 and the local property [102, Théorème 7.2, page 36] of H1/2(❘), it
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follows that

‖(ψn ·χ)|(0,T )−ϕ‖
H1/2

,0 (0,T )
= ‖(ψn ·χ)|(0,T )−χ|(0,T )ϕ‖H1/2

,0 (0,T )

≤C1
∣∣∣∣∣∣(ψn ·χ)|(0,T )−χ|(0,T )ϕ

∣∣∣∣∣∣
H1/2

,0 (0,T )

≤C1‖χ(ψn −V )‖H1/2(❘)

≤C1Cχ‖ψn −V‖H1/2(❘) → 0 as n → ∞,

where the constant C1 > 0 comes from the norm equivalence of Lemma 2.2.1 and the
constant Cχ > 0 depends on the cutoff function χ and therefore, on ϕ.

The dual spaces [H1
0,(0,T )]′ and [H1

,0(0,T )]′ are characterised as completion of L2(0,T )
with respect to the Hilbertian norms

‖g‖[H1
0,(0,T )]′ := sup

06=v∈H1
0,(0,T )

∣∣〈g,v〉(0,T )

∣∣
|v|H1(0,T )

and

‖ f‖[H1
,0(0,T )]′ := sup

06=w∈H1
,0(0,T )

∣∣〈 f ,w〉(0,T )

∣∣
|w|H1(0,T )

,

where 〈·, ·〉(0,T ) denotes the duality pairing as extension of the inner product in L2(0,T ), see
[160, Satz 17.3, page 258]. In other words, for [H1

0,(0,T )]′ and [H1
,0(0,T )]′, there exist inner

products 〈·, ·〉[H1
0,(0,T )]′ and 〈·, ·〉[H1

,0(0,T )]′ , inducing the norms ‖·‖[H1
0,(0,T )]′ =

√
〈·, ·〉[H1

0,(0,T )]′

and ‖ · ‖[H1
,0(0,T )]′ =

√
〈·, ·〉[H1

,0(0,T )]′ , i.e. with these abstract inner products, [H1
0,(0,T )]′ and

[H1
,0(0,T )]′ are Hilbert spaces, see [158, Satz V.1.7, page 222].

Analogously, the dual spaces [H1/2
0, (0,T )]′ and [H1/2

,0 (0,T )]′ are Hilbert spaces charac-
terised as completion of L2(0,T ) with respect to the Hilbertian norms

‖g‖
[H1/2

0, (0,T )]′
:= sup

06=v∈H1/2
0, (0,T )

∣∣〈g,v〉(0,T )

∣∣
‖v‖

H1/2
0, (0,T )

and

‖ f‖
[H1/2

,0 (0,T )]′
:= sup

06=w∈H1/2
,0 (0,T )

∣∣〈 f ,w〉(0,T )

∣∣
‖w‖

H1/2
,0 (0,T )

. (2.3)
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2.3 Sobolev Spaces in Ω

For a general introduction to Sobolev spaces see, for example, the books [31,64,119,160],
and for function space interpolation, see [26, 102, 103, 153]. For s ≥ 0, the usual Sobolev
spaces of real-valued functions Hs(Ω), Hs

0(Ω) are endowed with the Sobolev-Slobodeckij
inner product 〈·, ·〉Hs(Ω) and the norm ‖·‖Hs(Ω). For the closed subspace H1

0 (Ω)⊂ H1(Ω),
the inner product

〈u,v〉H1
0 (Ω) := 〈∇xu,∇xv〉L2(Ω) =

∫

Ω

∇xu(x) ·∇xv(x)dx, u,v ∈ H1
0 (Ω),

and the induced norm

|u|H1(Ω) := ‖u‖H1
0 (Ω) =

√
〈u,u〉H1

0 (Ω) =

√∫

Ω

|∇xu(x)|2 dx, u ∈ H1
0 (Ω),

are considered. For a type of Fourier series approach in Chapter 3 and Chapter 4, the
eigenfunctions φi ∈ H1

0 (Ω) with eigenvalues µi ∈❘, satisfying

−∆φi = µiφi in Ω, φi = 0 on ∂Ω, ‖φi‖L2(Ω) = 1 (2.4)

for i ∈◆, are used, see [97, Theorem 4.1 in Chapter II, page 60]. Note that the eigenfunc-
tions φi form an orthonormal basis in L2(Ω) and an orthogonal basis in H1

0 (Ω). In addition,
the eigenvalues µi satisfy

0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . and µi → ∞ as i → ∞.

Hence, for a function u ∈ L2(Ω), it holds true that

∥∥∥∥∥u−
M

∑
i=1

uiφi

∥∥∥∥∥
L2(Ω)

→ 0 as M → ∞,

i.e. u = ∑
∞
i=1 uiφi in L2(Ω), with the coefficients

ui =
∫

Ω

u(x)φi(x)dx ∈❘,

and the L2(Ω) norm is given by

‖u‖L2(Ω) =

√
∞

∑
i=1

u2
i .
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Analogously, for a function u ∈ H1
0 (Ω), it holds true that

∥∥∥∥∥∇xu−
M

∑
i=1

ui∇xφi

∥∥∥∥∥
L2(Ω)

→ 0 as M → ∞,

i.e. u = ∑
∞
i=1 uiφi in H1

0 (Ω), with the coefficients

ui =
∫

Ω

u(x)φi(x)dx ∈❘

and the H1(Ω) seminorm is given by

|u|H1(Ω) =

√
∞

∑
i=1

µiu2
i .

The dual space [H1
0 (Ω)]′ is a Hilbert space characterised as the completion of L2(Ω) with

respect to the Hilbertian norm

‖g‖[H1
0 (Ω)]′ := sup

06=v∈H1
0 (Ω)

|〈g,v〉Ω|
|v|H1(Ω)

, (2.5)

where 〈·, ·〉Ω denotes the duality pairing as extension of the inner product in L2(Ω), see
Section 2.2.

2.4 Hilbert Tensor-Product and Bochner Spaces

For an introduction to the algebraic tensor-product ⊗ and to the Hilbert tensor-product ⊗̂,
see [15, Chapter 12], [157, Unterkapitel 1.6], [128, Section II.4] or [152, Part III]. For
Bochner spaces, see also [160, Kapitel IV], [162, Chapter 23], [82, Chapter 1 and 2], [139,
Kapitel 10], [110, Chapter 2] and the recent work [12]. In this section, let H be a separable
real Hilbert space with the inner product 〈·, ·〉H and let Ω1 ⊂❘d1 and Ω2 ⊂❘d2 be bounded
Lipschitz domains with d1,d2 ∈ ◆. Consider the Bochner space L2(Ω1;H) of classes of
measurable vector-valued functions U : Ω1 → H, i.e. for each element U ∈ L2(Ω1;H), it
holds true that

U(y) ∈ H for almost all y ∈ Ω1

such that

‖U‖L2(Ω1;H) :=

√√√√
∫

Ω1

‖U(y)‖2
Hdy < ∞.
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The Bochner space L2(Ω1;H) is a Hilbert space with respect to the inner product

〈U ,V 〉L2(Ω1;H) :=
∫

Ω1

〈U(y),V (y)〉Hdy.

The dual space [L2(Ω1;H)]′ and the Bochner space L2(Ω1;H ′) are isometric, see [82,
Corollary 1.3.22, page 54] and see also [162, Section 23.3]. Furthermore, the Bochner
space L2(Ω1;H) and the Hilbert tensor-product L2(Ω1)⊗̂H are isometric, i.e.

L2(Ω1;H)≃ L2(Ω1)⊗̂H ≃ H⊗̂L2(Ω1),

see [15, Theorem 12.6.1, page 304].

For m ∈◆0, the Bochner Sobolev space is defined by

Hm(Ω1;H) :=
{

U ∈ L2(Ω1;H) : ∂ α
y U ∈ L2(Ω1;H) for |α| ≤ m

}

where ∂y is the distributional derivative on Ω1 with respect to y for vector-valued functions
and α = (α1, . . . ,αd1) ∈◆

d1
0 is a multi-index. With the inner product

〈U ,V 〉Hm(Ω1;H) :=
∫

Ω1

〈U(y),V (y)〉Hdy+ ∑
|α|≤m

∫

Ω1

〈
∂ α

y U(y),∂ α
y V (y)

〉
H

dy

for U ,V ∈ Hm(Ω1;H), the Bochner Sobolev space Hm(Ω1;H) is a Hilbert space. Further-
more, the Bochner Sobolev space Hm(Ω1;H) and the Hilbert tensor-product Hm(Ω1)⊗̂H
are isometric, i.e.

Hm(Ω1;H)≃ Hm(Ω1)⊗̂H ≃ H⊗̂Hm(Ω1), (2.6)

see [15, Theorem 12.7.1, page 307].

As a first special case, for m = 1 and Ω1 = (0,T ), the Sobolev embedding theorem [110,
Proposition 2.46, page 46] holds true, i.e.

H1(0,T ;H)⊂C([0,T ];H) (2.7)

with a continuous embedding. Therefore, as in Section 2.2,

H1
0, (0,T ;H) := {V ∈ H1(0,T ;H) : V (0) = 0 in H},

H1
,0(0,T ;H) := {V ∈ H1(0,T ;H) : V (T ) = 0 in H}

are closed subspaces of H1(0,T ;H).

As a second special case, consider H = H p(Ω2) with p ∈◆0. Then, the space

H p,m
⊗ (Ω2 ×Ω1)

:=
{

u ∈ L2(Ω2 ×Ω1) : ∂ α2

x ∂ α1

y u ∈ L2(Ω2 ×Ω1) for
∣∣α2
∣∣≤ p,

∣∣α1
∣∣≤ m

}
,
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with the inner product

〈u,v〉H p,m
⊗ (Ω2×Ω1)

= ∑
|α2|≤p

∑
|α1|≤m

〈
∂ α2

x ∂ α1

y u,∂ α2

x ∂ α1

y v
〉

L2(Ω2×Ω1)
,

where ∂x and ∂y denote the distributional derivatives with respect to x and y on Ω2 and Ω1,
is isometric to Hm(Ω1;H p(Ω2)), i.e.

H p,m
⊗ (Ω2 ×Ω1)≃ Hm(Ω1;H p(Ω2))≃ H p(Ω2;Hm(Ω1))≃ H p(Ω2)⊗̂Hm(Ω1), (2.8)

see [15, Theorem 12.7.2, page 308] and (2.6). Thus, for m = p = 0, the relation (2.8)
states

L2(Ω2 ×Ω1)≃ L2(Ω2;L2(Ω1))≃ L2(Ω1;L2(Ω2))≃ L2(Ω2)⊗̂L2(Ω1),

see also [128, Theorem II.10, page 52] and [139, last line, page 188]. Hence, for a separa-
ble Hilbert space H ⊂ L2(Ω2), the Bochner space L2(Ω1;H)⊂ L2(Ω1;L2(Ω2)) and the L2

subspace {
u ∈ L2(Ω2 ×Ω1) : y 7→ u(·,y) ∈ L2(Ω1;H)

}
, (2.9)

endowed with the inner product

〈u,v〉 :=
∫

Ω1

〈u(·,y),v(·,y)〉Hdy,

are isometric by the bijective isometry Φ given by u(x,y) := (ΦU)(x,y) := U(y)(x) for
(x,y)∈ Ω2×Ω1, U ∈ L2(Ω1;H). Therefore, for a separable Hilbert space H ⊂ L2(Ω2), the
Bochner space L2(Ω1;H) is identified with the subspace (2.9) of L2(Ω2 ×Ω1), hence, one
writes

L2(Ω1;H) =
{

u ∈ L2(Ω2 ×Ω1) : y 7→ u(·,y) ∈ L2(Ω1;H)
}
.

Analogously, for a separable Hilbert space H ⊂ L2(Ω1), the Bochner space L2(Ω2;H) is
identified with a subspace of L2(Ω2 ×Ω1), hence, one writes

L2(Ω2;H) =
{

u ∈ L2(Ω2 ×Ω1) : x 7→ u(x, ·) ∈ L2(Ω2;H)
}

,

where this subspace of L2(Ω2 ×Ω1) is endowed with the inner product

〈u,v〉 :=
∫

Ω2

〈u(x, ·),v(x, ·)〉Hdx.

With these identifications, the anisotropic Sobolev spaces are defined for 0 ≤ r ∈ ❘,
0 ≤ s ∈❘ as

Hr,s(Ω2 ×Ω1) := L2(Ω1;Hr(Ω2))∩L2(Ω2;Hs(Ω1))⊂ L2(Ω2 ×Ω1) (2.10)
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with the inner product

〈u,v〉Hr,s(Ω2×Ω1)
:=
∫

Ω1

〈u(·,y),v(·,y)〉Hr(Ω2)
dy+

∫

Ω2

〈u(x, ·),v(x, ·)〉Hs(Ω1)
dx.

For integers r and s, more explicit characterisations of the spaces Hr,s(Ω2×Ω1) are given.
For p ∈◆, m = 0, it holds true that

H p,0(Ω2 ×Ω1) =
{

u ∈ L2(Ω2 ×Ω1) : ∂ α2

x u ∈ L2(Ω2 ×Ω1) for
∣∣α2
∣∣≤ p

}

=H p,0
⊗ (Ω2 ×Ω1) = L2(Ω1;H p(Ω2))

≃H p(Ω2;L2(Ω1))≃ H p(Ω2)⊗̂L2(Ω1)

with the inner product

〈u,v〉H p,0(Ω2×Ω1)
= ∑
|α2|≤p

〈
∂ α2

x u,∂ α2

x v
〉

L2(Ω2×Ω1)

and analogously, for m ∈◆, p = 0, it holds true that

H0,m(Ω2 ×Ω1) =
{

u ∈ L2(Ω2 ×Ω1) : ∂ α1

y u ∈ L2(Ω2 ×Ω1) for
∣∣α1
∣∣≤ m

}

=H0,m
⊗ (Ω2 ×Ω1) = L2(Ω2;Hm(Ω1))

≃Hm(Ω1;L2(Ω2))≃ L2(Ω2)⊗̂Hm(Ω1)

with the inner product

〈u,v〉H0,m(Ω2×Ω1)
= ∑
|α1|≤m

〈
∂ α1

y u,∂ α1

y v
〉

L2(Ω2×Ω1)
.

As a last special case, consider the interval Ω1 = (0,T ). For 0 < s ∈ ❘ \◆, the space
Hs(0,T ;L2(Ω2)) is defined via function space interpolation endowed with the inner prod-
uct 〈·, ·〉Hs(0,T ;L2(Ω2))

:= 〈·, ·〉L2(Ω2;Hs(0,T )) and with the to the interpolation norm equivalent

norm ‖·‖L2(Ω2;Hs(0,T )), see [103, page 8]. So, in the following, the spaces Hs(0,T ;L2(Ω2))

and L2(Ω2;Hs(0,T )) are identified, hence, one writes

L2(Ω2;Hs(0,T )) = Hs(0,T ;L2(Ω2)). (2.11)

2.5 Sobolev Spaces in Q

In this section, the notations and identifications of Section 2.2, Section 2.3 and Section 2.4
are used.
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For an introduction to anisotropic Sobolev spaces, see [102, 103] and for a short summary
see [35, Chapter 2].

For 0 ≤ r ∈❘, 0 ≤ s ∈❘, one defines as in (2.10), see also (2.11), the anisotropic Sobolev
space

Hr,s(Q) := L2(0,T ;Hr(Ω))∩Hs(0,T ;L2(Ω))≃
(
Hr(Ω)⊗̂L2(0,T )

)
∩
(
L2(Ω)⊗̂Hs(0,T )

)
,

which is a Hilbert space with respect to the inner product

〈u,v〉Hr,s(Q) :=

T∫

0

〈u(·, t),v(·, t)〉Hr(Ω)dt +
∫

Ω

〈u(x, ·),v(x, ·)〉Hs(0,T )dx

=〈u,v〉L2(0,T ;Hr(Ω))+ 〈u,v〉Hs(0,T ;L2(Ω))

for u,v ∈ Hr,s(Q). For r = s = 1, note that

H1(Q) = H1,1(Q)⊂C([0,T ];L2(Ω)) (2.12)

with a continuous embedding, see (2.7). The subspace

H1,1
0; (Q) := H1(0,T ;L2(Ω))∩L2(0,T ;H1

0 (Ω))

is endowed with the inner product

〈u,v〉H1,1
0; (Q)

:=

T∫

0

∫

Ω

(∂tu(x, t)∂tv(x, t)+∇xu(x, t) ·∇xv(x, t))dxdt (2.13)

and the induced norm

|u|H1(Q) :=
√

〈u,u〉H1,1
0; (Q)

=





T∫

0

∫

Ω

(
|∂tu(x, t)|2 +

d

∑
m=1

|∂xmu(x, t)|2
)

dxdt





1/2

.

Note that in H1,1
0; (Q), the seminorm |·|H1(Q) is a to ‖·‖H1(Q) equivalent norm due to the

Poincaré inequality. The subspaces

H1,1
0;0, (Q) := H1

0,(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)) (2.14)

and
H1,1

0; ,0(Q) := H1
,0(0,T ;L2(Ω))∩L2(0,T ;H1

0 (Ω))

are endowed with the inner product (2.13) and the induced norm |·|H1(Q) .

For functions defined in Ω, the standard trace operator

γ int
0 : H1(Ω)→ H1/2(∂Ω)
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is linear and bounded, i.e.
∥∥γ int

0 z
∥∥

H1/2(∂Ω)
≤ CTr‖z‖H1(Ω) with a constant CTr > 0, where

the Sobolev space H1/2(∂Ω) is the usual trace space, see [34,64,119,160] for more details.
The extended trace operator

γ int
0,x : L2(0,T ;H1(Ω))→ L2(Σ) (2.15)

satisfies the relation
γ int

0,xv = v|Σ for v ∈ L2(0,T ;C(Ω)),

the relation ∥∥∥γ int
0,xv
∥∥∥

L2(Σ)
= 0 ⇐⇒ v ∈ L2(0,T ;H1

0 (Ω)),

and, with the same constant CTr > 0 as γ int
0 , the boundedness estimate

∥∥∥γ int
0,xv
∥∥∥

L2(Σ)
≤CTr‖v‖L2(0,T ;H1(Ω)),

see [12, Theorem 6.13, page 21]. Hence, the representations

H1,1
0; (Q) =

{
v ∈ H1(Q) :

∥∥∥γ int
0,xv
∥∥∥

L2(Σ)
= 0

}
,

H1,1
0;0, (Q) =

{
v ∈ H1(Q) :

∥∥∥γ int
0,xv
∥∥∥

L2(Σ)
= ‖v(·,0)‖L2(Ω) = 0

}
,

H1,1
0; ,0(Q) =

{
v ∈ H1(Q) :

∥∥∥γ int
0,xv
∥∥∥

L2(Σ)
= ‖v(·,T )‖L2(Ω) = 0

}

are valid, i.e. H1,1
0; (Q), H1,1

0;0, (Q) and H1,1
0; ,0(Q) are closed subspaces of H1(Q).

The dual spaces [H1,1
0;0, (Q)]′ and [H1,1

0; ,0(Q)]′ are characterised as completion of L2(Q) with
respect to the Hilbertian norms

‖g‖
[H1,1

0;0, (Q)]′ := sup
06=v∈H1,1

0;0, (Q)

|〈g,v〉Q|
|v|H1(Q)

and

‖ f‖
[H1,1

0; ,0(Q)]′ := sup
06=w∈H1,1

0; ,0(Q)

|〈 f ,w〉Q|
|w|H1(Q)

,

where 〈·, ·〉Q denotes the duality pairing as extension of the inner product in L2(Q), see
Section 2.2.

For s = 1/2, one defines via function space interpolation the Sobolev space

H1/2
0, (0,T ;L2(Ω)) := [H1

0,(0,T ;L2(Ω)), L2(0,T ;L2(Ω))]1/2
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with the Hilbertian norm

‖u‖
H1/2

0, (0,T ;L2(Ω))
:=

√√√√√‖u‖2
H1/2(0,T ;L2(Ω))+

T∫

0

‖u(·, t)‖2
L2(Ω)

t
dt, (2.16)

which is equivalent to the interpolation norm, see [102, Théorème 11.7, page 72] and [102,
(5.8), page 276]. Analogously, set

H1/2
,0 (0,T ;L2(Ω)) := [H1

,0(0,T ;L2(Ω)), L2(0,T ;L2(Ω))]1/2

with the Hilbertian norm

‖u‖
H1/2

,0 (0,T ;L2(Ω))
:=

√√√√√‖u‖2
H1/2(0,T ;L2(Ω))+

T∫

0

‖u(·, t)‖2
L2(Ω)

T − t
dt. (2.17)

The representations

H1/2
0, (0,T ;L2(Ω)) =

{
v|Q : v ∈ H1/2(−∞,T ;L2(Ω)) with v(·, t) = 0 in L2(Ω) for t < 0

}

=



u ∈ H1/2(0,T ;L2(Ω)) :

T∫

0

‖u(·, t)‖2
L2(Ω)

t
dt < ∞



 (2.18)

and

H1/2
,0 (0,T ;L2(Ω)) =

{
v|Q : v ∈ H1/2(0,∞;L2(Ω)) with v(·, t) = 0 in L2(Ω) for t > T

}

=



u ∈ H1/2(0,T ;L2(Ω)) :

T∫

0

‖u(·, t)‖2
L2(Ω)

T − t
dt < ∞



 (2.19)

hold true, see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Be-
cause the test functions

C∞
0 (Ω)⊗C∞

0 (0,T ) = span{Q ∋ (x, t) 7→ φ(x) ·ψ(t) ∈❘ : φ ∈C∞
0 (Ω), ψ ∈C∞

0 (0,T )}

are dense in L2(Ω)⊗̂H1/2(0,T ) ≃ H1/2(0,T ;L2(Ω)), see [64, Theorem 1.4.2.4, page 25],
[157, Satz 1.63, page 62] and for the tensor-product of functions see [152, Example II, page

407], the sets H1/2
0, (0,T ;L2(Ω)) and H1/2

,0 (0,T ;L2(Ω)) are dense in H1/2(0,T ;L2(Ω)).

Note that the constant function 1(x, t) := 1 for (x, t) ∈ Q fulfils 1 ∈ H1/2(0,T ;L2(Ω)),

1 /∈ H1/2
0, (0,T ;L2(Ω)) and 1 /∈ H1/2

,0 (0,T ;L2(Ω)) due to the representations (2.18) and
(2.19).
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The first spaces needed for the heat equation are the anisotropic Sobolev spaces

H1,1/2
0;0, (Q) := H1/2

0, (0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)),

H1,1/2
0; ,0 (Q) := H1/2

,0 (0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω))

endowed with the Hilbertian norms

‖v‖
H1,1/2

0;0, (Q)
:=
√
‖v‖2

H1/2
0, (0,T ;L2(Ω))

+‖∇xv‖2
L2(Q),

‖w‖
H1,1/2

0; ,0 (Q)
:=
√

‖w‖2
H1/2

,0 (0,T ;L2(Ω))
+‖∇xw‖2

L2(Q). (2.20)

The dual spaces [H1,1/2
0;0, (Q)]′ and [H1,1/2

0; ,0 (Q)]′ are characterised as completion of L2(Q)
with respect to the Hilbertian norms

‖g‖
[H1,1/2

0;0, (Q)]′
:= sup

06=v∈H1,1/2
0;0, (Q)

|〈g,v〉Q|
‖v‖

H1,1/2
0;0, (Q)

and

‖ f‖
[H1,1/2

0; ,0 (Q)]′
:= sup

06=w∈H1,1/2
0; ,0 (Q)

|〈 f ,w〉Q|
‖w‖

H1,1/2
0; ,0 (Q)

,

where 〈·, ·〉Q denotes the duality pairing as extension of the inner product in L2(Q), see
Section 2.2.

A second space needed for the heat equation is introduced. Therefore, one defines

W (Q) :=L2(0,T ;H1
0 (Ω))∩H1(0,T ; [H1

0 (Ω)]′) (2.21)

≃
(
H1

0 (Ω)⊗̂L2(0,T )
)
∩
(
[H1

0 (Ω)]′⊗̂H1(0,T )
)

,

which is a Hilbert space with the inner product

〈u,v〉W (Q) :=

T∫

0

∫

Ω

∇xu(x, t) ·∇xv(x, t)dxdt +

T∫

0

〈∂tu(·, t),∂tv(·, t)〉[H1
0 (Ω)]′dt,

see [160, Satz 25.4, page 380], and the norm is given by

‖u‖W (Q) :=




T∫

0

∫

Ω

|∇xu(x, t)|2 dxdt +

T∫

0

‖∂tu(·, t)‖2
[H1

0 (Ω)]′dt




1/2

, (2.22)

where the Hilbertian norm in the dual space [H1
0 (Ω)]′ is given as in (2.5) for t ∈ (0,T )

by

‖∂tu(·, t)‖[H1
0 (Ω)]′ = sup

06=z∈H1
0 (Ω)

|〈∂tu(·, t),z〉Ω|
|z|H1(Ω)

.
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Moreover, it holds true that
W (Q)⊂C([0,T ];L2(Ω)) (2.23)

and this embedding is continuous, in other words, there exists a constant Cem > 0 such
that

∀u ∈W (Q) : max
t∈[0,T ]

‖u(·, t)‖L2(Ω) = max
t∈[0,T ]



∫

Ω

|u(x, t)|2 dx




1/2

≤Cem ‖u‖W (Q),

see [162, Proposition 23.23, page 422]. In addition, the trace map

γΩ0 : W (Q)→ L2(Ω), γΩ0u(x) := u|Ω0
(x) = u(x,0) for x ∈ Ω,

is surjective, see [102, Théorème 3.2, page 25], and bounded due to the continuous em-
bedding (2.23) and

∥∥γΩ0u
∥∥

L2(Ω)
= ‖u(·,0)‖L2(Ω) ≤ max

t∈[0,T ]
‖u(·, t)‖L2(Ω) ≤Cem ‖u‖W (Q)

for u ∈W (Q) with the constant Cem > 0. Moreover, there exists a continuous, linear right
inverse EΩ0 : L2(Ω)→W (Q), satisfying for all u0 ∈ L2(Ω)

γΩ0EΩ0u0 = u0 in L2(Ω) and
∥∥EΩ0u0

∥∥
W (Q)

≤Cex‖u0‖L2(Ω) (2.24)

with a constant Cex > 0, see [102, Remarque 3.3, page 26]. Note that also Theorem 3.1.1
in Section 3.1 gives such an extension operator EΩ0 . Because of the embedding (2.23), the
initial condition v(·,0) = v0 in L2(Ω) for a given v0 ∈ L2(Ω) is meaningful for functions
v ∈W (Q)⊂C([0,T ];L2(Ω)). Further, the subspace

W0,(Q) :=
{

v ∈W (Q) : v(·,0) = 0 in L2(Ω)
}
⊂W (Q) (2.25)

is again a Hilbert space with respect to the inner product 〈·, ·〉W (Q).

2.6 Discretisations in Time

For the given terminal time T > 0, the time interval (0,T ) is decomposed via the time
steps

0 = t0 < t1 < t2 < · · ·< tNt−1 < tNt = T ,

where Nt denotes the number of time intervals τℓ = (tℓ−1, tℓ) for ℓ= 1, . . . ,Nt . In addition,
the number of time steps tℓ is denoted by M̃t , i.e. M̃t = Nt +1, and the local mesh sizes are
given as ht,ℓ = tℓ− tℓ−1 for ℓ = 1, . . . ,Nt . Next, the global mesh size in time is defined by
ht = maxℓ=1,...,Nt ht,ℓ, and the related finite element space

S1
ht
(0,T ) = span{ϕk}Nt

k=0
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of piecewise linear, continuous functions is introduced, where the usual nodal basis func-
tions ϕk, k = 0, . . . ,Nt , satisfy ϕk(tℓ) = δkℓ for k,ℓ = 0, . . . ,Nt . In addition, the subspaces
S1

ht ,0,(0,T )⊂ S1
ht
(0,T ) and S1

ht , ,0
(0,T )⊂ S1

ht
(0,T ) fulfil the homogeneous initial or terminal

conditions, i.e.
S1

ht ,0,(0,T ) = S1
ht
(0,T )∩H1

0,(0,T ) = span{ϕk}Nt
k=1

and
S1

ht , ,0(0,T ) = S1
ht
(0,T )∩H1

,0(0,T ) = span{ϕk}Nt−1
k=0 .

Furthermore, S0
ht
(0,T ) is the finite element space of piecewise constant functions. The

mapping
Q0

ht
: L2(0,T )→ S0

ht
(0,T )

denotes the L2 projection on the piecewise constant finite element space S0
ht
(0,T ), defined

for u ∈ L2(0,T ) by finding Q0
ht

u ∈ S0
ht
(0,T ) such that

〈
Q0

ht
u,vht

〉
L2(0,T )

= 〈u,vht 〉L2(0,T ) (2.26)

for all vht ∈ S0
ht
(0,T ), satisfying the stability estimate

‖Q0
ht

u‖L2(0,T ) ≤ ‖u‖L2(0,T )

and the representation

Q0
ht

u(t) =
1

ht,ℓ

tℓ∫

tℓ−1

u(s)ds, t ∈ τℓ,

for ℓ= 1, . . . ,Nt .

For a continuous function u ∈C[0,T ], the interpolation operator

Iht : C[0,T ]→ S1
ht
(0,T )

is defined by

Iht u(t) :=
Nt

∑
ℓ=0

u(tℓ)ϕℓ(t) (2.27)

for t ∈ [0,T ], which is uniformly bounded with respect to the mesh size ht as a mapping
Iht : H1(0,T )→ S1

ht
(0,T ), i.e.

∀u ∈ H1(0,T ) : ‖Iht u‖H1(0,T ) ≤C‖u‖H1(0,T )

with a constant C > 0 independent of ht , see [51, Proposition 1.4, page 6], and in addition,
it holds true that

∀u ∈ H1(0,T ) : ‖∂tIht u‖L2(0,T ) ≤ ‖∂tu‖L2(0,T ), (2.28)
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see [51, Proof of Proposition 1.4, page 6]. For u ∈ H1
0,(0,T )∩H2(0,T ), recall the standard

error estimates for the piecewise linear interpolant

‖u− Iht u‖L2(0,T ) ≤
1√
8

ht ‖∂t(u− Iht u)‖L2(0,T ), (2.29)

‖u− Iht u‖H1
0,(0,T ) = ‖∂t(u− Iht u)‖L2(0,T ) ≤

1√
3

ht ‖∂ttu‖L2(0,T ) ≤
1√
3

ht ‖∂tu‖H1(0,T ),

(2.30)
and therefore

‖u− Iht u‖L2(0,T ) ≤
1√
24

h2
t ‖∂ttu‖L2(0,T ) ≤

1√
24

h2
t ‖∂tu‖H1(0,T ). (2.31)

An interpolation argument between (2.30) and (2.31) yields for u ∈ H1
0,(0,T )∩H2(0,T )

‖u− Iht u‖H1/2
0, (0,T )

≤C h3/2
t ‖∂tu‖H1(0,T ), (2.32)

where the constant C > 0 is independent of ht , but dependent on the norm equivalence
constants concerning ‖ · ‖

H1/2
0, (0,T )

, see Theorem 3.4.2 and (3.33).

For a given function u ∈ H1
0,(0,T ), the H1

0, projection Q1
ht

u ∈ S1
ht ,0,(0,T ) is defined by

〈
∂tQ

1
ht

u,∂tvht

〉
L2(0,T )

= 〈∂tu,∂tvht 〉L2(0,T ) (2.33)

for all vht ∈ S1
ht ,0,(0,T ), satisfying the stability estimate

‖∂tQ
1
ht

u‖L2(0,T ) ≤ ‖∂tu‖L2(0,T ).

In addition, for s ∈ [0,1], the standard error estimate

‖u−Q1
ht

u‖L2(0,T ) ≤ ch1+s
t ‖u‖H1+s(0,T ) (2.34)

holds true for u ∈ H1
0,(0,T )∩H1+s(0,T ) with a constant c > 0.

Next, time stepping schemes are introduced. For a given positive integer Mx ∈◆, consider
a first-order ordinary differential equation

du

dt
(t) = F(t,u(t)) for t ∈ [0,T ],

where u(0) = u0 ∈❘Mx and F : [0,T ]×❘Mx →❘
Mx are the imposed initial condition and

right-hand side. The right-hand side F is assumed to be sufficiently smooth and Lipschitz
continuous with respect to the second argument, i.e.

|F(t,v1)−F(t,v2)| ≤CL |v1 − v2| for all v1, v2 ∈❘Mx , t ∈ [0,T ]
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with a Lipschitz constant CL > 0. To approximate the function u : [0,T ]→❘
Mx , time step-

ping methods are considered. These lead to approximations

u(tℓ)≈Uℓ ∈❘Mx

in each time step tℓ for ℓ= 0, . . . ,Nt . Therefore, the θ -method for θ ∈ [0,1] is defined as

Uℓ+1 −Uℓ = ht,ℓ

(
(1−θ)F(tℓ,U

ℓ)+θF(tℓ+1,Uℓ+1)
)

(2.35)

for ℓ = 0, . . . ,Nt with U0 := u0 ∈ ❘Mx . The θ -method simplifies to the explicit Euler
method for θ = 0 and to the implicit Euler method for θ = 1. For θ = 1/2, the Crank-
Nicolson method is obtained. The explicit and implicit Euler method converge with order
ht , whereas the Crank-Nicolson method converges with order h2

t . Furthermore, the implicit
Euler and the Crank-Nicolson methods are A-stable. On the other hand, the explicit Euler
method is not A-stable. See [93, Section 7.4] and [75] for more details and proofs.

2.7 Discretisations in Space

Let the bounded Lipschitz domain Ω⊂❘d be an interval Ω= (0,L) for d = 1, or polygonal
for d = 2, or polyhedral for d = 3. For this situation, different discretisations in space are
introduced as follows. The spatial domain Ω is decomposed as

Ω =
Nx⋃

ℓ=1

ωℓ

with Nx spatial elements ωℓ ⊂❘d. The sequence (TN)N of decompositions is assumed to
be admissible, shape regular and globally quasi-uniform. Here, the spatial elements ωℓ are
intervals for d = 1, triangles or quadrilaterals for d = 2 and tetrahedra or hexahedra for
d = 3. The local mesh sizes are given as

hx,ℓ =



∫

ωℓ

dx




1/d

for ℓ= 1, . . . ,Nx

and hx = maxℓ=1,...,Nx hx,ℓ is the global mesh size. Furthermore, M̃x is the number of ver-

tices {xi}M̃x
i=1 of the decomposition. The space

Vhx(Ω) = span{ψi}M̃x
i=1 ⊂ H1(Ω)

is the space of piecewise linear, continuous functions S1
hx
(Ω) on intervals (d = 1), triangles

(d = 2), tetrahedra (d = 3), or Vhx(Ω) is the space of piecewise linear/bilinear/trilinear, con-
tinuous functions Q1

hx
(Ω) on intervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3),
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where the functions ψi are the usual nodal basis functions satisfying ψi(xk) = δik for
i,k = 1, . . . ,M̃x. Recall that S1

hx
(0,L) = Q1

hx
(0,L) on intervals. In addition, the subspace

Vhx,0(Ω)⊂Vhx(Ω) satisfies the homogeneous Dirichlet boundary condition, i.e.

Vhx,0(Ω) =Vhx(Ω)∩H1
0 (Ω).

After an ordering of the vertices {xi}M̃x
i=1 in interior vertices {xi}Mx

i=1 ⊂ Ω and boundary

vertices {xi}M̃x
i=Mx+1 ⊂ ∂Ω, this H1

0 (Ω) conforming subspace is written as

Vhx,0(Ω) = span{ψi}Mx
i=1. (2.36)

A function Uhx ∈Vhx,0(Ω) admits the representation

Uhx(x) =
Mx

∑
i=1

Uiψi(x)

for x ∈ Ω. In the remainder of this work, Mhx ∈ ❘Mx×Mx and Ahx ∈ ❘Mx×Mx denote mass
and stiffness matrices defined via

Mhx [i, j] =
〈
ψ j,ψi

〉
L2(Ω)

(2.37)

for i, j = 1, . . . ,Mx, and
Ahx [i, j] =

〈
∇xψ j,∇xψi

〉
L2(Ω)

(2.38)

for i, j = 1, . . . ,Mx. The L2 projection

Qhx : L2(Ω)→Vhx,0(Ω)

on the piecewise linear, continuous functions, satisfying homogeneous Dirichlet boundary
conditions, is given as the solution of the variational formulation to find Qhxu ∈ Vhx,0(Ω)
such that

〈Qhxu,vhx〉L2(Ω) = 〈u,vhx〉L2(Ω) (2.39)

for all vhx ∈Vhx,0(Ω), satisfying the stability estimate

‖Qhxu‖L2(Ω) ≤ ‖u‖L2(Ω),

where u ∈ L2(Ω) is a given function.

2.8 Discretisations in Space and Time

As in Section 2.7, let the bounded Lipschitz domain Ω ⊂❘d be an interval Ω = (0,L) for
d = 1, or polygonal for d = 2, or polyhedral for d = 3. Hence, the space-time cylinder
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Q = Ω× (0,T ) ⊂ ❘d+1 is polygonal for d = 1, or polyhedral for d = 2, or polychoral
for d = 3. For this situation, different discretisations in space and time are introduced as
follows.

First, consider a sequence (TN)N of admissible, shape regular and globally quasi-uniform
decompositions

Q = TN =
N⋃

ℓ=1

qℓ

with N space-time elements qℓ ⊂ ❘d+1, where qℓ is a triangle for d = 1 or a tetrahedron
for d = 2 or a pentatope for d = 3, see [117,142]. In addition, M̃ is the number of vertices
{(xi, ti)}M̃

i=1 of the decomposition and h = maxℓ=1,...,N hℓ is the global mesh size, where the
local mesh sizes are given by

hℓ =



∫

qℓ

dxdt




1/(d+1)

for ℓ= 1, . . . ,N.

The space

S1
h(Q) = span{ψi}M̃

i=1 ⊂ H1(Q)

is the space of piecewise linear, continuous functions on triangles (d = 1), tetrahedra
(d = 2) or pentatopes (d = 3), where {ψi}M̃

i=1 is the nodal basis, i.e. ψi(xk, tk) = δki for
k, i = 1, . . . ,M̃. A function uh ∈ S1

h(Q) admits the representation

uh(x, t) =
M̃

∑
i=1

uiψi(x, t) for (x, t) ∈ Q.

For the space S1
h(Q), the space-time interpolation operator

Ih : C(Q)→ S1
h(Q)

is defined by

Ihu(x, t) =
M̃

∑
i=1

u(xi, ti)ψi(x, t) (2.40)

for (x, t) ∈ Q.

Second, consider for a tensor-product ansatz a sequence (TN)N of admissible decomposi-
tions

Q = TN = Ω× [0,T ] =

(
Nx⋃

i=1

ω i

)
×
(

Nt⋃

ℓ=1

τℓ

)
(2.41)
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with N = Nx ·Nt space-time elements, where the time intervals τℓ = (tℓ−1, tℓ) are defined
via the decomposition

0 = t0 < t1 < t2 < · · ·< tNt−1 < tNt = T

of the time interval (0,T ) and where the spatial domain Ω is decomposed as

Ω =
Nx⋃

i=1

ω i.

Here, the spatial elements ωi ⊂ ❘d are intervals for d = 1, triangles or quadrilaterals for
d = 2 and tetrahedra or hexahedra for d = 3. The local mesh sizes are ht,ℓ = tℓ− tℓ−1 for
ℓ= 1, . . . ,Nt and

hx,i =



∫

ωi

dx




1/d

for i = 1, . . . ,Nx.

Furthermore, the global mesh size is given as h = max{hx, ht} with ht = maxℓ=1,...,Nt ht,ℓ
and hx = maxi=1,...,Nx hx,i. It is always assumed that the sequence (TN)N of decompositions
is shape regular and globally quasi-uniform. Next, consider the finite element space

Q1
h(Q) :=Vhx,0(Ω)⊗S1

ht
(0,T ) (2.42)

of piecewise multilinear, continuous functions, where Vhx,0(Ω) ⊂ H1
0 (Ω) is the space of

piecewise linear, continuous functions S1
hx,0(Ω) on intervals (d = 1), triangles (d = 2),

tetrahedra (d = 3), or Vhx,0(Ω) is the space of piecewise linear/bilinear/trilinear, continuous
functions Q1

hx,0(Ω) on intervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3), fulfilling
in both cases the homogeneous Dirichlet boundary conditions on the lateral boundary Σ,
see (2.36). Recall that S1

hx,0(0,L) = Q1
hx,0(0,L) on intervals. A function uh ∈ Q1

h(Q) admits
the representation

uh(x, t) =
Nt

∑
ℓ=0

Mx

∑
j=1

uℓjψ j(x)

︸ ︷︷ ︸
=:Uhx,ℓ(x)

ϕℓ(t) =
Nt

∑
ℓ=0

Uhx,ℓ(x)ϕℓ(t) for (x, t) ∈ Q, (2.43)

where ϕℓ is a piecewise linear, continuous nodal basis function with respect to time and
ψ j is a piecewise linear/bilinear/trilinear, continuous nodal basis function with respect
to space with Mx := dimVhx,0(Ω). Furthermore, it holds true that Uhx,ℓ ∈ Vhx,0(Ω) for
ℓ= 0, . . . ,Nt .

The extended time interpolation operator

Iht : C([0,T ];L2(Ω))→ L2(Ω)⊗S1
ht
(0,T )
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is defined by

Iht u(x, t) =
Nt

∑
ℓ=0

u(x, tℓ)ϕℓ(t) (2.44)

for (x, t) ∈ Q.

To derive space-time error estimates, different space-time projections are needed. As a
first space-time projection, the H1,1

0;0, (Q) projection

Q1
h : H1,1

0;0, (Q)→ Q1
h(Q)∩H1,1

0;0, (Q)

is introduced as the solution of the variational formulation to find Q1
hv ∈ Q1

h(Q)∩H1,1
0;0, (Q)

such that
〈
∂tQ

1
hv,∂tvh

〉
L2(Q)

+
〈
∇xQ1

hv,∇xvh
〉

L2(Q)
= 〈∂tv,∂tvh〉L2(Q)+ 〈∇xv,∇xvh〉L2(Q) (2.45)

for all vh ∈ Q1
h(Q)∩H1,1

0;0, (Q), where v ∈ H1,1
0;0, (Q) is given. The stability estimate

∀v ∈ H1,1
0;0, (Q) :

∣∣Q1
hv
∣∣
H1(Q)

≤ |v|H1(Q)

and if Ω is sufficiently regular, for s ∈ [0,1], the standard error estimate

‖v−Q1
hv‖L2(Q) ≤ ch1+s‖v‖H1+s(Q) (2.46)

hold true for v ∈ H1,1
0;0, (Q)∩H1+s(Q) with a constant c > 0.

As a second space-time projection, the H1
0,-H

1
0 projection Q1

ht
Q1

hx
v ∈ Q1

h(Q)∩ H1,1
0;0, (Q)

is introduced analogously to [16, Section 2], where the function v ∈ H1,1
0;0, (Q) is suffi-

ciently smooth. First, for a given function v ∈ L2(0,T ;H1
0 (Ω)), the extended H1

0 projection
Q1

hx
v ∈Vhx,0(Ω)⊗L2(0,T ) is defined by

〈
∇xQ1

hx
v,∇xvhx

〉
L2(Q)

= 〈∇xv,∇xvhx〉L2(Q) (2.47)

for all vhx ∈Vhx,0(Ω)⊗L2(0,T ). Note that Vhx,0(Ω)⊗L2(0,T ) is, as a tensor-product of the

separable Hilbert spaces
(

Vhx,0(Ω),〈∇x(·),∇x(·)〉L2(Ω)

)
and

(
L2(0,T ),〈·, ·〉L2(0,T )

)
, again

a Hilbert space, where the inner product is given by 〈∇x(·),∇x(·)〉L2(Q). Hence, by the

Lax-Milgram Theorem, it follows the well-posedness of the extended H1
0 projection

Q1
hx

: L2(0,T ;H1
0 (Ω))→Vhx,0(Ω)⊗L2(0,T ),

satisfying the stability estimate

‖∇xQ1
hx

v‖L2(Q) ≤ ‖∇xv‖L2(Q).
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Furthermore, for s ∈ [0,1], the standard error estimate

‖v−Q1
hx

v‖L2(Q) ≤ ch1+s
x ‖v‖L2(0,T ;H1+s(Ω)) (2.48)

holds true for v ∈ L2(0,T ;H1
0 (Ω)∩H1+s(Ω)) with a constant c > 0, if Ω is sufficiently

regular. Second, for a given function v ∈ H1
0,(0,T ;L2(Ω)), fulfilling the homogeneous

initial condition, the extended H1
0, projection Q1

ht
v ∈ L2(Ω)⊗S1

ht ,0,(0,T ) is defined by

〈
∂tQ

1
ht

v,∂tvht

〉
L2(Q)

= 〈∂tv,∂tvht 〉L2(Q) (2.49)

for all vht ∈ L2(Ω)⊗S1
ht ,0,(0,T ), satisfying the stability estimate

‖∂tQ
1
ht

v‖L2(Q) ≤ ‖∂tv‖L2(Q),

where the well-posedness of the extended H1
0, projection

Q1
ht

: H1
0,(0,T ;L2(Ω))→ L2(Ω)⊗S1

ht ,0,(0,T )

is shown analogously as for Q1
hx
. In addition, for s ∈ [0,1], the standard error estimate

‖v−Q1
ht

v‖L2(Q) ≤ ch1+s
t ‖v‖H1+s(0,T ;L2(Ω)) (2.50)

holds true for v ∈ H1
0,(0,T ;L2(Ω))∩H1+s(0,T ;L2(Ω)) with a constant c > 0. Testing the

variational formulation (2.49) with the test function

vht (x, t) =

{
z(x) · t for (x, t) ∈ Ω× [0, tℓ),

z(x) · tℓ for (x, t) ∈ Ω× [tℓ,T ]

with an arbitrary function z ∈ L2(Ω) for ℓ ∈ {1, . . . ,Nt} yields

∫

Ω

z(x)Q1
ht

v(x, tℓ)dx =
∫

Ω

z(x)

tℓ∫

0

∂tQ
1
ht

v(x, t)dtdx =
∫

Ω

z(x)

tℓ∫

0

∂tv(x, t)dtdx =
∫

Ω

z(x)v(x, tℓ)dx

and hence, with the fundamental lemma of calculus of variations, there follows the inter-
polation property

Q1
ht

v(x, tℓ) = v(x, tℓ).

In other words, it holds true that
Q1

ht
= Iht

for functions in H1
0,(0,T ;L2(Ω)), see (2.44).

Lemma 2.8.1. The following properties of the projection operators Q1
hx

and Q1
ht

are true:
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1. For a function v ∈ H1(0,T ;H1
0 (Ω)), it holds true that Q1

hx
v ∈Vhx,0(Ω)⊗H1(0,T ). If,

in addition, the given function v satisfies v ∈ H1
0,(0,T ;H1

0 (Ω)), then it follows that

Q1
hx

v ∈Vhx,0(Ω)⊗H1
0,(0,T ).

2. For a function v ∈ H1
0,(0,T ;H1(Ω)), it holds true that Q1

ht
v ∈ H1(Ω)⊗ S1

ht ,0,(0,T ).
If, in addition, the given function v satisfies v ∈ H1

0,(0,T ;H1
0 (Ω)), then it follows that

Q1
ht

v ∈ H1
0 (Ω)⊗S1

ht ,0,(0,T ).

Proof. For the first part, consider a representation for (x, t) ∈ Q

Q1
hx

v(x, t) =
Mx

∑
j=1

Ṽj(t)ψ̃ j(x), (2.51)

where {ψ̃ j}Mx
j=1 is an orthonormal basis of Vhx,0(Ω) with respect to 〈∇x(·),∇x(·)〉L2(Ω) and

Ṽj ∈ L2(0,T ). To show that a weak derivative of Ṽj exists, fix an index j ∈ {1, . . . ,Mx}.
The definition of the extended H1

0 projection Q1
hx

in (2.47) for vhx(x, t) = ψ̃ j(x)z(t) gives

T∫

0

Ṽj(t)z(t)dt =

T∫

0

〈
∇xQ1

hx
v(·, t),∇xψ̃ j

〉
L2(Ω)

z(t)dt =

T∫

0

〈
∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

z(t)dt

(2.52)
for all z ∈C∞

0 (0,T ). So, the fundamental lemma of calculus of variations for (2.52) yields

Ṽj(t) =
〈
∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

(2.53)

for t ∈ (0,T ). For z = ∂t z̃ in (2.52), it follows that

T∫

0

Ṽj(t)∂t z̃(t)dt =

T∫

0

〈
∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

∂t z̃(t)dt =−
T∫

0

〈
∂t∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

z̃(t)dt

for all z̃ ∈C∞
0 (0,T ), i.e. ∂tṼj(t) =

〈
∂t∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

. Furthermore, with the Cauchy-
Schwarz inequality, it holds true that

∥∥∂tṼj
∥∥2

L2(0,T ) =

T∫

0

(〈
∂t∇xv(·, t),∇xψ̃ j

〉
L2(Ω)

)2
dt

≤
T∫

0

‖∂t∇xv(·, t)‖2
L2(Ω)

∥∥∇xψ̃ j
∥∥2

L2(Ω)
dt = ‖∂t∇xv‖2

L2(Q)

∥∥∇xψ̃ j
∥∥2

L2(Ω)
< ∞
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and so, the first assertion. If, in addition, v(·,0) = 0 in H1
0 (Ω), then the continuity of

〈·, ·〉L2(Ω) and of the trace operator yields

Ṽj(t)|t=0 =
〈
∇xv(·, t)|t=0,∇xψ̃ j

〉
L2(Ω)

= 0.

The second part follows in an analogous way.

The next lemma shows that Q1
ht

Q1
hx

v ∈ Q1
h(Q)∩H1,1

0;0, (Q) is well-defined under regularity
assumptions for v and that the operators in space and time commute, where the proof is
analogous to [16, Lemma 2.1, page 261].

Lemma 2.8.2. For a given function v ∈ H1,1
0;0, (Q) with the regularity ∂tv ∈ L2(0,T ;H1

0 (Ω))

and ∂xmv ∈ H1
0,(0,T ;L2(Ω)) for m = 1, . . . ,d,

1. the relation ∂tQ1
hx

v = Q1
hx

∂tv ∈Vhx,0(Ω)⊗L2(0,T ),

2. the relation ∂xmQ1
ht

v = Q1
ht

∂xmv ∈ L2(Ω)⊗S1
ht ,0,(0,T ) for m = 1, . . . ,d and

3. the relation Q1
ht

Q1
hx

v = Q1
hx

Q1
ht

v ∈ Q1
h(Q)∩H1,1

0;0, (Q) hold true. In particular, the

space-time projections Q1
ht

Q1
hx

v and Q1
hx

Q1
ht

v are well-defined.

Furthermore, the error estimate

‖v−Q1
ht

Q1
hx

v‖L2(Q) ≤ ‖v−Q1
ht

v‖L2(Q)+‖v−Q1
hx

v‖L2(Q)+ chx ht‖∂t∇xv‖L2(Q)

with a constant c > 0 is valid.

Proof. For the proof of the first relation, recall that

∂tQ
1
hx

v ∈Vhx,0(Ω)⊗L2(0,T )

by Lemma 2.8.1. Consider (2.47) for ∂tv ∈ L2(0,T ;H1
0 (Ω)) and with integration by parts,

it follows that
〈
∇xQ1

hx
∂tv,∇xvhx

〉
L2(Q)

= 〈∇x∂tv,∇xvhx〉L2(Q) =−〈∇xv,∇x∂tvhx〉L2(Q)

=−
〈
∇xQ1

hx
v,∇x∂tvhx

〉
L2(Q)

=
〈
∇x∂tQ

1
hx

v,∇xvhx

〉
L2(Q)

=
〈
∇xQ1

hx
∂tQ

1
hx

v,∇xvhx

〉
L2(Q)

for all vhx ∈ Vhx,0(Ω)⊗C∞
0 (0,T ). Because of the density of C∞

0 (0,T ) in L2(0,T ), it holds
true that

Q1
hx

∂tv = Q1
hx

∂tQ
1
hx

v

with ∂tQ1
hx

v ∈Vhx,0(Ω)⊗L2(0,T ). So, the first relation is proven.
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The proof of the second relation is analogous to the proof of the first relation.

For the third relation, by Lemma 2.8.1, it holds true that

Q1
ht

v =
Nt

∑
ℓ=1

V ℓϕℓ ∈ H1
0 (Ω)⊗S1

ht ,0,(0,T )⊂ H1
0,(0,T ;H1

0 (Ω))

with coefficients V ℓ ∈ H1
0 (Ω) and so,

Q1
hx

Q1
ht

v ∈Vhx,0(Ω)⊗H1
0,(0,T )⊂ H1

0,(0,T ;H1
0 (Ω))

is well-defined. With the representations as in (2.51) and in (2.53) for Q1
ht

v, it follows for

(x, t) ∈ Q that

Q1
hx

Q1
ht

v(x, t) =
Mx

∑
j=1

Ṽj(t)ψ̃ j(x) =
Mx

∑
j=1

〈
∇xQ1

ht
v(·, t),∇xψ̃ j

〉
L2(Ω)

ψ̃ j(x)

=
Nt

∑
ℓ=1

Mx

∑
j=1

〈
∇xV

ℓ,∇xψ̃ j

〉
L2(Ω)

ψ̃ j(x)ϕℓ(t)

and so, Q1
hx

Q1
ht

v ∈ Q1
h(Q)∩H1,1

0;0, (Q). Analogously, Q1
ht

Q1
hx

v ∈ Q1
h(Q)∩H1,1

0;0, (Q) is well-
defined. With the help of the first relation, the second relation and the definitions (2.47),
(2.49), it holds true that

d

∑
m=1

〈∂t∂xmQ1
ht

Q1
hx

v,∂t∂xmvh〉L2(Q) =
d

∑
m=1

〈∂tQ
1
ht

∂xmQ1
hx

v,∂t∂xmvh〉L2(Q)

=
d

∑
m=1

〈∂t∂xmQ1
hx

v,∂t∂xmvh〉L2(Q)

=
d

∑
m=1

〈∂t∂xmv,∂t∂xmvh〉L2(Q)

and analogously,
d

∑
m=1

〈∂t∂xmQ1
hx

Q1
ht

v,∂t∂xmvh〉L2(Q) =
d

∑
m=1

〈∂t∂xmv,∂t∂xmvh〉L2(Q)

for all vh ∈ Q1
h(Q)∩H1,1

0;0, (Q). Hence, also the third relation is true.

The error estimate follows with the triangle inequality, the first and second relation and
standard error estimates for Q1

ht
and Q1

hx
from

‖v−Q1
ht

Q1
hx

v‖L2(Q) ≤ ‖v−Q1
ht

v‖L2(Q)+‖v−Q1
hx

v‖L2(Q)

+ ‖(v−Q1
hx

v)−Q1
ht
(v−Q1

hx
v)‖L2(Q)︸ ︷︷ ︸

≤c1ht‖∂t(v−Q1
hx

v)‖L2(Q)
≤c1c2hthx‖∂t∇xv‖L2(Q)

with constants c1,c2 > 0 independent of ht and hx.
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Next, for a function v∈C([0,T ];L2(Ω)), investigate Iht Qhxv∈Q1
h(Q)∩H1,1

0; (Q). Therefore,
for a given function v ∈ L2(Q), the extended L2 projection Qhxv ∈ Vhx,0(Ω)⊗L2(0,T ) is
defined by

〈Qhxv,vhx〉L2(Q) = 〈v,vhx〉L2(Q) (2.54)

for all vhx ∈Vhx,0(Ω)⊗L2(0,T ), satisfying the stability estimate

‖Qhxv‖L2(Q) ≤ ‖v‖L2(Q), (2.55)

where the well-posedness of the extended L2 projection

Qhx : L2(Q)→Vhx,0(Ω)⊗L2(0,T )

is analysed as for the projection Q1
hx

given in (2.47). Furthermore, for s∈ [0,1], the standard
error estimate

‖v−Qhxv‖L2(Q) ≤ ch1+s
x ‖v‖L2(0,T ;H1+s(Ω))

holds true for v ∈ L2(0,T ;H1
0 (Ω)∩H1+s(Ω)) with a constant c > 0. The following prop-

erties of the projection operator Qhx are true:

Lemma 2.8.3. For a function v ∈C([0,T ];L2(Ω)), the relation

Qhxv ∈Vhx,0(Ω)⊗C[0,T ]

holds true. In addition, for a function v ∈ Hr(0,T ;L2(Ω)) with r ≥ 0, it holds true that

Qhxv ∈Vhx,0(Ω)⊗Hr(0,T ) and ‖Qhxv‖Hr(0,T ;L2(Ω)) ≤ ‖v‖Hr(0,T ;L2(Ω)).

In particular, for r = k ∈◆, the relation ∂ k
t Qhxv = Qhx∂

k
t v is valid.

Proof. The proof is analogous to the proof of Lemma 2.8.1. More precisely, take an or-
thonormal basis {ψ̃ j}Mx

j=1 of Vhx,0(Ω) with respect to 〈·, ·〉L2(Ω) and write

Qhxv(x, t) =
Mx

∑
j=1

Ṽj(t)ψ̃ j(x) (2.56)

for (x, t)∈ Q with Ṽj ∈ L2(0,T ). For the first assertion, it remains to show that Ṽj ∈C[0,T ].
For that reason, the equation (2.54) gives for vhx(x, t) = ψ̃ j(x)z(t)

T∫

0

Ṽj(t)z(t)dt =
〈
Qhxv, ψ̃ jz

〉
L2(Q)

=
〈
v, ψ̃ jz

〉
L2(Q)

=

T∫

0

〈
v(·, t), ψ̃ j

〉
L2(Ω)

z(t)dt (2.57)
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for each z ∈ L2(Ω) and hence, the fundamental lemma of calculus of variations yields

Ṽj(t) =
〈
v(·, t), ψ̃ j

〉
L2(Ω)

=
∫

Ω

v(x, t)ψ̃ j(x)dx (2.58)

for t ∈ (0,T ). Because for almost all x ∈ Ω and all t ∈ [0,T ], the estimate
∣∣v(x, t)ψ̃ j(x)

∣∣≤ max
s∈[0,T ]

|v(x,s)| ·max
x̃∈Ω

∣∣ψ j(x̃)
∣∣=: g(x)

holds true with g ∈ L2(Ω), the theorem of continuity for parameter integrals [47, Satz 5.6,
page 147] gives Ṽj ∈C[0,T ] and hence, the first assertion.

For the last statement, an interpolation argument is used, see [102, Théorème 5.1, page 32
in Chapitre 1]. For r = 0, the assertion is trivial. Therefore, let v ∈ Hk(0,T ;L2(Ω)) be
given for k ∈◆, i.e. r = k. Because of the representation (2.56), it remains to prove that
∂ k

t Ṽj ∈ L2(0,T ). For z = ∂ k
t z̃ in (2.57), it follows that

T∫

0

Ṽj(t)∂
k
t z̃(t)dt =

T∫

0

〈
v(·, t), ψ̃ j

〉
L2(Ω)

∂ k
t z̃(t)dt = (−1)k

T∫

0

〈
∂ k

t v(·, t), ψ̃ j

〉
L2(Ω)

z̃(t)dt

for all z̃ ∈ C∞
0 (0,T ), i.e. ∂ k

t Ṽj(t) =
〈
∂ k

t v(·, t), ψ̃ j
〉

L2(Ω)
. Furthermore, with the Cauchy-

Schwarz inequality, it holds true that

∥∥∥∂ k
t Ṽj

∥∥∥
2

L2(0,T )
=

T∫

0

(〈
∂ k

t v(·, t), ψ̃ j

〉
L2(Ω)

)2

dt

≤
T∫

0

∥∥∥∂ k
t v(·, t)

∥∥∥
2

L2(Ω)

∥∥ψ̃ j
∥∥2

L2(Ω)︸ ︷︷ ︸
=1

dt =
∥∥∥∂ k

t v
∥∥∥

2

L2(Q)
< ∞.

The relation ∂ k
t Qhxv = Qhx∂

k
t v is proven analogously to the relations of Lemma 2.8.2, and

so, the assertion for r = k, where for the stability ‖Qhxv‖Hk(0,T ;L2(Ω)) ≤‖v‖Hk(0,T ;L2(Ω)), the

stability (2.55) is used for ∂ l
t Qhxv = Qhx∂

l
t v, l = 0, . . . ,k. For arbitrary r > 0, the statement

follows by interpolation.

For a given function v∈C([0,T ];L2(Ω)), Lemma 2.8.3 ensures that Iht Qhxv∈Q1
h(Q), given

by

Iht Qhxv(x, t) =
Nt

∑
ℓ=0

Qhxv(x, tℓ)ϕℓ(t) =
Nt

∑
ℓ=0

Mx

∑
j=1

V j
ℓ ψ j(x)ϕℓ(t) (2.59)

for (x, t) ∈ Q, is well-defined.
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Lemma 2.8.4. For a given function v ∈C([0,T ];L2(Ω)), it holds true that

Iht Qhxv = QhxIht v ∈ Q1
h(Q).

Furthermore, for v ∈ L2(0,T ;Hs(Ω))∩Hr(0,T ;L2(Ω)) with s ∈ [0,2] and r ∈ (1/2,2], the
error estimate

‖v− Iht Qhxv‖L2(Q) ≤ c1 hs
x‖v‖L2(0,T ;Hs(Ω))+ c2 hr

t ‖v‖Hr(0,T ;L2(Ω))

with constants c1,c2 > 0 independent of hx and ht is valid.

Proof. Take an orthonormal basis {ψ̃ j}Mx
j=1 of Vhx,0(Ω) with respect to 〈·, ·〉L2(Ω) and write

with (2.58)

Qhxv(x, t) =
Mx

∑
j=1

Ṽj(t)ψ̃ j(x) =
Mx

∑
j=1

〈
v(·, t), ψ̃ j

〉
L2(Ω)

ψ̃ j(x) for (x, t) ∈ Q,

where Ṽj ∈C[0,T ], see Lemma 2.8.3. With this representation, it follows for (x, t)∈ Q that

Iht Qhxv(x, t) =
Nt

∑
ℓ=0

Mx

∑
j=1

〈
v(·, tℓ), ψ̃ j

〉
L2(Ω)

ψ̃ j(x)ϕℓ(t)

and

QhxIht v(x, t) =
Mx

∑
j=1

〈
Iht v(·, t), ψ̃ j

〉
L2(Ω)

ψ̃ j(x) =
Nt

∑
ℓ=0

Mx

∑
j=1

〈
v(·, tℓ), ψ̃ j

〉
L2(Ω)

ψ̃ j(x)ϕℓ(t),

i.e. Iht Qhxv = QhxIht v ∈ Q1
h(Q).

The error estimate follows with the triangle inequality, standard error estimates for Iht and
Qhx and Lemma 2.8.3 from

‖v− Iht Qhxv‖L2(Q) ≤ ‖v−Qhxv‖L2(Q)+‖Qhxv− Iht Qhxv‖L2(Q)

≤ c1 hs
x‖v‖L2(0,T ;Hs(Ω))+ c2 hr

t ‖Qhxv‖Hr(0,T ;L2(Ω))

≤ c1 hs
x‖v‖L2(0,T ;Hs(Ω))+ c2 hr

t ‖v‖Hr(0,T ;L2(Ω))

with constants c1,c2 > 0 independent of hx and ht .

Last, for a given function v ∈ L2(Q), the extended L2 projection Q0
ht

v ∈ L2(Ω)⊗S0
ht
(0,T )

on the space L2(Ω)⊗ S0
ht
(0,T ) of piecewise constant functions with respect to time is

defined by 〈
Q0

ht
v,vht

〉
L2(Q)

= 〈v,vht 〉L2(Q) (2.60)
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for all vht ∈ L2(Ω)⊗S0
ht
(0,T ), satisfying the stability estimate

‖Q0
ht

v‖L2(Q) ≤ ‖v‖L2(Q),

where the well-posedness of the extended L2 projection

Q0
ht

: L2(Q)→ L2(Ω)⊗S0
ht
(0,T )

is analysed as for the projection Q1
hx

given in (2.47).

Lemma 2.8.5. For v∈ L2(Q), the extended L2 projection Q0
ht

: L2(Q)→ L2(Ω)⊗S0
ht
(0,T ),

defined in (2.60), satisfies the representation

Q0
ht

v(x, t) =
1

ht,ℓ

tℓ∫

tℓ−1

v(x,s)ds, (x, t) ∈ Ω× τℓ,

for ℓ = 1, . . . ,Nt . In particular, for a given function vh ∈ Q1
h(Q) with the representation,

see (2.43),

vh(x, t) =
Nt

∑
ℓ=0

Vhx,ℓ(x)ϕℓ(t), (x, t) ∈ Q,

the relation

Q0
ht

vh(x, t) =
Nt

∑
ℓ=0

Vhx,ℓ(x)Q0
ht

ϕℓ(t), (x, t) ∈ Q, (2.61)

holds true, where the extended L2 projection Q0
ht

: L2(Q) → L2(Ω)⊗ S0
ht
(0,T ), defined

in (2.60), occurs on the left-hand side and the L2 projection Q0
ht

: L2(0,T ) → S0
ht
(0,T ),

defined in (2.26), occurs on the right-hand side.

Proof. The proof of the first representation is analogous to the proofs of Lemma 2.8.1 or
Lemma 2.8.3.

The proof of the second representation follows from the first representation.

2.9 Variational Methods

Let X and Y be real Banach spaces endowed with the norms ‖·‖X and ‖·‖Y . Furthermore,
let a(·, ·) : X ×Y →❘ be a given continuous bilinear form and let F : Y →❘ be a given
continuous linear form. Consider the abstract variational problem to find u∈ X such that

∀v ∈ Y : a(u,v) = F(v). (2.62)
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A continuous, linear operator A : X → Y ′ is associated with a(·, ·) : X ×Y → ❘ by set-
ting

〈Au,v〉Y ′×Y := a(u,v) for all u ∈ X ,v ∈ Y ,

where 〈·, ·〉Y ′×Y is the duality pairing.

Theorem 2.9.1 (Nečas). Let (X ,‖·‖X) be a real Banach space, (Y ,‖·‖Y ) be a real, reflexive
Banach space and a(·, ·) : X ×Y →❘ be a continuous bilinear form. Then, the following
statements are equivalent:

1. For every given continuous linear form F : Y →❘, a unique solution u∈X of (2.62)
exists, satisfying

‖u‖X ≤ c̃s‖F‖Y ′

with a constant c̃s > 0.

2. The continuous, linear operator A : X → Y ′ associated with a(·, ·) : X ×Y → ❘ is
an isomorphism, i.e. A is bijective and A−1 : Y ′ → X is continuous.

3. The continuous bilinear form a(·, ·) : X ×Y →❘ satisfies the following conditions:

• condition (N1), the so-called inf-sup condition:

∃cs > 0: inf
06=u∈X

sup
06=v∈Y

|a(u,v)|
‖u‖X‖v‖Y

≥ cs.

• condition (N2):

∀v ∈ Y \{0} : ∃u ∈ X : a(u,v) 6= 0.

Moreover, it holds true that c̃s =
1
cs
.

Proof. If X ,Y are real Hilbert spaces, a proof is contained in [118, Théorème 3.1, page
318] or in [29, Satz 3.6, page 119]. For the general case, see [51, Theorem 2.6, page
85].

Remark 2.9.2. For complex Hilbert spaces X and Y , a continuous sesquilinear form
a(·, ·) : X ×Y →❈ and a continuous linear form F : Y →❈, a proof is included in [131,
Theorem 2.1.44, page 36].





3 HEAT EQUATION

The main focus of this chapter is on space-time variational formulations and conforming
discretisations for parabolic problems. First, a highly non-exhaustive list of references,
second, an overview of the sections of this chapter, where for each section the relevant
literature is cited, and third, an outlook for possible extensions are given. Here, the model
problem for a parabolic partial differential equation is the homogeneous Dirichlet problem
for the heat equation,

∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),

u(x, t) = 0 for (x, t) ∈ Σ = Γ× [0,T ],

u(x,0) = u0(x) for x ∈ Ω,





(3.1)

where Ω ⊂R
d , d = 1,2,3, is a bounded Lipschitz domain with boundary Γ = ∂Ω, T > 0 is

a terminal time, u0 is a given initial condition and f is a given right-hand side. To compute
an approximate solution of the heat equation (3.1), different numerical schemes including
different approaches of the underlying mathematical framework are available. On the one
hand, some of them are repeated in this chapter, but on the other hand, powerful tools like
semigroup theory as in [91, 123] on the continuous part or on the discretisation side, any
kind of discontinuous Galerkin methods [48–50,56,78,85,116,134,135] or finite difference
methods [65, 97, 147] or boundary element methods are not in the scope of this work.
For boundary integral equations and boundary element methods for the heat equation,
see [14, 35, 40, 120] and in addition, see [39, 76, 107, 109, 125, 129, 149]. Furthermore, all
approaches where the heat equation (3.1) is reformulated as a first-order system also in the
spatial variables are excluded in this work, see, e.g., [25] and the references therein. In
addition, see also the approaches in [10, 11, 38, 99, 100, 112, 137, 154].

Outline of Chapter 3

The remainder of this chapter examines the heat equation (3.1) as follows:

In Section 3.1 a pointwise spatial variational formulation coming from a so-called Galerkin
method [36,97,98,102,160,162] and time stepping schemes [65,74,85,93,150] are cited,
see also [9,16,17,43,54,79,108,148,151,159]. In Section 3.2 a space-time variational for-
mulation with ansatz spaces of Bochner type, analysed via the inf-sup theory and including
a stable space-time discretisation, is formulated, see [51, 137, 142–144]. In Section 3.3 an
anisotropic space-time variational formulation [35, 98, 102, 103], which is obtained by a
transposition and interpolation argument, is replied, and also an example for an unstable
numerical scheme, which is derived by the (natural) usage of conforming, piecewise linear,

47
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continuous ansatz and test functions, is given. Nevertheless, this anisotropic formulation
leads to boundary integral equations in anisotropic Sobolev spaces, where the single layer
and hypersingular boundary integral operators are elliptic, see [35, 40, 120]. For the last
and main Section 3.4, see [145], a motivation is given by transmission problems. For trans-
mission problems of the heat equation a coupling of finite and boundary element methods
is a natural choice, i.e. the finite element method is used for the interior problem as in (3.1)
and the boundary element method is used for the corresponding exterior problem. For the
finite element part, the anisotropic variational formulation of Section 3.3 is not well-suited
on the discretisation level because it seems that a stable finite element method is not avail-
able. On the one hand, the Bochner type variational formulation of Section 3.2 gives a
stable finite element method, but on the other hand, from an analysis point of view, the
boundary integral equations [35, 40, 120] and the variational formulation of Bochner type
in Section 3.2 do not fit, i.e. the resulting trace spaces of the Bochner spaces are different
from the anisotropic boundary spaces in Section 3.3. In other words, it seems that the anal-
ysis of a coupling of the corresponding discretisations in [35, 40, 120] and Section 3.2 is
very difficult. To overcome the problem of non-fitting spaces, either the boundary integral
equations are treated in trace spaces of the Bochner spaces of Section 3.2, or a stabilised
finite element method of the anisotropic spaces of Section 3.3 is introduced. The second
approach is the motivation of Section 3.4, where the main result is a symmetric and elliptic
variational formulation and hence, a symmetric Galerkin discretisation of the first-order
time derivative, see [145]. In addition, see [37, 52, 101]. In Section 3.4 the key ingredient
is a type of Hilbert transform, where its fast realisation is not in the scope of this thesis.
However, Section 3.4 is completed with error estimates and some numerical examples,
which emphasise the theoretical results.

Outlook for Possible Extensions of Chapter 3

The results of this chapter for the model problem (3.1) can be transferred to a more general
parabolic equation

∂tu(x, t)−∑
d
i, j=1

∂
∂xi

(
ai, j(x, t) ∂u

∂x j
(x, t)

)

+∑
d
i=1 ai(x, t) ∂u

∂xi
(x, t)+a(x, t)u(x, t) = f (x, t) for (x, t) ∈ Q,

u(x, t) = g(x, t) for (x, t) ∈ Σ,
u(x,0) = u0(x) for x ∈ Ω,





(3.2)

where ai, j, ai, a are given coefficients, f is a given right-hand side, g is a given Dirichlet
datum and u0 is a given initial condition, which have to satisfy smoothness and bounded-
ness conditions, see, e.g., the classical references [36,97,98,102,103,160,162]. Since the
derivations and the proofs of the corresponding results have to be done with great care,
they are left for future work, including precise assumptions on the involved functions and
function spaces.
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3.1 Variational Formulation in Space and Pointwise in Time

In this section, a short overview of a pointwise in time variational formulation is given.
Furthermore, numerical examples for lowest order in space, i.e. piecewise linear, continu-
ous ansatz functions, combined with lowest order time stepping are presented.

The pointwise in time variational formulation of (3.1) is given with the notations of Sec-
tion 2 as follows:

Find u ∈ L2(0,T ;H1
0 (Ω)) with ∂tu ∈ L2(0,T ; [H1

0 (Ω)]′) and u(·,0) = u0 in L2(Ω) such
that

〈∂tu(·, t),v〉Ω + 〈∇xu(·, t),∇xv〉L2(Ω) = 〈 f (·, t),v〉Ω (3.3)

for almost all t ∈ (0,T ) and all v ∈ H1
0 (Ω), where f ∈ L2(0,T ; [H1

0 (Ω)]′) and u0 ∈ L2(Ω)
are the given right-hand side and the given initial condition. Here, ∂t is the distributional
derivative on (0,T ), i.e. equality (3.3) means that

−
T∫

0

〈u(·, t),v〉Ω

dϕ

dt
(t)dt +

T∫

0

〈∇xu(·, t),∇xv〉L2(Ω)ϕ(t)dt =

T∫

0

〈 f (·, t),v〉Ωϕ(t)dt

for all ϕ ∈ C∞
0 (0,T ). The variational formulation in (3.3) is examined in many books,

for example, [102, Exemple 1, Chapitre 3, page 263], [160, Beispiel 28.1, Kapitel IV,
page 409], [162, Section 23.8, Chapter 23, page 426] or [36, Mathematical Example 1,
Chapter XVIII,page 524]. In these books, the following existence and uniqueness result is
proven.

Theorem 3.1.1. For given f ∈ L2(0,T ; [H1
0 (Ω)]′) and u0 ∈ L2(Ω), there exists a unique

solution u of the variational formulation (3.3), satisfying

u ∈ L2(0,T ;H1
0 (Ω))∩C([0,T ];L2(Ω)), ∂tu ∈ L2(0,T ; [H1

0 (Ω)]′),

i.e. u ∈W (Q), and the stability estimate

‖u‖W (Q) =
√

‖u‖2
L2(0,T ;H1

0 (Ω))+‖∂tu‖2
L2(0,T ;[H1

0 (Ω)]′) ≤ c
(
‖u0‖L2(Ω)+‖ f‖L2(0,T ;[H1

0 (Ω)]′)

)

with a constant c > 0.

Proof. See the books [36, 102, 160, 162] as mentioned above.

For a discretisation scheme, let the bounded Lipschitz domain Ω ⊂ ❘d be an interval
Ω = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
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of Section 2.8, consider a discretisation of a tensor-product type (2.41) with the finite-
dimensional space Q1

h(Q) =Vhx,0(Ω)⊗S1
ht
(0,T ), see (2.42). Therefore, introduce for x∈Ω

and ℓ ∈ {0, . . . ,Nt} the approximation

Uhx,ℓ(x) :=
Mx

∑
i=1

Uℓ
i ψi(x)≈ u(x, tℓ),

where Uℓ
i ∈❘ are the unknown coefficients of the functions Uhx,ℓ ∈Vhx,0(Ω)⊂ H1

0 (Ω) for
ℓ ∈ {0, . . . ,Nt}. Furthermore, set for (x, t) ∈ Q

uh(x, t) :=
Nt

∑
ℓ=0

Mx

∑
i=1

Uℓ
i ψi(x)ϕℓ(t) =

Nt

∑
ℓ=0

Uhx,ℓ(x)ϕℓ(t)≈ u(x, t), (3.4)

i.e. uh ∈ Q1
h(Q).

For the pointwise in time variational formulation (3.3), a conforming discretisation in space
with Vhx,0(Ω) ⊂ H1

0 (Ω) in combination with a θ -method (2.35) for θ = 1 leads to the so-
called implicit Euler Galerkin method to find Uhx,ℓ ∈Vhx,0(Ω)⊂ H1

0 (Ω) for ℓ ∈ {0, . . . ,Nt}
such that

Uhx,0 = Qhxu0

and for ℓ= 1, . . . ,Nt

1
ht,ℓ

〈Uhx,ℓ−Uhx,ℓ−1,vhx〉L2(Ω)+ 〈∇xUhx,ℓ,∇xvhx〉L2(Ω) =
1

ht,ℓ

〈∫

τℓ

f (·,s)ds,vhx

〉

Ω

(3.5)

for all vhx ∈Vhx,0(Ω), where Qhx : L2(Ω)→Vhx,0(Ω) denotes the L2 projection (2.39). This
method is given in [74, (2.10), page 684] or in [79, (3.5), page 508] and differs from the
methods [150, (1.47), page 16] or [65, (1.34), page 334] only in the right-hand side. The
implicit Euler Galerkin method (3.5) is equivalent to the linear systems

MhxU
0 = u0

and
(Mhx +ht,ℓAhx)Uℓ = MhxU

ℓ−1 +Fℓ (3.6)

for all ℓ = 1, . . . ,Nt , where Mhx ∈❘Mx×Mx is the mass matrix (2.37), Ahx ∈❘Mx×Mx is the
stiffness matrix (2.38) and the vectors u0, Fℓ ∈❘Mx are defined by

u0[i] := 〈u0,ψi〉L2(Ω), Fℓ[i] :=

〈∫

τℓ

f (·,s)ds,ψi

〉

Ω

(3.7)

for i = 1, . . . ,Mx with the nodal basis functions ψi satisfying Vhx,0(Ω) = span{ψi}Mx
i=1, see

(2.36). The matrix Mhx +ht,ℓAhx is positive definite and hence, the linear systems (3.6) are
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uniquely solvable for all ℓ = 1, . . . ,Nt . Stability of the numerical scheme (3.5) holds true
without any CFL condition because the implicit Euler method is unconditionally stable,
see Section 2.6.

As a second discretisation method in time, the Crank-Nicolson method is considered,
which follows from the θ -method (2.35) for θ = 1/2. Hence, using the Crank-Nicolson
method combined with a conforming discretisation in space with Vhx,0(Ω)⊂ H1

0 (Ω) for the
pointwise in time variational formulation (3.3), there follows the so-called Crank-Nicolson
Galerkin method to find Uhx,ℓ ∈Vhx,0(Ω)⊂ H1

0 (Ω) for ℓ ∈ {0, . . . ,Nt} such that

Uhx,0 = Qhxu0

and for ℓ= 1, . . . ,Nt

1
ht,ℓ

〈Uhx,ℓ−Uhx,ℓ−1,vhx〉L2(Ω)+
1
2
〈∇xUhx,ℓ+∇xUhx,ℓ−1,∇xvhx〉L2(Ω)

=
1

ht,ℓ

〈∫

τℓ

f (·,s)ds,vhx

〉

Ω

(3.8)

for all vhx ∈Vhx,0(Ω), where Qhx : L2(Ω)→Vhx,0(Ω) denotes the L2 projection (2.39). This
method is given in [74, (2.11), page 684] and differs from the methods [150, (1.54), page
16] or [65, (1.34), page 334] only in the right-hand side. The Crank-Nicolson Galerkin
method (3.8) is equivalent to the linear systems

MhxU
0 = u0

and
(

Mhx +
ht,ℓ

2
Ahx

)
Uℓ =

(
Mhx −

ht,ℓ

2
Ahx

)
Uℓ−1 +Fℓ for all ℓ= 1, . . . ,Nt , (3.9)

where Mhx ∈❘Mx×Mx is the mass matrix (2.37), Ahx ∈❘Mx×Mx is the stiffness matrix (2.38)

and the vectors u0, Fℓ ∈❘Mx are given in (3.7). The matrix Mhx +
ht,ℓ
2 Ahx is positive definite

and hence, the linear systems (3.9) are uniquely solvable for all ℓ = 1, . . . ,Nt . Stability
of the numerical scheme (3.8) holds true without any CFL condition because the Crank-
Nicolson method is unconditionally stable, see Section 2.6.

Next, error estimates for the implicit Euler and the Crank-Nicolson Galerkin method are
the aim. It seems that error estimates of the quantities ‖u(·, tℓ)−Uhx,ℓ‖L2(Ω) for each
ℓ = 0, . . . ,Nt are standard, see [150, Theorem 1.6, page 16 or Theorem 1.5, page 15]
or [65, Theorem 5.13, page 336], [85, 93] and also [43, 159] for some early references.
However, here, error estimates in space-time norms ‖·‖L2(Q), |·|H1(Q) are considered, see
the work [9, 16, 17, 54, 74, 79, 108, 148, 151].
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Theorem 3.1.2. Let Ω be sufficiently regular and consider a constant step size ht = ht,ℓ
for all ℓ = 1, . . . ,Nt together with a sequence (TN)N of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hx. Furthermore, let the
unique solution u of (3.3) be sufficiently smooth and let uh be defined via (3.4), where the
coefficients Uhx,ℓ are calculated by the implicit Euler Galerkin method (3.5). Then, the
space-time error estimate

‖u−uh‖L2(Q) ≤ c1(ht +hs
x)‖u‖L2(0,T ;Hs(Ω))+ c2 hr

t ‖u‖Hr(0,T ;L2(Ω))

holds true with r ∈ (1/2,1], s ∈ [1,2] and with constants c1 > 0, c2 > 0 independent of ht

and hx.

Proof. This proof follows the ideas of the proof of [74, Theorem 3.1, page 684]. So, for
u ∈C([0,T ];L2(Ω)), one defines the function Iht Qhxu ∈ Q1

h(Q) as in (2.59), i.e.

Iht Qhxu(x, t) =
Nt

∑
ℓ=0

Qhxu(x, tℓ)︸ ︷︷ ︸
=:Ûhx,ℓ(x)

ϕℓ(t) for (x, t) ∈ Q

with Ûhx,ℓ ∈Vhx,0(Ω)⊂ H1
0 (Ω), satisfying

〈
Ûhx,ℓ,vhx

〉
L2(Ω)

= 〈u(·, tℓ),vhx〉L2(Ω) for all vhx ∈Vhx,0(Ω)

for ℓ= 0, . . . ,Nt . With the triangle inequality, it holds true that

‖u−uh‖L2(Q) ≤ ‖u− Iht Qhxu‖L2(Q)+‖Iht Qhxu−uh‖L2(Q).

The first term is estimated by standard error estimates of Lemma 2.8.4 and so, it remains
to investigate the second term. Therefore, set

ηℓ :=Uhx,ℓ−Ûhx,ℓ ∈Vhx,0(Ω) for ℓ= 0, . . . ,Nt ,

where η0 = 0. Hence, it holds true that

‖Iht Qhxu−uh‖2
L2(Q) =

Nt

∑
ℓ=1

‖Iht Qhxu−uh‖2
L2(Ω×τℓ)

=
∫

Ω

Nt

∑
ℓ=1

ht,ℓ

3

(
ηℓ(x)

2 +ηℓ−1(x)ηℓ(x)+ηℓ−1(x)
2)dx

≤ ht

Nt

∑
ℓ=1

‖ηℓ‖2
L2(Ω). (3.10)
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With [74, (4.5), page 689] for α = 0 and [74, (4.4a), page 688] for α = α̃ = 0, it follows
from the last inequality (3.10) that

‖Iht Qhxu−uh‖L2(Q) ≤
(

Nt

∑
ℓ=1

ht‖ηℓ‖2
L2(Ω)

)1/2

≤ c1(ht +hs
x)‖u‖L2(0,T ;Hs(Ω))+ c2 hr

t ‖u‖Hr(0,T ;L2(Ω))

with r ∈ (1/2,1], s ∈ [1,2] and with constants c1 > 0, c2 > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details.

Theorem 3.1.3. Let Ω be sufficiently regular and consider a constant step size ht = ht,ℓ
for all ℓ = 1, . . . ,Nt together with a sequence (TN)N of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hx. Furthermore, let the
unique solution u of (3.3) be sufficiently smooth and let uh be defined via (3.4), where the
coefficients Uhx,ℓ are calculated by the Crank-Nicolson Galerkin method (3.8). Then, the
space-time error estimate

‖u−uh‖L2(Q) ≤ c1(h
2
t +hs

x)‖u‖L2(0,T ;Hs(Ω))+ c2 hr
t ‖u‖Hr(0,T ;L2(Ω))

holds true with r ∈ (1/2,2], s ∈ [1,2] and with constants c1 > 0, c2 > 0 independent of ht

and hx. Furthermore, for Q1
h(Q)⊂ H1,1

0; (Q), assume the inverse inequality

∀vh ∈ Q1
h(Q) : |vh|H1(Q) ≤ cinv h−1‖vh‖L2(Q)

with a constant cinv > 0 and h = max{ht ,hx}. Then, it holds true that

|u−uh|H1(Q) ≤C cinv hµ‖u‖Hµ+1(Q)+ cinv h−1‖uh −u‖L2(Q)

with µ ∈ [0,1] and with a constant C > 0 independent of h.

Proof. For the L2(Q) error estimate, repeat the proof of Theorem 3.1.2 until (3.10). Then,
with [74, (4.5), page 689] for α = 0, see also [74, Lemma 4.4, page 690], and the first
estimate of [74, Lemma 4.3, page 690] for α = α̃ = 0, it follows from the inequality (3.10)
that

‖Iht Qhxu−uh‖L2(Q) ≤
(

Nt

∑
ℓ=1

ht‖ηℓ‖2
L2(Ω)

)1/2

≤ c1(h
2
t +hs

x)‖u‖L2(0,T ;Hs(Ω))+ c2 hr
t ‖u‖Hr(0,T ;L2(Ω)),

with r ∈ (1/2,2], s ∈ [1,2] and with constants c1 > 0, c2 > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details.
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For the H1(Q) error estimate, consider an H1,1
0; (Q) projection to find Q1

h,0u ∈ Q1
h(Q) such

that

〈
∂tQ

1
h,0u,∂tvh

〉
L2(Q)

+
〈
∇xQ1

h,0u,∇xvh
〉

L2(Q)
= 〈∂tu,∂tvh〉L2(Q)+ 〈∇xu,∇xvh〉L2(Q)

for all vh ∈ Q1
h(Q). Then it follows with the triangle inequality, standard error estimates for

Q1
h,0 and the inverse inequality in Q1

h(Q) that

|u−uh|H1(Q) ≤
∣∣u−Q1

h,0u
∣∣
H1(Q)

+
∣∣Q1

h,0u−uh

∣∣
H1(Q)

≤ C̃ hµ‖u‖Hµ+1(Q)+ cinv h−1
∥∥Q1

h,0u−uh

∥∥
L2(Q)

≤ C̃ hµ‖u‖Hµ+1(Q)+ cinv h−1
∥∥Q1

h,0u−u
∥∥

L2(Q)
+ cinv h−1‖uh −u‖L2(Q)

≤C cinv hµ‖u‖Hµ+1(Q)+ cinv h−1‖uh −u‖L2(Q)

for µ ∈ [0,1] and hence, the assertion.

Remark 3.1.4. Since in the proofs of Theorem 3.1.2 and Theorem 3.1.3, see [74] for more
details, regularity results of related adjoint problems are used, one expects reduced orders
for the error estimates, given in Theorem 3.1.2 and Theorem 3.1.3, if Ω is less regular.

Corollary 3.1.5. Let the assumptions of Theorem 3.1.2 and of Theorem 3.1.3 be fulfilled
and let u be sufficiently smooth. Then, for the implicit Euler Galerkin method (3.5), the
error estimate

‖u−uh‖L2(Q) ≤C h

holds true, and for the Crank-Nicolson Galerkin method (3.8), the error estimates

‖u−uh‖L2(Q) ≤C h2

and

|u−uh|H1(Q) ≤C h

hold true with a constant C > 0 independent of h = max{ht ,hx}.

Proof. These estimates follow immediately from Theorem 3.1.2 and of Theorem 3.1.3 for
the maximal values of r,s and µ.

In the last part of this section, some numerical examples are presented. So, for the space-
time cylinder

Q = Ω× (0,T ) = (0,1)× (0,2),
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consider the solutions of (3.3)

u1(x, t) := sin(πx)(1+ t)e−t/2,

u2(x, t) := sin(πx)(T − t)3/4 t,

u3(x, t) := sin(πx)(t2 + x2)−3/8,

u4(x, t) := sin(πx)((T/4− t)2 + x2)−3/8

for (x, t) ∈ Q. Note that ui ∈ H1(Q) for i = 1,2,3,4. The spatial interval Ω = (0,1) is de-
composed into Nx elements, i.e. intervals, and M̃x = Nx+1 vertices with the constant mesh
size hx = 1/(M̃x − 1) = 1/Nx. For the time interval (0,2), there are M̃t time steps intro-
duced with the constant time step size ht = T/(M̃t −1). See Section 2 for more details. The
appearing integrals for the initial condition and the right-hand side in (3.7) are calculated
by the usage of high-order integration rules, and the degrees of freedom are denoted by

dof = (M̃x −2) · (M̃t −1)

due to the homogeneous Dirichlet boundary condition and the initial condition.

In Table 3.1 and Table 3.2, the errors in ‖·‖L2(Q) and in |·|H1(Q) are presented for the smooth
function u1 and for a uniform refinement strategy in space and time direction, i.e. ht ∼ hx.
Note that no CFL condition like ht ∼ h2

x is needed because the Crank-Nicolson method and
the implicit Euler method are unconditionally stable, see Section 2.6. The error estimates
of Theorem 3.1.3 and Theorem 3.1.2 are confirmed.

Table 3.3, Table 3.5 and Table 3.7 show that the position of singularities leads to differ-
ent convergence behaviours for the Crank-Nicolson Galerkin method. For the function u3,
the singularity is at (0,0) and hence, the initial condition u0 ∈ L2(Ω) is less regular, i.e.
u0 /∈ H1

0 (Ω). This results in an observed convergence rate of 3/4 in ‖·‖L2(Q) and in no con-

vergence in |·|H1(Q) although u3 ∈ H1(Q), see Table 3.5. If the position of the singularity
is at the terminal time T , as for the solution u2, or at the time T/4, as for the solution u4,
then reduced orders of convergence are observed as expected, see Table 3.3, Table 3.7. For
the implicit Euler method, analogous results are given in Table 3.4, Table 3.6, Table 3.8,
where the position of the singularity for the functions u2, u3, u4 plays no role.
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M̃x M̃t dof hx ht ‖u1 −u1,h‖L2(Q) eoc |u1 −u1,h|H1(Q) eoc
3 3 2 0.50000 1.00000 2.5257e-01 - 1.6202e+00 -
5 5 12 0.25000 0.50000 6.3416e-02 1.54 8.2405e-01 0.75
9 9 56 0.12500 0.25000 1.5851e-02 1.80 4.1399e-01 0.89

17 17 240 0.06250 0.12500 3.9635e-03 1.90 2.0726e-01 0.95
33 33 992 0.03125 0.06250 9.9092e-04 1.95 1.0366e-01 0.98
65 65 4032 0.01562 0.03125 2.4773e-04 1.98 5.1836e-02 0.99

129 129 16256 0.00781 0.01562 6.1933e-05 1.99 2.5918e-02 0.99
257 257 65280 0.00391 0.00781 1.5483e-05 1.99 1.2959e-02 1.00
513 513 261632 0.00195 0.00391 3.8708e-06 2.00 6.4797e-03 1.00

1025 1025 1047552 0.00098 0.00195 9.6769e-07 2.00 3.2398e-03 1.00
2049 2049 4192256 0.00049 0.00098 2.4206e-07 2.00 1.6199e-03 1.00
4097 4097 16773120 0.00024 0.00049 6.0215e-08 2.01 8.0996e-04 1.00

Table 3.1: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder Q = (0,1)× (0,2) and for u1.

M̃x M̃t dof hx ht ‖u1 −u1,h‖L2(Q) eoc |u1 −u1,h|H1(Q) eoc
3 3 2 0.50000 1.00000 2.4176e-01 - 1.6141e+00 -
5 5 12 0.25000 0.50000 7.8469e-02 1.26 8.3436e-01 0.74
9 9 56 0.12500 0.25000 2.8683e-02 1.31 4.2342e-01 0.88

17 17 240 0.06250 0.12500 1.2317e-02 1.16 2.1337e-01 0.94
33 33 992 0.03125 0.06250 5.8288e-03 1.05 1.0719e-01 0.97
65 65 4032 0.01562 0.03125 2.8627e-03 1.01 5.3748e-02 0.98

129 129 16256 0.00781 0.01562 1.4228e-03 1.00 2.6918e-02 0.99
257 257 65280 0.00391 0.00781 7.0988e-04 1.00 1.3470e-02 1.00
513 513 261632 0.00195 0.00391 3.5463e-04 1.00 6.7383e-03 1.00

1025 1025 1047552 0.00098 0.00195 1.7725e-04 1.00 3.3699e-03 1.00
2049 2049 4192256 0.00049 0.00098 8.8607e-05 1.00 1.6852e-03 1.00
4097 4097 16773120 0.00024 0.00049 4.4300e-05 1.00 8.4263e-04 1.00

Table 3.2: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1)× (0,2) and for u1.
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M̃x M̃t dof hx ht ‖u2 −u2,h‖L2(Q) eoc |u2 −u2,h|H1(Q) eoc
3 3 2 0.50000 1.00000 1.7974e-01 - 1.2812e+00 -
5 5 12 0.25000 0.50000 5.3647e-02 1.35 7.0582e-01 0.67
9 9 56 0.12500 0.25000 1.5830e-02 1.58 4.0519e-01 0.72

17 17 240 0.06250 0.12500 5.4556e-03 1.46 2.5515e-01 0.64
33 33 992 0.03125 0.06250 2.2538e-03 1.25 1.7871e-01 0.50
65 65 4032 0.01562 0.03125 1.0047e-03 1.15 1.3639e-01 0.39

129 129 16256 0.00781 0.01562 4.4819e-04 1.16 1.0957e-01 0.31
257 257 65280 0.00391 0.00781 1.9647e-04 1.19 9.0273e-02 0.28
513 513 261632 0.00195 0.00391 8.4780e-05 1.21 7.5223e-02 0.26

1025 1025 1047552 0.00098 0.00195 3.6195e-05 1.23 6.2996e-02 0.26
2049 2049 4192256 0.00049 0.00098 1.5351e-05 1.24 5.2874e-02 0.25
4097 4097 16773120 0.00024 0.00049 6.4854e-06 1.24 4.4422e-02 0.25

Table 3.3: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder Q = (0,1)× (0,2) and for u2.

M̃x M̃t dof hx ht ‖u2 −u2,h‖L2(Q) eoc |u2 −u2,h|H1(Q) eoc
3 3 2 0.50000 1.00000 3.7057e-01 - 1.6781e+00 -
5 5 12 0.25000 0.50000 1.9478e-01 0.72 1.0367e+00 0.54
9 9 56 0.12500 0.25000 1.0549e-01 0.80 6.1865e-01 0.67

17 17 240 0.06250 0.12500 5.6371e-02 0.86 3.7187e-01 0.70
33 33 992 0.03125 0.06250 2.9435e-02 0.92 2.3356e-01 0.66
65 65 4032 0.01562 0.03125 1.5118e-02 0.95 1.5857e-01 0.55

129 129 16256 0.00781 0.01562 7.6856e-03 0.97 1.1747e-01 0.43
257 257 65280 0.00391 0.00781 3.8823e-03 0.98 9.2856e-02 0.34
513 513 261632 0.00195 0.00391 1.9533e-03 0.99 7.6028e-02 0.29

1025 1025 1047552 0.00098 0.00195 9.8032e-04 0.99 6.3241e-02 0.27
2049 2049 4192256 0.00049 0.00098 4.9126e-04 1.00 5.2947e-02 0.26
4097 4097 16773120 0.00024 0.00049 2.4596e-04 1.00 4.4444e-02 0.25

Table 3.4: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1)× (0,2) and for u2.
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M̃x M̃t dof hx ht ‖u3 −u3,h‖L2(Q) eoc |u3 −u3,h|H1(Q) eoc
3 3 2 0.50000 1.00000 3.8930e-01 - 2.8412e+00 -
5 5 12 0.25000 0.50000 1.5092e-01 1.06 2.2724e+00 0.25
9 9 56 0.12500 0.25000 7.2348e-02 0.95 2.0666e+00 0.12

17 17 240 0.06250 0.12500 3.9069e-02 0.85 2.0819e+00 -0.01
33 33 992 0.03125 0.06250 2.2136e-02 0.80 2.2423e+00 -0.10
65 65 4032 0.01562 0.03125 1.2839e-02 0.78 2.5212e+00 -0.17

129 129 16256 0.00781 0.01562 7.5378e-03 0.76 2.9090e+00 -0.21
257 257 65280 0.00391 0.00781 4.4532e-03 0.76 3.4053e+00 -0.23
513 513 261632 0.00195 0.00391 2.6393e-03 0.75 4.0171e+00 -0.24

1025 1025 1047552 0.00098 0.00195 1.5668e-03 0.75 4.7577e+00 -0.24
2049 2049 4192256 0.00049 0.00098 9.3084e-04 0.75 5.6463e+00 -0.25
4097 4097 16773120 0.00024 0.00049 5.5325e-04 0.75 6.7077e+00 -0.25

Table 3.5: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder Q = (0,1)× (0,2) and for u3.

M̃x M̃t dof hx ht ‖u3 −u3,h‖L2(Q) eoc |u3 −u3,h|H1(Q) eoc
3 3 2 0.50000 1.00000 3.1084e-01 - 2.9018e+00 -
5 5 12 0.25000 0.50000 1.7098e-01 0.67 2.2254e+00 0.30
9 9 56 0.12500 0.25000 1.0734e-01 0.60 1.7948e+00 0.28

17 17 240 0.06250 0.12500 6.2274e-02 0.75 1.4924e+00 0.25
33 33 992 0.03125 0.06250 3.4179e-02 0.85 1.2533e+00 0.25
65 65 4032 0.01562 0.03125 1.8147e-02 0.90 1.0550e+00 0.25

129 129 16256 0.00781 0.01562 9.4412e-03 0.94 8.8824e-01 0.25
257 257 65280 0.00391 0.00781 4.8483e-03 0.96 7.4759e-01 0.25
513 513 261632 0.00195 0.00391 2.4686e-03 0.97 6.2902e-01 0.25

1025 1025 1047552 0.00098 0.00195 1.2498e-03 0.98 5.2914e-01 0.25
2049 2049 4192256 0.00049 0.00098 6.3032e-04 0.99 4.4507e-01 0.25
4097 4097 16773120 0.00024 0.00049 3.1707e-04 0.99 3.7433e-01 0.25

Table 3.6: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1)× (0,2) and for u3.
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M̃x M̃t dof hx ht ‖u4 −u4,h‖L2(Q) eoc |u4 −u4,h|H1(Q) eoc
3 3 2 0.50000 1.00000 6.2378e-01 - 2.5520e+00 -
5 5 12 0.25000 0.50000 1.7639e-01 1.41 2.7132e+00 -0.07
9 9 56 0.12500 0.25000 6.6921e-02 1.26 2.1509e+00 0.30

17 17 240 0.06250 0.12500 2.7324e-02 1.23 1.7729e+00 0.27
33 33 992 0.03125 0.06250 1.1359e-02 1.24 1.4811e+00 0.25
65 65 4032 0.01562 0.03125 4.7565e-03 1.24 1.2429e+00 0.25

129 129 16256 0.00781 0.01562 1.9991e-03 1.24 1.0444e+00 0.25
257 257 65280 0.00391 0.00781 8.4227e-04 1.24 8.7808e-01 0.25
513 513 261632 0.00195 0.00391 3.5559e-04 1.24 7.3836e-01 0.25

1025 1025 1047552 0.00098 0.00195 1.5046e-04 1.24 6.2093e-01 0.25
2049 2049 4192256 0.00049 0.00098 6.3843e-05 1.24 5.2221e-01 0.25
4097 4097 16773120 0.00024 0.00049 2.7189e-05 1.23 4.3923e-01 0.25

Table 3.7: Numerical results of the Crank-Nicolson Galerkin method (3.8) for the space-
time cylinder Q = (0,1)× (0,2) and for u4.

M̃x M̃t dof hx ht ‖u4 −u4,h‖L2(Q) eoc |u4 −u4,h|H1(Q) eoc
3 3 2 0.50000 1.00000 5.8329e-01 - 2.5931e+00 -
5 5 12 0.25000 0.50000 2.5431e-01 0.93 2.9416e+00 -0.14
9 9 56 0.12500 0.25000 1.5258e-01 0.66 2.4423e+00 0.24

17 17 240 0.06250 0.12500 8.6590e-02 0.78 2.0575e+00 0.24
33 33 992 0.03125 0.06250 4.7030e-02 0.86 1.7383e+00 0.24
65 65 4032 0.01562 0.03125 2.4819e-02 0.91 1.4675e+00 0.24

129 129 16256 0.00781 0.01562 1.2856e-02 0.94 1.2372e+00 0.24
257 257 65280 0.00391 0.00781 6.5804e-03 0.96 1.0419e+00 0.25
513 513 261632 0.00195 0.00391 3.3420e-03 0.98 8.7684e-01 0.25

1025 1025 1047552 0.00098 0.00195 1.6887e-03 0.98 7.3767e-01 0.25
2049 2049 4192256 0.00049 0.00098 8.5041e-04 0.99 6.2046e-01 0.25
4097 4097 16773120 0.00024 0.00049 4.2730e-04 0.99 5.2183e-01 0.25

Table 3.8: Numerical results of the implicit Euler Galerkin method (3.5) for the space-time
cylinder Q = (0,1)× (0,2) and for u4.
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3.2 Space-Time Variational Formulation of Bochner Type

In this section, a short overview of space-time variational formulations of Bochner type is
given and a stable space-time discretisation is formulated, see [51, 137, 142–144].

For the heat equation (3.1), a space-time variational formulation of Bochner type for the
Hilbert space W (Q) from (2.21) with the norm ‖·‖W (Q) from (2.22) is given as follows:

Find u ∈W (Q) such that

〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q)+ 〈u(·,0),w〉L2(Ω) = 〈 f ,v〉Q + 〈u0,w〉L2(Ω) (3.11)

for all (v,w)∈ L2(0,T ;H1
0 (Ω))×L2(Ω)=:Y , where f ∈ L2(0,T ; [H1

0 (Ω)]′) and u0 ∈ L2(Ω)
are the given right-hand side and the given initial condition. The space-time variational
formulation of Bochner type (3.11) is equivalent to the pointwise in time variational for-
mulation (3.3) because of the fundamental lemma of calculus, the density of C∞

0 (0,T ) in
L2(0,T ) and so, the density of the algebraic tensor-product

H1
0 (Ω)⊗C∞

0 (0,T ) = span
{

Q ∋ (x, t) 7→ φ(x) ·ψ(t) ∈❘ : φ ∈ H1
0 (Ω), ψ ∈C∞

0 (0,T )
}

in H1
0 (Ω)⊗̂L2(0,T ) ≃ L2(0,T ;H1

0 (Ω)). Hence, the unique solvability of the space-time
variational formulation of Bochner type (3.11) follows from the pointwise in time varia-
tional formulation (3.3), i.e. from Theorem 3.1.1. An alternative proof of a uniqueness and
existence result for the space-time variational formulation of Bochner type (3.11) uses the
Nečas Theorem 2.9.1. Therefore, define the bilinear form b(·, ·) : W (Q)×Y →❘ by

b(u,(v,w)) := 〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q)+ 〈u(·,0),w〉L2(Ω) (3.12)

for u ∈W (Q), (v,w) ∈ Y , where the Hilbert space Y is endowed with the inner product

〈(v,w),(v̂, ŵ)〉Y :=

T∫

0

∫

Ω

∇xv(x, t) ·∇xv̂(x, t)dxdt +
∫

Ω

w(x)ŵ(x)dx for (v,w),(v̂, ŵ) ∈ Y.

Theorem 3.2.1. The bilinear form (3.12) is continuous and fulfils the condition (N1) and
the condition (N2), i.e. it holds true that:

1. A constant C > 0 exists such that for all u ∈W (Q) and for all (v,w) ∈ Y

|b(u,(v,w))| ≤C‖u‖W (Q)‖(v,w)‖Y .

2. A constant cs > 0 exists such that

inf
06=u∈W (Q)

sup
06=(v,w)∈Y

|b(u,(v,w))|
‖u‖W (Q)‖(v,w)‖Y

≥ cs.



3.2 Space-Time Variational Formulation of Bochner Type 61

3. For each element (v,w) ∈ Y , (v,w) 6= 0, an element u ∈ W (Q) exists such that
b(u,(v,w)) 6= 0.

Proof. For u0 = 0, the proof is contained in the book [51, Proof of Theorem 6.6, page
282]. For the general case, see [137, Theorem 5.1, page 1300].

The linear form F : Y →❘ is given by

F(v,w) := 〈 f ,v〉Q + 〈u0,w〉L2(Ω) for (v,w) ∈ Y ,

where its boundedness follows with the Cauchy-Schwarz inequality by

|F(v,w)| ≤ ‖ f‖L2(0,T ;[H1
0 (Ω)]′)‖∇xv‖L2(Q)+‖u0‖L2(Ω)‖w‖L2(Ω)

≤
√
‖ f‖2

L2(0,T ;[H1
0 (Ω)]′)+‖u0‖2

L2(Ω)‖(v,w)‖Y

for all (v,w) ∈ Y. Hence, the variational formulation (3.11) is rewritten to find u ∈ W (Q)
such that

b(u,(v,w)) = F(v,w) (3.13)

for all (v,w) ∈ Y . The following existence and uniqueness result holds true:

Theorem 3.2.2. For each given F = ( f ,u0) ∈ Y ′, the variational formulation (3.13) and
hence, the variational formulation (3.11) have a unique solution u ∈W (Q), satisfying

‖u‖W (Q) ≤C
√

‖ f‖2
L2(0,T ;[H1

0 (Ω)]′)+‖u0‖2
L2(Ω)

with a constant C > 0. Furthermore, the solution operator

L : Y ′ →W (Q), LF = L( f ,u0) := u,

is an isomorphism.

Proof. This follows with the Nečas Theorem 2.9.1 from Theorem 3.2.1.

In the remainder of this section, the initial condition u0 is incorporated via homogenisation.
So, the bilinear form

a(u,v) := 〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q) for u ∈W (Q), v ∈ L2(0,T ;H1
0 (Ω))

is introduced. The bilinear form a(·, ·) is bounded, i.e.

|a(u,v)| ≤
√

2‖u‖W (Q)‖∇xv‖L2(Q) for u ∈W (Q), v ∈ L2(0,T ;H1
0 (Ω)).

Next, for the bilinear form

a(·, ·) : W0,(Q)×L2(0,T ;H1
0 (Ω))→❘,

the requirements of the Nečas Theorem 2.9.1 are examined, where the Hilbert space
W0,(Q) is the subspace given in (2.25).
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Theorem 3.2.3. The bilinear form a(·, ·) : W0,(Q)×L2(0,T ;H1
0 (Ω)) → ❘ is continuous

and fulfils the condition (N1) and the condition (N2), i.e. it holds true that:

1. For all u ∈W0,(Q) and for all v ∈ L2(0,T ;H1
0 (Ω)), there is

|a(u,v)| ≤
√

2‖u‖W (Q)‖∇xv‖L2(Q).

2. The inf-sup condition

inf
06=u∈W0,(Q)

sup
06=v∈L2(0,T ;H1

0 (Ω))

|a(u,v)|
‖u‖W (Q)‖∇xv‖L2(Q)

≥ 1

2
√

2

holds true.

3. For each function v ∈ L2(0,T ;H1
0 (Ω)), v 6= 0, an element u ∈W0,(Q) exists such that

a(u,v) 6= 0.

Proof. The proof is contained in the book [51, Proof of Theorem 6.6, page 282]. For the
inf-sup constant, see [142, Theorem 2.1, page 5].

For a given initial condition u0 ∈ L2(Ω) and a given right-hand side f ∈ L2(0,T ; [H1
0 (Ω)]′),

the variational formulation of the heat equation (3.1) is to find u ∈W (Q) with u(·,0) = u0

in L2(Ω) such that
a(u,v) = 〈 f ,v〉Q (3.14)

for all v∈ L2(0,T ;H1
0 (Ω)). By homogenisation, there follows the existence and uniqueness

theorem:

Theorem 3.2.4. Let the right-hand side f ∈ L2(0,T ; [H1
0 (Ω)]′) and the initial condition

u0 ∈ L2(Ω) be given. Then, the variational formulation (3.14) admits a unique solution
u ∈W (Q) with u(·,0) = u0 in L2(Ω), satisfying

‖u‖W (Q) ≤ 2
√

2
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2Cex‖u0‖L2(Ω)

)
+Cex‖u0‖L2(Ω)

with a constant Cex > 0 coming from the extension (2.24) of u0.

Proof. Consider the extension u0 := EΩ0u0 ∈W (Q) from (2.24) with u0(·,0) = u0 in L2(Ω)
satisfying ‖u0‖W (Q) ≤ Cex‖u0‖L2(Ω) with a constant Cex > 0. Next, investigate the varia-
tional formulation by homogenisation to find u ∈W0,(Q) such that

a(u,v) = 〈 f ,v〉Q −a(u0,v) (3.15)
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for all v ∈ L2(0,T ;H1
0 (Ω)). The right-hand side is bounded by

∣∣∣〈 f ,v〉Q −a(u0,v)
∣∣∣≤
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2‖u0‖W (Q)

)
‖∇xv‖L2(Q)

≤
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2Cex‖u0‖L2(Ω)

)
‖∇xv‖L2(Q) (3.16)

for all v ∈ L2(0,T ;H1
0 (Ω)). So, the Nečas Theorem 2.9.1 yields with Theorem 3.2.3 that

there exists a unique solution u ∈ W0,(Q) of the variational formulation (3.15), satisfying
with (3.16)

‖u‖W (Q) ≤ 2
√

2
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2Cex‖u0‖L2(Ω)

)
. (3.17)

Set u := u+u0 ∈W (Q).

Next, the independence of the extension u0 for u is examined. So, for a second extension
û0 ∈ W (Q), satisfying û0(·,0) = u0 in L2(Ω), there exists again û ∈ W0,(Q), satisfying
the variational formulation (3.15). The difference (u+u0)− (û+ û0) ∈W0,(Q) fulfils the
homogeneous variational formulation

a((u+u0)− (û+ û0),v) = 0 for all v ∈ L2(0,T ;H1
0 (Ω)).

Because of Theorem 3.2.3 and the Nečas Theorem 2.9.1, the to the bounded bilinear form
a(·, ·) : W0,(Q)× L2(0,T ;H1

0 (Ω)) → ❘ related operator A : W0,(Q) → L2(0,T ; [H1
0 (Ω)]′)

is an isomorphism. Hence, A((u+u0)− (û+ û0)) = 0, i.e. u+u0 = û+ û0 and therefore,
the solution u ∈W (Q) is independent of the extension u0 for the initial condition u0.

With the triangle inequality, (3.17) and the continuity of the extension operator for u0,
there follow the stability estimate

‖u‖W (Q) ≤ ‖u‖W (Q)+‖u0‖W (Q)

≤ 2
√

2
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2Cex‖u0‖L2(Ω)

)
+Cex‖u0‖L2(Ω)

and hence, the assertion.

For a discretisation scheme, let the bounded Lipschitz domain Ω ⊂ ❘d be an interval
Ω = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. As a conform-
ing space-time discretisation, consider the space of piecewise linear, continuous func-
tions S1

h(Q)∩W0,(Q), see Section 2.8 for more details. For an arbitrary fixed extension
u0 ∈ W (Q) with u0(·,0) = u0 in L2(Ω) and ‖u0‖W (Q) ≤ C̃ex‖u0‖L2(Ω) with a constant

C̃ex > 0 independent of u0, e.g., u0 = EΩ0u0 from (2.24), the discrete variational formu-
lation is to find uh ∈ S1

h(Q)∩W0,(Q) such that

a(uh,vh) = 〈 f ,vh〉Q −a(u0,vh) (3.18)
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for all vh ∈ S1
h(Q)∩W0,(Q). Note that ansatz and test spaces are equal. Next, define the

approximation
uh := uh +u0 ∈W (Q), (3.19)

where in practice u0 is replaced by the space-time interpolant Ihu0 ∈ S1
h(Q) from (2.40), if

u0 is smooth enough, see [141, page 246] or [51, Section 3.2.2, page 124] for the elliptic
case.

The following stability and convergence theorem is contained in the work [142, Section 3,
page 6].

Theorem 3.2.5. Let the assumptions of Theorem 3.2.4 be satisfied with the unique solu-
tion u ∈ W (Q) of (3.14). Further, let u0 ∈ W (Q) be the extension from (3.18) of u0 with
u0(·,0) = u0 in L2(Ω) and ‖u0‖W (Q) ≤ C̃ex‖u0‖L2(Ω) with a constant C̃ex > 0 independent

of u0. Then, a unique solution uh ∈ S1
h(Q)∩W0,(Q) of the discrete variational formulation

(3.18) exists, satisfying the stability estimate

‖∇xuh‖L2(Q) ≤ 2
√

2
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2C̃ex‖u0‖L2(Ω)

)
.

Furthermore, assume u = u−u0 ∈ Hs(Q) for some s ∈ [1,2]. Then, for the approximation
uh = uh +u0 in (3.19), the error estimate

‖∇x(u−uh)‖L2(Q) ≤C hs−1‖u‖Hs(Q)

holds true with a constant C > 0.

Proof. The unique solvability of the discrete variational formulation (3.18) follows from
the discrete inf-sup condition

inf
06=uh∈S1

h(Q)∩W0,(Q)
sup

06=vh∈S1
h(Q)∩W0,(Q)

a(uh,vh)

‖∇xuh‖L2(Q)‖∇xvh‖L2(Q)

≥ 1

2
√

2
, (3.20)

which is proven in [142, Theorem 3.5, page 7]. In addition, the discrete inf-sup condition
(3.20) yields with the bound (3.16) the stability estimate

‖∇xuh‖L2(Q) ≤ 2
√

2
(
‖ f‖L2(0,T ;[H1

0 (Ω)]′)+
√

2C̃ex‖u0‖L2(Ω)

)
.

The error estimate follows from [142, Corollary 3.4, page 10] with

‖∇x(u−uh)‖L2(Q) = ‖∇x(u−uh)‖L2(Q)

and hence, the assertion.

Numerical examples and further investigations are given in [142–144].
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3.3 Space-Time Variational Formulation of Anisotropic Type

In this section, a short overview of a so-called space-time variational formulation of an-
isotropic type for a homogeneous initial condition, i.e. u0 = 0, is given. The motivation
comes from considering a FEM-BEM coupling for transmission problems of the heat equa-
tion. Because this variational formulation of anisotropic type arises by the treatment of
boundary integral equations for the heat equation, the usage of this variational formulation
of anisotropic type is natural for the finite element method. However, it seems that a stable
conforming discretisation of this variational formulation of anisotropic type by piecewise
linear, continuous functions is not available.

For the homogeneous Dirichlet problem of the heat equation

∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),

u(x, t) = 0 for (x, t) ∈ Σ = Γ× [0,T ],

u(x,0) = 0 for x ∈ Ω,





where Ω ⊂ ❘d , d = 1,2,3, is a bounded Lipschitz domain with boundary Γ = ∂Ω and
T > 0 is a given terminal time, the space-time variational formulation of anisotropic type
is given as follows:

Find u ∈ H1,1/2
0;0, (Q) such that

〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q) = 〈 f ,v〉Q (3.21)

for all v ∈ H1,1/2
0; ,0 (Q), where f ∈ [H1,1/2

0; ,0 (Q)]′ is a given right-hand side, see Section 2.5 for

the notations. The bilinear form a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘,

a(u,v) := 〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q)

for u ∈ H1,1/2
0;0, (Q), v ∈ H1,1/2

0; ,0 (Q), is bounded, i.e. there exists a constant C > 0 such that

|a(u,v)| ≤C‖u‖
H1,1/2

0;0, (Q)
‖v‖

H1,1/2
0; ,0 (Q)

for u ∈ H1,1/2
0;0, (Q), v ∈ H1,1/2

0; ,0 (Q), see [35, Lemma 2.6, page 505].

Remark 3.3.1. The bilinear form 〈∂tu,v〉(0,T ) for u,v ∈C∞
0 (0,T ) has no continuous exten-

sion to
H1/2

0, (0,T )×H1/2
0, (0,T )

or to
H1/2(0,T )×H1/2(0,T ),
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i.e. the usage of the different ansatz and test spaces H1,1/2
0;0, (Q), H1,1/2

0; ,0 (Q) for the bilinear
form

a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘

is crucial. See [35, Remark 2.7, page 505] and [64, Proposition 1.4.4.8, page 32].

In [35], the following existence and uniqueness theorem is proven by a transposition and
interpolation argument as in [102, 103], see also [98].

Theorem 3.3.2. Let the right-hand side f ∈ [H1,1/2
0; ,0 (Q)]′ be given. Then, the variational

formulation (3.21) has a unique solution u ∈ H1,1/2
0;0, (Q), satisfying

‖u‖
H1,1/2

0;0, (Q)
≤C‖ f‖

[H1,1/2
0; ,0 (Q)]′

with a constant C > 0. Furthermore, the solution operator

L : [H1,1/2
0; ,0 (Q)]′ → H1,1/2

0;0, (Q), L f := u,

is an isomorphism. In addition, the bilinear form

a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘, a(u,v) = 〈∂tu,v〉Q + 〈∇xu,∇xv〉L2(Q),

is continuous and fulfils the condition (N1) and the condition (N2).

Proof. The existence and uniqueness of a solution u ∈ H1,1/2
0;0, (Q) of the variational formu-

lation (3.21) and that the solution operator L : [H1,1/2
0; ,0 (Q)]′→H1,1/2

0;0, (Q) is an isomorphism
follow from [35, Lemma 2.8, page 505]. The Nečas Theorem 2.9.1 yields the properties

of the bilinear form a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘.

Remark 3.3.3. In Section 3.4 an alternative proof of Theorem 3.3.2 is given by the usage
of Fourier series, see Theorem 3.4.19.

For a discretisation scheme, let the bounded Lipschitz domain Ω ⊂ ❘d be an interval
Ω = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
of Section 2.8, a conforming space-time discretisation via the space of piecewise linear,

continuous functions S1
h(Q) leads to the discrete ansatz and test spaces S1

h(Q)∩H1,1/2
0;0, (Q)

and S1
h(Q)∩H1,1/2

0; ,0 (Q). Hence, the test space differs from that of the approach (3.18), i.e.

S1
h(Q)∩H1,1/2

0; ,0 (Q) 6= S1
h(Q)∩W0,(Q).
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It turns out that the resulting finite element method, for the choice above of different ansatz
and test spaces, is not stable. Therefore, only the time component is considered. That
means, for a fixed µ > 0, the ordinary differential equation

∂tu(t)+µu(t) = f (t) for t ∈ (0,T ), u(0) = 0,

and the variational formulation to find u ∈ H1/2
0, (0,T ) such that

〈∂tu,v〉(0,T )+µ〈u,v〉L2(0,T ) = 〈 f ,v〉(0,T ) (3.22)

for all v ∈ H1/2
,0 (0,T ), where f ∈ [H1/2

,0 (0,T )]′ is given, are investigated. Analogous to

Theorem 3.3.2, there exists a unique solution u ∈ H1/2
0, (0,T ) of the variational formulation

(3.22), see also Theorem 3.4.10. With the notations of Section 2.6, a conforming discreti-
sation with piecewise linear, continuous functions S1

ht
(0,T ) = span{ϕk}Nt

k=0 leads to the

discrete variational formulation to find uht ∈ S1
ht
(0,T )∩H1/2

0, (0,T ) such that

〈∂tuht ,vht 〉L2(0,T )+µ〈uht ,vht 〉L2(0,T ) = 〈 f ,vht 〉(0,T ) (3.23)

for all vht ∈ S1
ht
(0,T )∩H1/2

,0 (0,T ). The resulting system matrix of (3.23) is given as

Kht =
1
2




1
0 1
−1 0 1

. . . . . . . . .
−1 0 1




+
µ

6




ht,1

2ht,1 +2ht,2 ht,2

ht,2 2ht,2 +2ht,3 ht,3
. . . . . . . . .

ht,Nt−1 2ht,Nt−1 +2ht,Nt ht,Nt




(3.24)

and hence, unique solvability of the discrete variational formulation (3.23) follows because
Kht ∈❘Nt×Nt is a lower triangular matrix with positive diagonal elements.

For a uniform discretisation with mesh size ht , the matrix Kht in (3.24) can be interpreted
as a finite difference scheme

a0v1 = f1,

a1v1 +a0v2 = f2,

a2v j−2 +a1v j−1 +a0v j = f j for j > 2,
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where

a0 :=
1
2
+

µht

6
=

3+µht

6
, a1 :=

4µht

6
, a2 :=−1

2
+

µht

6
=

−3+µht

6

with given f j ∈ ❘. The essential case f j = 0 for j > 2 is examined. The solution of the
homogeneous linear recurrence relation

a2v j−2 +a1v j−1 +a0v j = 0 for j > 2

is given for j ≥ 1 by

v j = A0

(
−2ht µ −

√
9+3h2

t µ2

3+ht µ

) j−1

+A1

(
−2ht µ +

√
9+3h2

t µ2

3+ht µ

) j−1

,

where the coefficients A0,A1 ∈ ❘ are determined by f1, f2 ∈ ❘. Hence, in general, the
sequence (v j) j∈◆ is unbounded as j → ∞ independently of µ and ht . In other words,
the numerical scheme (3.23) is unstable for each µ > 0 and each ht > 0. For the heat
equation, deriving a conforming discretisation by piecewise linear, continuous functions
of the variational formulation (3.21), which results in a stable numerical scheme, is delicate
and is not discussed in this thesis. On the other hand, an alternative approach with the help
of a type of Hilbert transform is given in Section 3.4.
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3.4 Space-Time Variational Formulation with a Type of Hilbert

Transform

In this section, the space-time variational formulation of anisotropic type of Section 3.3
is examined with the help of a type of Hilbert transform, see [145]. Via a Fourier series
ansatz a transformation operator HT is introduced, and existence and uniqueness of the
space-time variational formulation of anisotropic type of Section 3.3 is proven directly, i.e.
no transposition and interpolation argument is needed, see also [35, Remark 2.13, page
507]. For the resulting space-time variational formulation of this section, ansatz and test
spaces are equal. Furthermore, the used analysis is developed on a finite time interval
(0,T ) instead of considering an unbounded time interval (0,∞) as in [37, 52, 101]. More-
over, a conforming discretisation of the resulting variational formulation leads to an uncon-
ditionally stable finite element method, which is combinable with the boundary element
method as in [35] via a FEM-BEM coupling. In the last part of this section, unconditional
stability for unstructured space-time meshes, error estimates in L2(Q), in H1(Q) and in

the anisotropic Sobolev space H1/2
0, (0,T ;L2(Ω)) for a tensor-product approach are proven.

Furthermore, numerical examples, which confirm the theoretical results, are presented.

3.4.1 Characterisation of H1/2
0, (0,T ) and H1/2

,0 (0,T ) via Fourier Series

In this subsection, the interpolation of function spaces as in [102, Chapitre 1, Section
2.1, page 11] is considered. Hence, all functions are complex-valued in this subsec-

tion, i.e. Hs(0,T ;❈) and H1/2
0, (0,T ;❈) are the complex-valued versions of the Sobolev

spaces of Section 2.2. With the notations of [102, Chapitre 1, Section 2.1, page 11] let
Y := L2(0,T ;❈) be the usual complex Hilbert space with the inner product

(u,v)L2(0,T ;❈) :=

T∫

0

u(t)v(t)dt,

and let the complex Hilbert space X := H1
0,(0,T ;❈) be endowed with the inner product

(u,v)H1
0,(0,T ;❈) :=

T∫

0

∂tu(t)∂tv(t)dt.

Clearly, X and Y are separable and X is a dense subset of Y with a compact embedding,
see [13, Proof of Satz 5.12, page 148].

Next, an unbounded operator Λ : Y ⊃ dom(Λ) → Y with domain dom(Λ) = X is con-
structed such that Λ is self-adjoint and positive in Y. Therefore, define the unbounded
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sesquilinear form a : dom(a)×dom(a)→❈ by

a(u,v) := (u,v)H1
0,(0,T ;❈) =

T∫

0

∂tu(t)∂tv(t)dt

for u,v ∈ dom(a) := X = H1
0,(0,T ;❈) ⊂ Y. The sesquilinear form a is densely defined,

symmetric, closed and lower semibounded in Y , i.e.

• dom(a) is dense in Y ,

• it holds true that a(u,v) = a(v,u) for all u,v ∈ dom(a),

• (dom(a),(·, ·)a) is a Hilbert space with the inner product (u,v)a := a(u,v),

• it holds true that

a(u,u) = ‖u‖2
H1

0,(0,T ;❈) ≥
π2

4T 2‖u‖2
L2(0,T ;❈)

for all u ∈ dom(a) due to the Poincaré inequality, see Lemma 3.4.5 for the constant.

The Representation Theorem for Semibounded Forms, see [133, Theorem 10.7, page 228]
and see also [90, Theorem 2.1, page 322], [157, Unterkapitel 4.2], yields that there exists a
uniquely determined, lower semibounded, self-adjoint operator S : Y ⊃ dom(S)→ Y such
that

• it holds true that dom(S)⊂ dom(a) = X ,

• for all u ∈ dom(S) and v ∈ dom(a), it holds true that

a(u,v) = (Su,v)L2(0,T ;❈), (3.25)

• it holds true that

dom(S) =
{

u ∈ X : ∃wu ∈ Y : ∀v ∈ dom(a) : a(u,v) = (wu,v)L2(0,T ;❈)

}
,

and the operator is given by Su := wu for u ∈ dom(S),

• a lower bound for S is given by

(Su,u)L2(0,T ;❈) ≥
π2

4T 2‖u‖2
L2(0,T ;❈)

for all u ∈ dom(S).
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Lemma 3.4.1. The unbounded operator S : Y ⊃ dom(S)→ Y from above is given by

Su =−∂ttu

and
dom(S) =

{
u ∈ H2(0,T ;❈) : u(0) = 0, u′(T ) = 0

}
.

Proof. Let u ∈ dom(S) be fixed. It is shown that u satisfies u ∈ H2(0,T ;❈) with u(0) = 0
and u′(T ) = 0, i.e. u is contained in the right-hand side. First, because dom(S)⊂ dom(a),
it holds true that u ∈ H1

0,(0,T ;❈) and so, u(0) = 0. Second, for v ∈ C∞
0 (0,T ) in (3.25), it

follows with integration by parts that

(Su,v)L2(0,T ;❈) = a(u,v) =−(u,∂ttv)L2(0,T ;❈),

hence, Su =−∂ttu ∈ Y and so, u ∈ H2(0,T ;❈). Third, for v ∈C∞[0,T ] with v(0) = 0 and
v(T ) = 1 in (3.25), it follows with integration by parts that

a(u,v) = (Su,v)L2(0,T ;❈) =−(∂ttu,v)L2(0,T ;❈) =−u′(T )v(T )+a(u,v) ⇐⇒ u′(T ) = 0

and so, u is contained in the right-hand side.

Next, let u satisfy u ∈ H2(0,T ;❈) with u(0) = 0 and u′(T ) = 0, i.e. u is contained in
the right-hand side. Hence, u ∈ X = H1

0,(0,T ;❈). The function u is contained in dom(S),
because for wu :=−∂ttu ∈ L2(0,T ;❈) with integration by parts, it holds true that

a(u,v) =−(∂ttu,v)L2(0,T ;❈) = (wu,v)L2(0,T ;❈)

for all v ∈ dom(a). Thus, Su = wu =−∂ttu.

The Second Representation Theorem [90, Theorem 2.23, page 331] yields that the square
root Λ := S1/2 : Y ⊃ dom(Λ)→ Y fulfils dom(Λ) = dom(a) = X = H1

0,(0,T ;❈) and

a(u,v) = (Λu,Λv)L2(0,T ;❈) for all u,v ∈ X .

Recall that Λ : Y ⊃ dom(Λ)→ Y is self-adjoint and positive in Y , because Λ is the unique
square root of the self-adjoint and positive operator S : Y ⊃ dom(S) → Y , see [157, Satz
8.22, page 303] or [133, Proposition 5.13, page 95].

Because of the compact embedding of X in Y , the operator S : Y ⊃ dom(S) → Y has a
purely discrete spectrum, see [133, Proposition 10.6, page 227]. A simple calculation
gives

Vk(t) := sin
((π

2
+ kπ

) t

T

)
, λk :=

1
T 2

(π

2
+ kπ

)2
for k ∈◆0, (3.26)
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which fulfil for k ∈◆0

−∂ttVk(t) = λkVk(t) for t ∈ (0,T ), Vk(0) = 0, ∂tVk(T ) = 0,

i.e. SVk = λkVk for k ∈◆0. These eigenfunctions Vk form an orthogonal basis in L2(0,T ;❈)
satisfying

T∫

0

Vk(t)Vℓ(t)dt =
T

2
δkℓ for k,ℓ ∈◆0

and in H1
0,(0,T ;❈) with

T∫

0

∂tVk(t)∂tVℓ(t)dt = λk

T∫

0

Vk(t)Vℓ(t)dt =
1

2T

(π

2
+ kπ

)2
δkℓ for k,ℓ ∈◆0.

Hence, by Parseval’s identity, see [157, Entwicklungssatz 1.55, page 53] and [158, Satz
V.4.9, page 254], it follows that for u ∈ L2(0,T ;❈), the expansion

u(t) =
∞

∑
k=0

uk sin
((π

2
+ kπ

) t

T

)
, uk =

2
T

T∫

0

u(t)sin
((π

2
+ kπ

) t

T

)
dt (3.27)

holds true, and the norm is given by

‖u‖2
L2(0,T ;❈) =

2
T

∞

∑
k=0

∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2
=

T

2

∞

∑
k=0

|uk|2 . (3.28)

Furthermore, for the inner product, it follows that

(u,v)L2(0,T ;❈) =

T∫

0

u(t)v(t)dt =
T

2

∞

∑
k=0

ukvk (3.29)

for u,v ∈ L2(0,T ;❈) with expansion coefficients uk and vk from (3.27). For a function
u ∈ H1

0,(0,T ;❈), the expansion (3.27) converges also in H1
0,(0,T ;❈), i.e.

∂tu(t) =
1
T

∞

∑
k=0

(π

2
+ kπ

)
uk cos

((π

2
+ kπ

) t

T

)

converges in L2(0,T ;❈), and the norm is given by

‖∂tu‖2
L2(0,T ;❈) =

2
T

∞

∑
k=0

λk

∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2
=

1
2T

∞

∑
k=0

(π

2
+ kπ

)2
|uk|2 . (3.30)
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Before defining the interpolation space H1/2
0, (0,T ;❈), note that for θ ∈ (0,1) the powers

Sθ : Y ⊃ dom(Sθ )→ Y are given by the so-called Functional Calculus, see [133, Section
5.3] or [157, Unterkapitel 8.4], i.e.

dom(Sθ ) =

{
u ∈ Y :

2
T

∞

∑
k=0

λ 2θ
k

∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2
< ∞

}

and the equality ∥∥∥Sθ u
∥∥∥

2

L2(0,T ;❈)
=

2
T

∞

∑
k=0

λ 2θ
k

∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2

holds true, see [133, Theorem 5.9, page 93].

Plugging these results in the definition of the interpolation spaces [102, Définition 2.1,
page 12] gives with the expansion (3.27)

H1/2
0, (0,T ;❈) = [H1

0,(0,T ;❈),L2(0,T ;❈)]1/2 = dom(Λ1/2) = dom(S1/4)

=

{
u ∈ L2(0,T ;❈) :

2
T

∞

∑
k=0

λ
1/2
k

∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2
< ∞

}

=

{
u ∈ L2(0,T ;❈) : u =

∞

∑
k=0

ukVk,
1
2

∞

∑
k=0

(π

2
+ kπ

)
|uk|2 < ∞

}

with the interpolation norm for u ∈ H1/2
0, (0,T ;❈)

‖u‖[H1
0,(0,T ;❈),L2(0,T ;❈)]1/2

=

√
‖u‖2

L2(0,T ;❈)+
∥∥Λ1/2u

∥∥2
L2(0,T ;❈)

=

√
2
T

∞

∑
k=0

(
1+λ

1/2
k

)∣∣∣(u,Vk)L2(0,T ;❈)

∣∣∣
2

=

√
1
2

∞

∑
k=0

(
T +

(π

2
+ kπ

))
|uk|2, (3.31)

see also [102, Proof of Théorème 16.2, page 112] and [15, Section 11.5] for such a con-

struction. This motivates to define for u,v ∈ H1/2
0, (0,T ;❈) with expansion (3.27) the

norm

‖u‖
H1/2

0, (0,T ;❈),F
:=

√
1
2

∞

∑
k=0

(π

2
+ kπ

)
|uk|2, (3.32)

as well as the inner product

(u,v)
H1/2

0, (0,T ;❈),F
:=

1
2

∞

∑
k=0

(π

2
+ kπ

)
ukvk,

where the subscript F stands for Fourier series.
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Theorem 3.4.2. For all u ∈ H1/2
0, (0,T ;❈), the norm equivalences

‖u‖
H1/2

0, (0,T ;❈),F
≤ ‖u‖[H1

0,(0,T ;❈),L2(0,T ;❈)]1/2
≤
√

1+
2T

π
‖u‖

H1/2
0, (0,T ;❈),F

and

C1‖u‖
H1/2

0, (0,T ;❈),F
≤

√√√√√‖u‖2
H1/2(0,T ;❈)+

T∫

0

|u(t)|2
t

dt ≤C2‖u‖
H1/2

0, (0,T ;❈),F

hold true with constants C1 > 0 and C2 > 0. Hence,

(
H1/2

0, (0,T ;❈),(·, ·)
H1/2

0, (0,T ;❈),F

)
is

a Hilbert space.

Proof. From [102, Théorème 11.7, page 72] and [102, Remarque 11.4, page 75], it follows

that the norm u 7→
√

‖u‖2
H1/2(0,T ;❈)+

∫ T
0

|u(t)|2
t dt is equivalent to the interpolation norm

‖·‖[H1
0,(0,T ;❈),L2(0,T ;❈)]1/2

, see also [102, Remarque 2.3, page 13]. It remains to prove that

the norm ‖ · ‖
H1/2

0, (0,T ;❈),F
and the interpolation norm ‖·‖[H1

0,(0,T ;❈),L2(0,T ;❈)]1/2
are equiva-

lent. The first inequality ‖u‖
H1/2

0, (0,T ;❈),F
≤ ‖u‖[H1

0,(0,T ;❈),L2(0,T ;❈)]1/2
is trivial because of

(3.31). The second inequality follows from

‖u‖2
[H1

0,(0,T ;❈),L2(0,T ;❈)]1/2
=

1
2

∞

∑
k=0

(
T +

(π

2
+ kπ

))
|uk|2

≤
(

2T

π
+1

)
1
2

∞

∑
k=0

(π

2
+ kπ

)
|uk|2

=

(
2T

π
+1

)
‖u‖2

H1/2
0, (0,T ;❈),F

,

where the representation (3.31) is used again.

Remark 3.4.3. For the explicit calculation of boundedness constants, an interpolation
argument, i.e. the Interpolation Theorem [30, Proposition 14.1.5, page 373] or [26, Theo-
rem 3.1.2, page 40] or [153, Section 1.3] for the so-called K-Method of Interpolation with
the interpolation norm ‖·‖Kθ (X ;Y ), is used. Interpolating the Hilbert spaces H1

0,(0,T ;❈)

and L2(0,T ;❈) with the K-Method of Interpolation yields again H1/2
0, (0,T ;❈) with the to
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‖·‖[H1
0,(0,T ;❈),L2(0,T ;❈)]1/2

equivalent norm ‖·‖K1/2(H
1
0,(0,T ;❈);L2(0,T ;❈)) fulfilling

‖u‖2
K1/2(H

1
0,(0,T ;❈);L2(0,T ;❈)) =

π

2

[
‖u‖2

[H1
0,(0,T ;❈),L2(0,T ;❈)]1/2

−‖u‖2
L2(0,T ;❈)

]

=
π

2

∥∥∥Λ1/2u
∥∥∥

2

L2(0,T ;❈)

=
π

2
‖u‖2

H1/2
0, (0,T ;❈),F

(3.33)

for u ∈ H1/2
0, (0,T ;❈) with (3.31), see [102, Proof of Théorème 15.1, page 108].

Next, the result of Theorem 3.4.2 is transferred to real-valued functions. Hence, for the
real Hilbert space H1/2

0, (0,T ), see (2.1), the representation

H1/2
0, (0,T ) =

{
u ∈ L2(0,T ) : u =

∞

∑
k=0

ukVk,
1
2

∞

∑
k=0

(π

2
+ kπ

)
|uk|2 < ∞

}

holds true, and

〈u,v〉
H1/2

0, (0,T ),F
:=

1
2

∞

∑
k=0

(π

2
+ kπ

)
ukvk

is an inner product, which induces a to ‖·‖
H1/2

0, (0,T )
equivalent norm, where uk,vk ∈❘ are

the expansion coefficients given by (3.27).

Analogously, the real Hilbert space H1/2
,0 (0,T ) is investigated. Here, only the notations are

introduced and some properties are stated. The eigenfunctions and eigenvalues

Wk(t) := cos
((π

2
+ kπ

) t

T

)
, λ̂k :=

1
T 2

(π

2
+ kπ

)2
, k ∈◆0, (3.34)

fulfil for k ∈◆0

−∂ttWk(t) = λ̂kWk(t) for t ∈ (0,T ), ∂tWk(0) = 0, Wk(T ) = 0.

Note that λk = λ̂k and ∂tVk =
√

λkWk for all k ∈ ◆0. These eigenfunctions Wk form an
orthogonal basis in L2(0,T ) satisfying

T∫

0

Wk(t)Wℓ(t)dt =
T

2
δkℓ for k,ℓ ∈◆0

and in H1
,0(0,T ) with

T∫

0

∂tWk(t)∂tWℓ(t)dt = λk

T∫

0

Wk(t)Wℓ(t)dt =
1

2T

(π

2
+ kπ

)2
δkℓ for k,ℓ ∈◆0.
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Hence, by Parseval’s identity, it follows that for w ∈ L2(0,T ), the expansion

w(t) =
∞

∑
k=0

wk cos
((π

2
+ kπ

) t

T

)
, wk =

2
T

T∫

0

w(t)cos
((π

2
+ kπ

) t

T

)
dt, (3.35)

holds true, and the norm is given by

‖w‖2
L2(0,T ) =

2
T

∞

∑
k=0

∣∣∣(w,Wk)L2(0,T )

∣∣∣
2
=

T

2

∞

∑
k=0

|wk|2 .

Furthermore, for the inner product, it follows that

〈w,z〉L2(0,T ) =

T∫

0

w(t)z(t)dt =
T

2

∞

∑
k=0

wkzk (3.36)

for w,z ∈ L2(0,T ) with expansion coefficients wk and zk from (3.35). For w ∈ H1
,0(0,T ),

the expansion (3.35) converges also in H1
,0(0,T ), i.e.

∂tw(t) =− 1
T

∞

∑
k=0

(π

2
+ kπ

)
wk sin

((π

2
+ kπ

) t

T

)

converges in L2(0,T ), and the norm is given by

‖∂tw‖2
L2(0,T ) =

2
T

∞

∑
k=0

λk

∣∣∣(w,Wk)L2(0,T )

∣∣∣
2
=

1
2T

∞

∑
k=0

(π

2
+ kπ

)2
|wk|2 .

For the real Hilbert space H1/2
,0 (0,T ), see (2.2), the representation

H1/2
,0 (0,T ) =

{
u ∈ L2(0,T ) : u =

∞

∑
k=0

wkWk,
1
2

∞

∑
k=0

(π

2
+ kπ

)
|wk|2 < ∞

}

holds true, and

〈w,z〉
H1/2

,0 (0,T ),F
:=

1
2

∞

∑
k=0

(π

2
+ kπ

)
wkzk

is an inner product, which induces a to ‖·‖
H1/2

,0 (0,T )
equivalent norm, where wk,zk ∈❘ are

the expansion coefficients given by (3.35).

Finally, representations of the dual spaces [H1/2
,0 (0,T )]′ and [H1

,0(0,T )]′ are given. In Sec-
tion 2.2 the dual space [H1

,0(0,T )]′ is characterised as a completion of L2(0,T ) with respect
to the Hilbertian norm ‖ · ‖[H1

,0(0,T )]′ , where ‖·‖H1
,0(0,T ) = |·|H1(0,T ) is the norm in H1

,0(0,T ).



3.4 Space-Time Variational Formulation with a Type of Hilbert Transform 77

Analogously, in Section 2.2, the dual space [H1/2
,0 (0,T )]′ is characterised as a completion

of L2(0,T ) with respect to the Hilbertian norm ‖ · ‖
[H1/2

,0 (0,T )]′
, where ‖·‖

H1/2
,0 (0,T )

is the

norm in H1/2
,0 (0,T ), see (2.3). Here, a to ‖ · ‖

[H1/2
,0 (0,T )]′

equivalent norm is given by

‖ f‖
[H1/2

,0 (0,T )]′,F
:= sup

06=w∈H1/2
,0 (0,T )

| f (w)|
‖w‖

H1/2
,0 (0,T ),F

for f ∈ [H1/2
,0 (0,T )]′. With the help of the expansion (3.35), the following lemma holds

true, see also [96, Section 8.1].

Lemma 3.4.4. For f ∈ [H1/2
,0 (0,T )]′, the representation

‖ f‖2
[H1/2

,0 (0,T )]′,F
=

T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
f 2
k

is valid, where fk := 2
T f (Wk) with Wk(t)= cos

((
π
2 + kπ

)
t
T

)
. Furthermore, the dual space

is given by

[H1/2
,0 (0,T )]′ =

{
g : H1/2

,0 (0,T )→❘ : g(w) =
T

2

∞

∑
k=0

wkgk with (gk)k∈◆0 ⊂❘

satisfying
T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
g2

k < ∞

}
,

where the expansion coefficients wk are from (3.35).

Analogously, for f ∈ [H1
,0(0,T )]′, the expansion

‖ f‖2
[H1

,0(0,T )]′ =
T 3

2

∞

∑
k=0

(π

2
+ kπ

)−2
f 2
k

is true, where fk := 2
T f (Wk) with Wk(t) = cos

((
π
2 + kπ

)
t
T

)
.

Proof. Let f ∈ [H1/2
,0 (0,T )]′ be fixed. For w ∈ H1/2

,0 (0,T ), the representations

w(t) =
∞

∑
k=0

wk cos
((π

2
+ kπ

) t

T

)
=

∞

∑
k=0

wkWk(t), ‖w‖2
H1/2

,0 (0,T ),F
=

1
2

∞

∑
k=0

(π

2
+ kπ

)
w2

k

and therefore, with the continuity of f ,

f (w) =
∞

∑
k=0

wk f (Wk) =
T

2

∞

∑
k=0

wk fk
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hold true. Set wN
k :=

(
π
2 +kπ

)−1
fk for k = 0, . . . ,N and wN

k = 0 for k >N. Assume w.l.o.g.

that wN := ∑
N
k=0 wN

k Wk 6= 0. Thus, wN ∈ H1/2
,0 (0,T ) and it is obtained that

(
T 2

2

N

∑
k=0

(π

2
+ kπ

)−1
f 2
k

)1/2

=

√
T 2

2

N
∑

k=0

(
π
2 + kπ

)−1
f 2
k

(
N
∑

k=0

(
π
2 + kπ

)−1
f 2
k

)1/2
=

√
T 2

2

N
∑

k=0
wN

k fk

(
N
∑

k=0

(
π
2 + kπ

)
(wN

k )
2

)1/2

=
f (wN)

‖wN‖
H1/2

,0 (0,T ),F

≤ sup
06=w∈H1/2

,0 (0,T )

| f (w)|
‖w‖

H1/2
,0 (0,T ),F

.

Hence,

‖ f‖2
[H1/2

,0 (0,T )]′,F
≥ T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
f 2
k

follows as N → ∞.

On the other hand, the Cauchy-Schwarz inequality yields

‖ f‖
[H1/2

,0 (0,T )]′,F
= sup

06=w∈H1/2
,0 (0,T )

| f (w)|
‖w‖

H1/2
,0 (0,T ),F

=

√
T 2

2
sup

06=w∈H1/2
,0 (0,T )

∞

∑
k=0

wk fk

(
π
2 + kπ

)−1/2(
π
2 + kπ

)1/2

(
∞

∑
k=0

(
π
2 + kπ

)
w2

k

)1/2

≤
(

T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
f 2
k

)1/2

.

Hence, the norm equality is proven and f is contained in the right-hand side.

To show that the right-hand side is a subset of [H1/2
,0 (0,T )]′, one defines for a given se-

quence (gk)k∈◆0 ⊂❘, satisfying T 2

2 ∑
∞
k=0

(
π
2 + kπ

)−1
g2

k < ∞, the element

g(w) :=
T

2

∞

∑
k=0

wkgk

for w∈H1/2
,0 (0,T ) with the coefficients wk from the expansion (3.35). The linear functional
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g : H1/2
,0 (0,T )→❘ is well-defined and bounded due to

|g(w)|=
∣∣∣∣∣
T

2

∞

∑
k=0

wk

(π

2
+ kπ

)1/2
gk

(π

2
+ kπ

)−1/2
∣∣∣∣∣

≤
(

1
2

∞

∑
k=0

(π

2
+ kπ

)
w2

k

)1/2

︸ ︷︷ ︸
=‖w‖2

H
1/2
,0 (0,T ),F

(
T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
g2

k

)1/2

︸ ︷︷ ︸
<∞

.

Hence, g ∈ [H1/2
,0 (0,T )]′.

For f ∈ [H1
,0(0,T )]′, the proof is obtained in the same manner.

For g ∈ L2(0,T ) with expansion coefficients gk from expansion (3.35) with respect to Wk

and for w ∈ H1/2
,0 (0,T ) with expansion (3.35), note that

〈g,w〉L2(0,T ) =
T

2

∞

∑
k=0

gkwk

and
T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
g2

k ≤
T 2

2

∞

∑
k=0

2
π

g2
k =

2T

π
‖g‖2

L2(0,T ).

Hence, it follows that g ∈ [H1/2
,0 (0,T )]′ with

‖g‖
[H1/2

,0 (0,T )]′,F
≤
√

2T

π
‖g‖L2(0,T )

and there exists a unique continuous extension of 〈·, ·〉L2(0,T ) on [H1/2
,0 (0,T )]′×H1/2

,0 (0,T ),

which is denoted as duality pairing 〈·, ·〉(0,T ). Thus, for f ∈ [H1/2
,0 (0,T )]′ the usual notation

f (w) = 〈 f ,w〉(0,T ) for w ∈ H1/2
,0 (0,T ) is used.

With the help of the representations (3.27) and (3.35), the following lemma states inequal-
ities of Poincaré type with sharp constants.

Lemma 3.4.5. The following inequalities are sharp:

1. For u ∈ H1/2
0, (0,T ) and z ∈ H1/2

,0 (0,T ), it holds true that

‖u‖L2(0,T ) ≤
√

2T

π
‖u‖

H1/2
0, (0,T ),F

and ‖z‖L2(0,T ) ≤
√

2T

π
‖z‖

H1/2
,0 (0,T ),F

.
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2. For u ∈ H1
0,(0,T ) and z ∈ H1

,0(0,T ), it holds true that

‖u‖L2(0,T ) ≤
2T

π
‖∂tu‖L2(0,T ) and ‖z‖L2(0,T ) ≤

2T

π
‖∂tz‖L2(0,T ).

The inequalities remain valid for complex-valued functions.

Proof. The inequalities for H1/2
0, (0,T ) and H1

0,(0,T ) follow from the norm representations
(3.28), (3.32) and (3.30) with

‖u‖2
L2(0,T ) =

T

2

∞

∑
k=0

u2
k =

2T

π

1
2

∞

∑
k=0

π

2
u2

k ≤
2T

π

1
2

∞

∑
k=0

(π

2
+ kπ

)
u2

k =
2T

π
‖u‖2

H1/2
0, (0,T ),F

and

‖u‖2
L2(0,T ) =

4T 2

π2

1
2T

∞

∑
k=0

(π

2

)2
u2

k ≤
4T 2

π2

1
2T

∞

∑
k=0

(π

2
+ kπ

)2
u2

k =
4T 2

π2 ‖∂tu‖2
L2(0,T ),

which are sharp for functions u with expansion coefficients u0 6= 0 and uk = 0 for k ∈◆.
Correspondingly, the inequalities for H1/2

,0 (0,T ) and H1
,0(0,T ) are proven.

3.4.2 Transformation Operator HT

First, the distributional derivative ∂t on (0,T ) for a fixed u ∈ H1/2
0, (0,T ) is investigated.

Theorem 3.4.6. For u ∈ H1/2
0, (0,T ), the distributional derivative ∂t on (0,T ) satisfies

∂tu ∈ [H1/2
,0 (0,T )]′. More precisely, a uniquely determined element g ∈ [H1/2

,0 (0,T )]′ ex-
ists, satisfying

∀ϕ ∈ D(0,T ) : ∂tTu(ϕ) = 〈g,ϕ〉(0,T ),

where Tu : D(0,T )→❘, Tu(ϕ) = 〈u,ϕ〉L2(0,T ), is the to the function u related distribution,
see Section 2.1.

In addition, it holds true that

‖∂tu‖[H1/2
,0 (0,T )]′,F

≤ ‖u‖
H1/2

0, (0,T ),F

and

〈∂tu,w〉(0,T ) =
1
2

∞

∑
k=0

uk

(π

2
+ kπ

)
wk (3.37)

for all w ∈ H1/2
,0 (0,T ) with expansion coefficients uk from (3.27) and wk from (3.35).
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Proof. For u ∈ H1/2
0, (0,T ) with the representations

u(t) =
∞

∑
k=0

uk sin
((π

2
+ kπ

) t

T

)
=

∞

∑
k=0

ukVk(t), ‖u‖2
H1/2

0, (0,T ),F
=

1
2

∞

∑
k=0

(π

2
+ kπ

)
u2

k ,

one defines the functional g ∈ [H1/2
,0 (0,T )]′ via the sequence (gk)k∈◆0 ⊂❘ with

gk :=
1
T

uk

(π

2
+ kπ

)
, k ∈◆0,

satisfying

T 2

2

∞

∑
k=0

(π

2
+ kπ

)−1
g2

k =
1
2

∞

∑
k=0

(π

2
+ kπ

)
u2

k = ‖u‖2
H1/2

0, (0,T )
< ∞,

see Lemma 3.4.4. Hence, g ∈ [H1/2
,0 (0,T )]′ is well-defined. Next, consider the related

distribution Tu : D(0,T )→❘ defined by

Tu(ϕ) = 〈u,ϕ〉L2(0,T )

for ϕ ∈ D(0,T ). The distributional derivative ∂t on (0,T ) is given by

∂tTu(ϕ) =−Tu(∂tϕ) =−〈u,∂tϕ〉L2(0,T ) =−
∞

∑
k=0

uk〈Vk,∂tϕ〉L2(0,T )

=
∞

∑
k=0

uk〈∂tVk,ϕ〉L2(0,T ) =
1
T

∞

∑
k=0

uk

(π

2
+ kπ

)
〈Wk,ϕ〉L2(0,T )

=
1
2

∞

∑
k=0

uk

(π

2
+ kπ

)
ϕk =

T

2

∞

∑
k=0

gkϕk = 〈g,ϕ〉(0,T )

for ϕ ∈ D(0,T ) with expansion coefficients ϕk =
2
T 〈Wk,ϕ〉L2(0,T ) from (3.35). Further-

more, with the last calculation and the Cauchy-Schwarz inequality, it follows that

∣∣∣〈g,ϕ〉(0,T )

∣∣∣=
∣∣∣∣∣
1
2

∞

∑
k=0

uk

(π

2
+ kπ

)
ϕk

∣∣∣∣∣

≤
√

1
2

∞

∑
k=0

(π

2
+ kπ

)
u2

k

√
1
2

∞

∑
ℓ=0

(π

2
+ ℓπ

)
ϕ2
ℓ = ‖u‖

H1/2
0, (0,T ),F

‖ϕ‖
H1/2

,0 (0,T ),F
.

Due to the density of C∞
0 (0,T ) in H1/2

,0 (0,T ), see Theorem 2.2.2, it holds true that

‖g‖
[H1/2

,0 (0,T )]′,F
≤ ‖u‖

H1/2
0, (0,T ),F

and the element g is unique. The last equality of the assertion follows from the continuity

of g and again from the density of C∞
0 (0,T ) in H1/2

,0 (0,T ).
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The representation (3.37) motivates to define for u ∈ L2(0,T ) with expansion (3.27) the
function

(HT u)(t) :=
∞

∑
ℓ=0

uℓWℓ(t) =
∞

∑
ℓ=0

uℓ cos
((π

2
+ ℓπ

) t

T

)
(3.38)

for t ∈ (0,T ). By construction, it holds true that HT u ∈ L2(0,T ). Furthermore,

HT : L2(0,T )→ L2(0,T )

is bijective and norm preserving, i.e.

‖HT u‖L2(0,T ) = ‖u‖L2(0,T ) for all u ∈ L2(0,T ),

where the inverse transformation operator

H−1
T : L2(0,T )→ L2(0,T )

is given by

(H−1
T w)(t) =

∞

∑
k=0

wkVk(t) =
∞

∑
k=0

wk sin
((π

2
+ kπ

) t

T

)
, t ∈ (0,T ),

for w ∈ L2(0,T ) with expansion (3.35).

For u ∈ H1/2
0, (0,T ) with expansion (3.27), the function

(HT u)(t) =
∞

∑
ℓ=0

uℓWℓ(t) =
∞

∑
ℓ=0

uℓ cos
((π

2
+ ℓπ

) t

T

)

fulfils HT u ∈ H1/2
,0 (0,T ) because the equality

‖HT u‖
H1/2

,0 (0,T ),F
= ‖u‖

H1/2
0, (0,T ),F

holds true, i.e. HT : H1/2
0, (0,T )→ H1/2

,0 (0,T ) is norm preserving. Furthermore,

HT : H1/2
0, (0,T )→ H1/2

,0 (0,T )

is bijective. Analogously,
HT : H1

0,(0,T )→ H1
,0(0,T )

is norm preserving and bijective.

The representation (3.37) yields for u,v ∈ H1/2
0, (0,T ) and w :=HT v ∈ H1/2

,0 (0,T )

〈∂tu,HT v〉(0,T ) =
1
2

∞

∑
k=0

(π

2
+ kπ

)
ukvk = 〈u,v〉

H1/2
0, (0,T ),F
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and

〈∂tu,HT u〉(0,T ) =
1
2

∞

∑
k=0

(π

2
+ kπ

)
u2

k = ‖u‖2
H1/2

0, (0,T ),F
. (3.39)

Hence, the bilinear form b(·, ·) : H1/2
0, (0,T )×H1/2

0, (0,T )→❘,

b(u,v) := 〈∂tu,HT v〉(0,T ) = 〈u,v〉
H1/2

0, (0,T ),F
, u,v ∈ H1/2

0, (0,T ), (3.40)

is bounded, elliptic and symmetric.

Next, some properties of the operator HT : L2(0,T )→ L2(0,T ) are given.

Lemma 3.4.7. For u ∈ L2(0,T ) and w ∈ L2(0,T ), the equality

〈HT u,w〉L2(0,T ) = 〈u,H−1
T w〉L2(0,T )

is valid.

Proof. For u ∈ L2(0,T ) and w ∈ L2(0,T ), the expansions

u(t) =
∞

∑
k=0

uk sin
((π

2
+ kπ

) t

T

)
, w(t) =

∞

∑
ℓ=0

wℓ cos
((π

2
+ ℓπ

) t

T

)
,

and

(HT u)(t) =
∞

∑
k=0

uk cos
((π

2
+ kπ

) t

T

)
, (H−1

T w)(t) =
∞

∑
ℓ=0

wℓ sin
((π

2
+ ℓπ

) t

T

)

hold true with expansion coefficients uk from (3.27) and wℓ from (3.35). Hence, it follows
with the representations (3.29), (3.36) that

〈HT u,w〉L2(0,T )
(3.36)
=

T

2

∞

∑
k=0

ukwk
(3.29)
= 〈u,H−1

T w〉L2(0,T )

and therefore, the assertion.

Lemma 3.4.8. For all v ∈ L2(0,T ), the inequality

〈v,HT v〉L2(0,T ) ≥ 0 (3.41)

is valid.
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Proof. By using the representations

v(t) =
∞

∑
k=0

vk sin
((π

2
+ kπ

) t

T

)
, (HT v)(t) =

∞

∑
ℓ=0

vℓ cos
((π

2
+ ℓπ

) t

T

)
,

it follows with the continuity of the inner product 〈·, ·〉L2(0,T ) that

〈v,HT v〉L2(0,T ) =
∞

∑
k=0

∞

∑
ℓ=0

vkvℓ

T∫

0

sin
((π

2
+ kπ

) t

T

)
cos
((π

2
+ ℓπ

) t

T

)
dt

=
1
2

∞

∑
k=0

∞

∑
ℓ=0

vkvℓ

T∫

0

[
sin
(
(k+ ℓ+1)π

t

T

)
+ sin

(
(k− ℓ)π

t

T

)]
dt

=
1
2

∞

∑
k=0

∞

∑
ℓ=0

vkvℓ

[
− T

(k+ ℓ+1)π
cos
(
(k+ ℓ+1)π

t

T

)]T

0

=
T

2π

∞

∑
k=0

∞

∑
ℓ=0

vkvℓ
1

k+ ℓ+1

[
1− (−1)k+ℓ+1

]
,

where the second integral is ignored due to symmetry. When splitting k and ℓ into odd and
even indices, i.e. k = 2i,2i+1, ℓ= 2 j,2 j+1, this gives

〈v,HT v〉L2(0,T ) =
T

π

∞

∑
i=0

∞

∑
j=0

[
v2iv2 j

2i+2 j+1
+

v2i+1v2 j+1

2i+2 j+3

]

=
T

π

∞

∑
i=0

∞

∑
j=0


v2iv2 j

1∫

0

x2i+2 jdx+ v2i+1v2 j+1

1∫

0

x2i+2 j+2dx




= lim
N→∞





T

π

N

∑
i=0

N

∑
j=0


v2iv2 j

1∫

0

x2i+2 jdx+ v2i+1v2 j+1

1∫

0

x2i+2 j+2dx








=
T

π
lim

N→∞




1∫

0

(
N

∑
i=0

v2ix
2i

)2

dx+

1∫

0

(
N

∑
i=0

v2i+1x2i+1

)2

dx


 ≥ 0

and hence, the assertion follows.

Remark 3.4.9. The transformation HT is the counterpart on finite intervals (0,T ) of the
Hilbert transform

H : L2(❘)→ L2(❘)

defined by

Hv(t) :=
1
π

lim
ε→0




t−ε∫

−∞

v(s)

t − s
ds+

∞∫

t+ε

v(s)

t − s
ds


 , t ∈❘,
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for a function v ∈ L2(❘), see [92,122]. The Hilbert transform H has similar properties as
the transformation HT , see [145].

3.4.3 Variational Formulation for ∂tu = f

To get a first impression of the transformation HT , the simple initial value problem

∂tu(t) = f (t) for t ∈ (0,T ), u(0) = 0, (3.42)

is investigated. The corresponding variational formulation is to find u ∈ H1/2
0, (0,T ) such

that
b(u,v) = 〈 f ,HT v〉(0,T ) (3.43)

for all v ∈ H1/2
0, (0,T ), where f ∈ [H1/2

,0 (0,T )]′ is a given right-hand side and the bilinear
form

b(·, ·) : H1/2
0, (0,T )×H1/2

0, (0,T )→❘, b(u,v) = 〈∂tu,HT v〉(0,T ),

is bounded, elliptic and symmetric, see (3.40). Hence, existence and uniqueness of a

solution u ∈ H1/2
0, (0,T ) for the variational formulation (3.43) follow by the Lax-Milgram

Theorem, since the right-hand side f ∈ [H1/2
,0 (0,T )]′ satisfies

∣∣〈 f ,HT v〉(0,T )

∣∣≤‖ f‖
[H1/2

,0 (0,T )]′,F
‖HT v‖

H1/2
,0 (0,T ),F

= ‖ f‖
[H1/2

,0 (0,T )]′,F
‖v‖

H1/2
0, (0,T ),F

(3.44)

for all v ∈ H1/2
0, (0,T ).

With the notations of Section 2.6, a conforming finite element discretisation of the varia-
tional formulation (3.43) is to find

uht ∈ S1
ht ,0,(0,T ) = span{ϕk}Nt

k=1 ⊂ H1/2
0, (0,T )

such that
〈∂tuht ,HT vht 〉L2(0,T ) = 〈 f ,HT vht 〉(0,T ) (3.45)

for all vht ∈ S1
ht ,0,(0,T ). Using standard arguments, e.g., [51, 141], there follow the unique

solvability of (3.45) and the a priori error estimates

‖u−uht‖H1/2
0, (0,T ),F

≤ chs−1/2
t ‖u‖Hs(0,T ) for s ∈ (1/2,2],

‖u−uht‖L2(0,T ) ≤ chs
t‖u‖Hs(0,T ) for s ∈ (1/2,2]

and
‖u−uht‖H1

0,(0,T ) ≤ chs−1
t ‖u‖Hs(0,T ) for s ∈ (1,2]
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with a constant c > 0, when assuming u ∈ H1/2
0, (0,T )∩Hs(0,T ). Note that the error es-

timate in the energy norm ‖u− uht‖H1/2
0, (0,T ),F

is a consequence of Céa’s Lemma and the

approximation property of S1
ht ,0,(0,T ). The approximation property

inf
vht∈S1

ht ,0,(0,T )
‖v− vht‖H1/2

0, (0,T ),F
≤ c ·h3/2

t ‖v‖H2(0,T )

for v ∈ H1
0,(0,T ) ∩ H2(0,T ) is derived by an interpolation argument, see (2.32). For

‖u− uht‖L2(0,T ), the Aubin-Nitsche trick is used, and for ‖u− uht‖H1
0,(0,T ), an inverse in-

equality is required, i.e. for this situation a globally quasi-uniform mesh is needed. The
Galerkin-Bubnov finite element formulation (3.45) is equivalent to the system of linear
equations

Kht u = f

with a symmetric and positive definite stiffness matrix Kht ∈❘Nt×Nt , defined by

Kht [ j,k] = 〈∂tϕk,HT ϕ j〉L2(0,T ) for k, j = 1, . . . ,Nt ,

and the right-hand side f ∈❘Nt , given by

f [ j] = 〈 f ,HT ϕ j〉(0,T ) for j = 1, . . . ,Nt ,

where high-order integration rules are used for the calculation. The evaluation of the trans-
formed basis functions HT ϕk can be done by using the definition (3.38). Although the
piecewise linear basis functions ϕk have local support, the transformed basis functions
HT ϕk are global, see Figure 3.1 and Figure 3.2, and therefore, the stiffness matrix Kht is
dense.

As a numerical example for (3.45), the solution

u(t) = sin

(
9π

4
t

)
for t ∈ (0,2) = (0,T )

of (3.42) with the right-hand side

f (t) =
9π

4
cos

(
9π

4
t

)
for t ∈ (0,2)

is considered. For the discretisation, a sequence of finite element spaces S1
ht ,0,(0,2) of

uniform mesh size ht = 2/Nt , and Nt = 2 j+1, j = 0, . . . ,10, is introduced. Since the so-
lution u is smooth, quadratic convergence in L2(0,2) and linear convergence in H1(0,2)
are expected. This behaviour is confirmed by the numerical results as given in Table 3.9.
In addition, the minimal and maximal eigenvalues of the symmetric stiffness matrix Kht

as well as the resulting spectral condition number of Kht , which behave as expected for a
first-order differential operator, are given in Table 3.9.
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Figure 3.1: Transformed basis functions HT ϕk, k = 1, . . . ,Nt , Nt = 4.

Nt ‖u−uht‖L2(0,2) eoc ‖∂tu−∂tuht‖L2(0,2) eoc λmin(Kht ) λmax(Kht ) κ2(Kht )

2 1.005e+00 - 7.059e+00 - 0.416617 0.960210 2.3
4 8.612e-01 0.2 5.880e+00 0.3 0.284445 1.116917 3.9
8 1.692e-01 2.3 3.660e+00 0.7 0.168755 1.128029 6.7

16 3.247e-02 2.4 1.826e+00 1.0 0.091472 1.132714 12.4
32 7.486e-03 2.1 9.051e-01 1.0 0.047463 1.133771 23.9
64 1.832e-03 2.0 4.512e-01 1.0 0.024147 1.134042 47.0

128 4.555e-04 2.0 2.254e-01 1.0 0.012174 1.134110 93.2
256 1.137e-04 2.0 1.127e-01 1.0 0.006112 1.134127 185.6
512 2.842e-05 2.0 5.634e-02 1.0 0.003062 1.134131 370.4

1024 7.103e-06 2.0 2.817e-02 1.0 0.001532 1.134133 740.1
2048 1.776e-06 2.0 1.409e-02 1.0 0.000767 1.134134 1479.4

Table 3.9: Numerical results for the Galerkin-Bubnov formulation (3.45).
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Figure 3.2: Transformed basis functions HT ϕk, k = 1, . . . ,Nt , Nt = 8.
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3.4.4 Variational Formulation for ∂tu+µu = f

Instead of the initial value problem (3.42), consider for µ > 0 the first-order linear equa-
tion

∂tu(t)+µu(t) = f (t) for t ∈ (0,T ), u(0) = 0, (3.46)

and the related variational formulation to find u ∈ H1/2
0, (0,T ) such that

〈∂tu,HT v〉(0,T )+µ〈u,HT v〉L2(0,T ) = 〈 f ,HT v〉(0,T ) (3.47)

for all v ∈ H1/2
0, (0,T ), where f ∈ [H1/2

,0 (0,T )]′ is given. The first-order ordinary differen-
tial equation (3.46) plays a central role in the analysis of the heat equation, see Subsec-
tion 3.4.5, where µ > 0 corresponds to a Dirichlet eigenvalue of the Laplace operator, see
(2.4).

Theorem 3.4.10. Let µ > 0 and the right-hand side f ∈ [H1/2
,0 (0,T )]′ be given. Then, there

exists a unique solution u ∈ H1/2
0, (0,T ) of the variational formulation (3.47), satisfying the

stability estimate
‖u‖

H1/2
0, (0,T ),F

≤ ‖ f‖
[H1/2

,0 (0,T )]′,F
. (3.48)

Proof. When combining (3.39) with Lemma 3.4.5 and (3.41), this gives
∣∣∣〈∂tu,HT v〉(0,T )+µ〈u,HT v〉L2(0,T )

∣∣∣≤
(

1+
2µT

π

)
‖u‖

H1/2
0, (0,T ),F

‖v‖
H1/2

0, (0,T ),F
(3.49)

and

〈∂tv,HT v〉(0,T )+µ〈v,HT v〉L2(0,T ) ≥ 〈∂tv,HT v〉(0,T ) = ‖v‖2
H1/2

0, (0,T ),F
(3.50)

for all u,v ∈ H1/2
0, (0,T ), i.e. the bilinear form of the variational problem (3.47) is bounded

and elliptic, implying unique solvability of (3.47) by the Lax-Milgram Theorem, including
the stability estimate

‖u‖
H1/2

0, (0,T ),F
≤ ‖ f‖

[H1/2
,0 (0,T )]′,F

,

since the right-hand side f satisfies (3.44).

A first regularity result is given in the next lemma.

Lemma 3.4.11. Let f ∈ L2(0,T ) be given. Then, the unique solution u ∈ H1/2
0, (0,T ) of

(3.47) is given by

u(t) =

t∫

0

eµ(s−t) f (s)ds (3.51)

for t ∈ [0,T ] and fulfils
‖∂tu‖L2(0,T ) ≤ ‖ f‖L2(0,T ).
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Proof. By inserting
∫ t

0 eµ(s−t) f (s)ds into the variational formulation (3.47), it follows that

the unique solution u ∈ H1/2
0, (0,T ) is represented by (3.51) and that u ∈ H1

0,(0,T ). Fur-
thermore, the ordinary differential equation (3.46) holds true for almost all t ∈ (0,T ).
Multiplication of (3.46) by ∂tu ∈ L2(0,T ) and integration over (0,T ) yield

〈 f ,∂tu〉L2(0,T ) = 〈∂tu,∂tu〉L2(0,T )+µ〈u,∂tu〉L2(0,T ) = ‖∂tu‖2
L2(0,T )+

µ

2
u(T )2.

The Cauchy-Schwarz inequality gives the assertion.

For the analysis of the heat equation, a µ explicit estimate for the solution u in L2(0,T ) is
required.

Lemma 3.4.12. Let u ∈ H1/2
0, (0,T ) be the unique solution of the variational formulation

(3.47), where f ∈ [H1/2
,0 (0,T )]′ is given. Then, the inequality

‖u‖2
L2(0,T ) ≤

T

2

∞

∑
k=0

f 2
k

µ2 + 1
T 2 (

π
2 + kπ)2

(3.52)

is valid, where

fk :=
2
T
〈 f ,Wk〉(0,T ), Wk(t) = cos

((π

2
+ kπ

) t

T

)
.

Proof. First, note that the right-hand side in (3.52) is finite due to

T

2

∞

∑
k=0

f 2
k

µ2 + 1
T 2 (

π
2 + kπ)2

≤ 2T

π
‖ f‖2

[H1/2
,0 (0,T )]′,F

< ∞,

see Lemma 3.4.4.

Let ( fn)n∈◆ ⊂ L2(0,T ) be a sequence with lim
n→∞

‖ f − fn‖[H1/2
,0 (0,T )]′,F

= 0, see (2.3). Let

un ∈ H1/2
0, (0,T ) be the weak solution of the variational formulation (3.47) with right-hand

side fn. Hence, u− un ∈ H1/2
0, (0,T ) is the unique solution of (3.47) with right-hand side

f − fn ∈ [H1/2
,0 (0,T )]′. Thus, the stability estimate (3.48) yields

‖u−un‖H1/2
0, (0,T ),F

≤ ‖ f − fn‖[H1/2
,0 (0,T )]′,F

(3.53)

and therefore, un → u in H1/2
0, (0,T ) as n → ∞. Write for fn ∈ L2(0,T ) the expansion (3.35)

as

fn(t) =
∞

∑
k=0

fn,k cos
((π

2
+ kπ

) t

T

)
, fn,k =

2
T

T∫

0

fn(t)cos
((π

2
+ kπ

) t

T

)
dt.
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First, with λk =
1

T 2

(
π
2 +kπ

)2
, the Cauchy-Schwarz inequality and Lemma 3.4.4, it follows

that∣∣∣∣∣
T

2

∞

∑
k=0

f 2
k

µ2 +λk
− T

2

∞

∑
k=0

f 2
n,k

µ2 +λk

∣∣∣∣∣≤
T

2

∞

∑
k=0

1
λk

∣∣ f 2
k − f 2

n,k

∣∣
︸ ︷︷ ︸

=| fk− fn,k|| fk+ fn,k|

≤
(

T

2

∞

∑
k=0

| fk − fn,k|2√
λk

)1/2(
T

2

∞

∑
k=0

| fk + fn,k|2

λ
3/2
k

)1/2

≤ ‖ f − fn‖[H1/2
,0 (0,T )]′,F

2T

π
‖ f + fn‖[H1/2

,0 (0,T )]′,F
→ 0

as n → ∞. It other words, the equality

lim
n→∞

T

2

∞

∑
k=0

f 2
n,k

µ2 +λk
=

T

2

∞

∑
k=0

f 2
k

µ2 +λk
(3.54)

holds true.

Second, because of fn ∈ L2(0,T ), the representation (3.51)

un(t) =

t∫

0

eµ(s−t) fn(s)ds =
∞

∑
k=0

fn,k · e−µt

t∫

0

eµs cos(
√

λks)ds

=
∞

∑
k=0

fn,k

µ2 +λk

[√
λk sin(

√
λkt)+µ cos(

√
λkt)−µe−µt

]

holds true for t ∈ [0,T ], where the continuity of the inner product 〈·, ·〉L2(0,t) for fixed
t ∈ [0,T ] is used. When computing all integrals, where again the continuity of the inner
product 〈·, ·〉L2(0,T ) is used, one obtains

‖un‖2
L2(0,T ) =

T

2

∞

∑
k=0

f 2
n,k

µ2 +λk
− 1

2
µ
[
1+ e−2µT

]( ∞

∑
k=0

fn,k

µ2 +λk

)2

≤ T

2

∞

∑
k=0

f 2
n,k

µ2 +λk
.

Hence, the assertion follows as n → ∞ with the help of (3.53) and (3.54).

Remark 3.4.13. From (3.52), it follows immediately the estimate

‖u‖2
L2(0,T ) ≤

T 3

2

∞

∑
k=0

(π

2
+ kπ

)−2
f 2
k = ‖ f‖2

[H1
,0(0,T )]′ ,

see Lemma 3.4.4 for the representation of the norm ‖·‖[H1
,0(0,T )]′ . Moreover, when the right-

hand side satisfies f ∈ L2(0,T ), the estimate (3.52) gives

‖u‖2
L2(0,T ) ≤

T

2µ2

∞

∑
k=0

f 2
k =

1
µ2 ‖ f‖2

L2(0,T ), i.e. µ ‖u‖L2(0,T ) ≤ ‖ f‖L2(0,T ).
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With the notations of Section 2.6, the Galerkin-Bubnov discretisation of (3.47) is to find
uht ∈ S1

ht ,0,(0,T ) such that

〈∂tuht ,HT vht 〉L2(0,T )+µ〈uht ,HT vht 〉L2(0,T ) = 〈 f ,HT vht 〉(0,T ) (3.55)

for all vht ∈ S1
ht ,0,(0,T ). As for the initial value problem (3.42), the unique solvability of

(3.55) follows by Céa’s Lemma, including with (3.44) the stability estimate

‖uht‖H1/2
0, (0,T ),F

≤ ‖ f‖
[H1/2

,0 (0,T )]′,F

and with the help of (3.50), (3.49), an error estimate in the energy norm

‖u−uht‖H1/2
0, (0,T ),F

≤ c ·
(

1+
2µT

π

)
hs−1/2

t ‖u‖Hs(0,T )

for s ∈ (1/2,2] and u ∈ H1/2
0, (0,T )∩Hs(0,T ) with a constant c > 0 independent of µ and

ht . Hence, in general, a priori error estimates depend on µ and require a sufficiently small
mesh size ht to ensure convergence for large µ. In the following theorem, a refined error
estimate in the energy norm ‖·‖

H1/2
0, (0,T ),F

and an error estimate in ‖·‖L2(0,T ) are given.

Theorem 3.4.14. Let u ∈ H1/2
0, (0,T ) and uht ∈ S1

ht ,0,(0,T ) be the unique solutions of the

variational formulations (3.47) and (3.55). If u ∈ H1/2
0, (0,T )∩H2(0,T ), then the error

estimates
‖u−uht‖H1/2

0, (0,T ),F
≤C1/2(ht , µ) ·h3/2

t ‖∂tu‖H1(0,T )

and
‖u−uht‖L2(0,T ) ≤C0(ht , µ) · h2

t ‖∂tu‖H1(0,T ) (3.56)

hold true with

C1/2(ht , µ) :=
1√

π 4
√

18
+

1√
24

(
4
√

8√
π
+

4
√

π2 +2(1+2µ2)T 2

2 4
√

6
µht

)
µht

and

C0(ht , µ) :=C1/2(ht , µ) ·
(

4
√

8√
π
+

4
√

π2 +2(1+2µ2)T 2

2 4
√

6
µht

)
.

Proof. Using (3.50), the Galerkin orthogonality of the variational formulations (3.47),
(3.55) and the norm invariance of HT , it holds true that

‖u−uht‖2
H1/2

0, (0,T ),F
≤ 〈∂t(u−uht ),HT (u−uht )〉(0,T )+µ〈u−uht ,HT (u−uht )〉L2(0,T )

= 〈∂t(u−uht ),HT (u− Iht u)〉(0,T )+µ〈u−uht ,HT (u− Iht u)〉L2(0,T )

≤ ‖u−uht‖H1/2
0, (0,T ),F

‖u− Iht u‖H1/2
0, (0,T ),F

+µ ‖u−uht‖L2(0,T )‖u− Iht u‖L2(0,T ).

(3.57)



3.4 Space-Time Variational Formulation with a Type of Hilbert Transform 93

To estimate the error in L2(0,T ), consider the adjoint problem

−∂tw(t)+µw(t) = u(t)−uht (t) for t ∈ (0,T ), w(T ) = 0, (3.58)

i.e. the function w ∈ H1/2
,0 (0,T ) is the unique solution of the variational problem

−〈∂tw,v〉(0,T )+µ〈w,v〉L2(0,T ) = 〈u−uht ,v〉L2(0,T ) (3.59)

for all v ∈ H1/2
0, (0,T ). Analogous to Lemma 3.4.11, the regularity result

‖∂tw‖L2(0,T ) ≤ ‖u−uht‖L2(0,T ) (3.60)

holds true and in addition, ∂tw ∈ H1(0,T ). Hence, from the differential equation in (3.58),
one finds

∂ttw(t) = µ∂tw(t)−∂t [u(t)−uht (t)] for t ∈ (0,T ),

and therefore, with (3.60) and the Poincaré inequality of Lemma 3.4.5, the estimate

‖∂tw‖2
H1(0,T ) = ‖∂tw‖2

L2(0,T )+‖∂ttw‖2
L2(0,T )

≤ (1+2µ2)‖∂tw‖2
L2(0,T )+2‖∂t(u−uht )‖2

L2(0,T )

≤ (1+2µ2)‖u−uht‖2
L2(0,T )+2‖∂t(u−uht )‖2

L2(0,T )

≤ (1+2µ2)
4T 2

π2 ‖∂t(u−uht )‖2
L2(0,T )+2‖∂t(u−uht )‖2

L2(0,T )

=

(
2+

4T 2

π2 +
8T 2µ2

π2

)
‖u−uht‖2

H1
0,(0,T ) (3.61)

follows. Since ∂tw ∈ H1(0,T ), an interpolation argument for the K-Method of Interpola-
tion between (3.60) and (3.61) yields the estimate

‖∂tw‖K1/2(H1(0,T );L2(0,T )) ≤
4

√
2+

4T 2

π2 +
8T 2µ2

π2 ‖u−uht‖K1/2(H
1
0,(0,T );L2(0,T ))

=

√
π

2
4

√
2+

4T 2

π2 +
8T 2µ2

π2 ‖u−uht‖H1/2
0, (0,T ),F

(3.62)

with the help of the norm equivalence (3.33).

For v = u− uht ∈ H1/2
0, (0,T ) in (3.59) and with the Galerkin orthogonality for u− uht , it

follows that

‖u−uht‖2
L2(0,T ) = 〈u−uht ,u−uht 〉L2(0,T )

=−〈∂tw,u−uht 〉(0,T )+µ〈w,u−uht 〉L2(0,T )

= 〈∂t(u−uht ),w〉(0,T )+µ〈u−uht ,w〉L2(0,T )

= 〈∂t(u−uht ),w− Iht w〉(0,T )+µ〈u−uht ,w− Iht w〉L2(0,T )

≤ ‖u−uht‖H1/2
0, (0,T ),F

‖w− Iht w‖H1/2
,0 (0,T ),F

+µ‖u−uht‖L2(0,T )‖w− Iht w‖L2(0,T ). (3.63)
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For the first summand in (3.63), it holds true that

‖w− Iht w‖H1/2
,0 (0,T ),F

=

√
2
π
‖w− Iht w‖K1/2(H

1
,0(0,T );L2(0,T ))

≤
√

2
π

4
√

2h1/2
t ‖∂tw‖L2(0,T )

≤
4
√

8√
π

h1/2
t ‖u−uht‖L2(0,T ),

where the first equality follows from a norm equivalence analogous to (3.33), the last in-
equality follows from (3.60), and the first estimate follows from an interpolation argument
for the K-Method of Interpolation between

‖w− Iht w‖L2(0,T ) ≤
1√
8

ht ‖∂t(w− Iht w)‖L2(0,T ) ≤
1√
2

ht ‖∂tw‖L2(0,T ) =
1√
2

ht ‖w‖H1
,0(0,T )

and

‖w− Iht w‖H1
,0(0,T ) = ‖∂t(w− Iht w)‖L2(0,T ) ≤ 2‖∂tw‖L2(0,T ) = 2‖w‖H1

,0(0,T )

with the stability (2.28) and an error estimate analogous to (2.29) since w ∈ H1
,0(0,T ).

For the second summand in (3.63), it follows with (3.62) that

‖w− Iht w‖L2(0,T ) ≤
1

4
√

48
h3/2

t ‖∂tw‖K1/2(H1(0,T );L2(0,T ))

≤ 1
4
√

48

√
π

2
4

√
2+

4T 2

π2 +
8T 2µ2

π2 h3/2
t ‖u−uht‖H1/2

0, (0,T ),F

=
4
√

π2 +2(1+2µ2)T 2

2 4
√

6
h3/2

t ‖u−uht‖H1/2
0, (0,T ),F

,

where the first estimate follows from an interpolation argument for the K-Method of Inter-
polation between

‖w− Iht w‖L2(0,T ) ≤
1√
24

h2
t ‖∂ttw‖L2(0,T ) ≤

1√
24

h2
t ‖∂tw‖H1(0,T )

and

‖w− Iht w‖L2(0,T ) ≤
1√
8

ht ‖∂t(w− Iht w)‖L2(0,T ) ≤
1√
2

ht ‖∂tw‖L2(0,T )

with the stability (2.28) and an error estimate analogous to (2.29) since ∂tw ∈ H1(0,T ).
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Therefore, the inequality (3.63) yields

‖u−uht‖2
L2(0,T ) ≤

4
√

8√
π

h1/2
t ‖u−uht‖H1/2

0, (0,T ),F
‖u−uht‖L2(0,T )

+µ
4
√

π2 +2(1+2µ2)T 2

2 4
√

6
h3/2

t ‖u−uht‖L2(0,T )‖u−uht‖H1/2
0, (0,T ),F

,

i.e.

‖u−uht‖L2(0,T ) ≤
(

4
√

8√
π
+

4
√

π2 +2(1+2µ2)T 2

2 4
√

6
µht

)
h1/2

t ‖u−uht‖H1/2
0, (0,T ),F

. (3.64)

When inserting this into (3.57), together with the estimate

‖u− Iht u‖H1/2
0, (0,T ),F

=

√
2
π
‖u− Iht u‖K1/2(H

1
0,(0,T );L2(0,T )) ≤

√
2
π

1
4
√

72
h3/2

t ‖∂tu‖H1(0,T )

derived with the help of (3.33) via an interpolation argument for the K-Method of Interpo-
lation between (2.30) and (2.31), and again (2.31), this gives

‖u−uht‖2
H1/2

0, (0,T ),F
≤ 1√

π 4
√

18
h3/2

t ‖u−uht‖H1/2
0, (0,T ),F

‖∂tu‖H1(0,T )

+
1√
24

µ

(
4
√

8√
π
+

4
√

π2 +2(1+2µ2)T 2

2 4
√

6
µht

)
h5/2

t ‖u−uht‖H1/2
0, (0,T ),F

‖∂tu‖H1(0,T ),

i.e.

‖u−uht‖H1/2
0, (0,T ),F

≤
[

1√
π 4
√

18
+

1√
24

(
4
√

8√
π
+

4
√

π2 +2(1+2µ2)T 2

2 4
√

6
µht

)
µht

]
h3/2

t ‖∂tu‖H1(0,T )

and thus, the first assertion is proven.

The L2(0,T ) error estimate follows with the first assertion from (3.64).

To illustrate the error estimate (3.56), consider the given right-hand side f as

f (t) = 1 for t ∈ (0,2) = (0,T ),

which results in the solution

u(t) =
1
µ

[
1− e−µt

]
, t ∈ (0,2),
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satisfying

‖∂ttu‖L2(0,2) ≤
√

µ

2
.

As at the end of Subsection 3.4.3, a sequence of finite element spaces S1
ht ,0,(0,2) of uni-

form mesh size ht = 2/Nt , and Nt = 2 j+1, j = 0, . . . ,10, is introduced. Depending on µ ,
quadratic convergence is expected, but requiring a sufficiently small mesh size ht = 2/Nt

for large µ . This well-known behaviour can be seen in Figure 3.3, Figure 3.4, Fig-
ure 3.5 and Figure 3.6, where the computed L2(0,2) error is plotted versus the error bound
(3.56).
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Figure 3.3: L2(0,T ) error and error bound
(3.56) for (3.47) for µ = 1.
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Figure 3.4: L2(0,T ) error and error bound
(3.56) for (3.47) for µ = 10.
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Figure 3.5: L2(0,T ) error and error bound
(3.56) for (3.47) for µ = 100.
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Figure 3.6: L2(0,T ) error and error bound
(3.56) for (3.47) for µ = 1000.

Remark 3.4.15. The Galerkin-Petrov finite element formulation (3.23) of Section 3.3 is
uniquely solvable but unstable for any mesh size ht and any µ > 0, whereas the Galerkin-
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Bubnov finite element formulation (3.55) is uniquely solvable and stable independently of
the mesh size ht and µ > 0.

3.4.5 Variational Formulation for the Heat Equation via Fourier Series

In this subsection, the ideas of Subsection 3.4.4 are transferred to the homogeneous Dirich-
let problem of the heat equation

∂tu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),

u(x, t) = 0 for (x, t) ∈ Σ = Γ× [0,T ],

u(x,0) = 0 for x ∈ Ω,





(3.65)

where Ω ⊂ ❘d , d = 1,2,3, is a bounded Lipschitz domain with boundary Γ = ∂Ω and
T > 0 is a given terminal time. To write down the variational formulation (3.21) via a

Fourier series approach, characterisations of the spaces H1,1/2
0;0, (Q) and H1,1/2

0; ,0 (Q) are given.
Therefore, consider for i ∈◆ the eigenfunctions φi and eigenvalues µi from (2.4), i.e.

−∆xφi = µφi in Ω, φi = 0 on Γ, ‖φi‖L2(Ω) = 1,

which form an orthonormal basis in L2(Ω) and an orthogonal basis in H1
0 (Ω). Since the

relation
L2(Q)≃ L2(Ω)⊗̂L2(0,T ) = L2(Ω)⊗L2(0,T )

‖·‖L2(Q)

holds true for tensor-products, see Section 2.4, the functions

Q ∋ (x, t) 7→ φi(x) ·Vk(t) ∈❘, i ∈◆, k ∈◆0,

form an orthogonal basis of L2(Q) with respect to the inner product 〈·, ·〉L2(Q), see [128,
Proposition 2, page 50], where the eigenfunctions Vk are given in (3.26). Hence, as an
extension of the expansion (3.27), the representation

u(x, t) =
∞

∑
i=1

∞

∑
k=0

ui,kVk(t)φi(x) =
∞

∑
i=1

Ui(t)φi(x), Ui(t) =
∞

∑
k=0

ui,kVk(t), (3.66)

holds true for a function u ∈ L2(Q) with the coefficients

ui,k =
2
T

T∫

0

∫

Ω

u(x, t)Vk(t)φi(x)dxdt =
2
T

T∫

0

sin
((π

2
+ kπ

) t

T

)∫

Ω

u(x, t)φi(x)dxdt,

i.e. it holds true that
∥∥∥∥∥u−

M

∑
i=1

N

∑
k=0

ui,kVk ·φi

∥∥∥∥∥
L2(Q)

→ 0 as M → ∞, N → ∞
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and ∥∥∥∥∥u−
M

∑
i=1

Ui ·φi

∥∥∥∥∥
L2(Q)

→ 0 as M → ∞.

For the inner product, the representation

〈u, û〉L2(Q) =
∞

∑
i=1

〈
Ui,Ûi

〉
L2(0,T ) =

T

2

∞

∑
i=1

∞

∑
k=0

ui,k · ûi,k

is valid for u, û ∈ L2(Q) with the expansion (3.66), and if, in addition, u, û ∈ H1,1
0; (Q), it

follows that

〈u, û〉
H1,1

0; (Q)
=

∞

∑
i=1

[〈
∂tUi,∂tÛi

〉
L2(0,T )+µi

〈
Ui,Ûi

〉
L2(0,T )

]

=
T

2

∞

∑
i=1

∞

∑
k=0

[
1

T 2

(π

2
+ kπ

)2
+µi

]
ui,k · ûi,k

for the inner product (2.13). Correspondingly, the functions

Q ∋ (x, t) 7→ φi(x) ·Wk(t) ∈❘, i ∈◆, k ∈◆0,

form an orthogonal basis of L2(Q) with respect to the inner product 〈·, ·〉L2(Q), where the
eigenfunctions Wk are given in (3.34). Hence, as an extension of the expansion (3.35), the
representation

z(x, t) =
∞

∑
i=1

∞

∑
k=0

zi,kWk(t)φi(x) =
∞

∑
i=1

Zi(t)φi(x), Zi(t) =
∞

∑
k=0

zi,kWk(t), (3.67)

holds true for z ∈ L2(Q) with the coefficients

zi,k =
2
T

T∫

0

∫

Ω

z(x, t)Wk(t)φi(x)dxdt =
2
T

T∫

0

cos
((π

2
+ kπ

) t

T

)∫

Ω

z(x, t)φi(x)dxdt,

i.e. it holds true that
∥∥∥∥∥z−

M

∑
i=1

N

∑
k=0

zi,kWk ·φi

∥∥∥∥∥
L2(Q)

→ 0 as M → ∞, N → ∞

and ∥∥∥∥∥z−
M

∑
i=1

Zi ·φi

∥∥∥∥∥
L2(Q)

→ 0 as M → ∞.
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Analogous to Subsection 3.4.1, the representations

H1/2
0, (0,T ;L2(Ω)) =

{
u ∈ L2(Q) : u(x, t) =

∞

∑
i=1

∞

∑
k=0

ui,kVk(t)φi(x),

1
2

∞

∑
i=1

∞

∑
k=0

(π

2
+ kπ

)
|ui,k|2 < ∞

}

with the inner product

〈u, û〉
H1/2

0, (0,T ;L2(Ω)),F
:=

1
2

∞

∑
i=1

∞

∑
k=0

(π

2
+ kπ

)
ui,k · ûi,k

and

H1/2
,0 (0,T ;L2(Ω)) =

{
z ∈ L2(Q) : z(x, t) =

∞

∑
i=1

∞

∑
k=0

zi,kWk(t)φi(x),

1
2

∞

∑
i=1

∞

∑
k=0

(π

2
+ kπ

)
|zi,k|2 < ∞

}

with the inner product

〈z, ẑ〉
H1/2

,0 (0,T ;L2(Ω)),F
:=

1
2

∞

∑
i=1

∞

∑
k=0

(π

2
+ kπ

)
zi,k · ẑi,k

hold true, where the induced norms ‖·‖
H1/2

0, (0,T ;L2(Ω)),F
and ‖·‖

H1/2
,0 (0,T ;L2(Ω)),F

are equiva-

lent to the norms ‖·‖
H1/2

0, (0,T ;L2(Ω))
and ‖·‖

H1/2
,0 (0,T ;L2(Ω))

given in (2.16) and (2.17). So, the

anisotropic space H1,1/2
0;0, (Q) = H1/2

0, (0,T ;L2(Ω))∩ L2(0,T ;H1
0 (Ω)) is endowed with the

inner product

〈u, û〉
H1,1/2

0;0, (Q),F
:=

T

2

∞

∑
i=1

∞

∑
k=0

[
1
T

(π

2
+ kπ

)
+µi

]
ui,k · ûi,k,

and analogously, H1,1/2
0; ,0 (Q) = H1/2

,0 (0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)) is endowed with

〈z, ẑ〉
H1,1/2

0; ,0 (Q),F
:=

T

2

∞

∑
i=1

∞

∑
k=0

[
1
T

(π

2
+ kπ

)
+µi

]
zi,k · ẑi,k.

The transformation operator HT , given in (3.38), acts only with respect to the time variable
t, i.e. for u ∈ L2(Q) with expansion (3.66), one defines

(HT u)(x, t) :=
∞

∑
i=1

∞

∑
k=0

ui,kWk(t)φi(x) =
∞

∑
i=1

∞

∑
k=0

ui,k cos
((π

2
+ kπ

) t

T

)
φi(x) (3.68)
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for (x, t) ∈ Q. By construction, it holds true that HT u ∈ L2(Q). Furthermore,

HT : L2(Q)→ L2(Q)

is bijective and norm preserving, i.e.

‖HT u‖L2(Q) = ‖u‖L2(Q) for all u ∈ L2(Q),

where the inverse transformation operator

H−1
T : L2(Q)→ L2(Q)

is given by

(H−1
T z)(x, t) =

∞

∑
i=1

∞

∑
k=0

zi,kVk(t)φi(x) =
∞

∑
i=1

∞

∑
k=0

zi,k sin
((π

2
+ kπ

) t

T

)
φi(x), (x, t) ∈ Q,

for z ∈ L2(Q) with the expansion (3.67). Analogously, the maps

HT : H1/2
0, (0,T ;L2(Ω))→ H1/2

,0 (0,T ;L2(Ω))

and
HT : H1,1/2

0;0, (Q)→ H1,1/2
0; ,0 (Q)

are norm preserving and bijective.

Finally, representations of the dual spaces [H1,1/2
0; ,0 (Q)]′ and [H1/2

,0 (0,T ;L2(Ω))]′ are given.

In Section 2.5 the dual space [H1,1/2
0; ,0 (Q)]′ is characterised as a completion of L2(Q) with

respect to the Hilbertian norm ‖ · ‖
[H1,1/2

0; ,0 (Q)]′
, where ‖·‖

H1,1/2
0; ,0 (Q)

is the norm in H1,1/2
0; ,0 (Q),

see (2.20). A to ‖ · ‖
[H1,1/2

0; ,0 (Q)]′
equivalent Hilbertian norm is given by

‖ f‖
[H1,1/2

0; ,0 (Q)]′,F
:= sup

06=z∈H1,1/2
0; ,0 (Q)

|〈 f ,z〉Q|
‖z‖

H1,1/2
0; ,0 (Q),F

for f ∈ [H1,1/2
0; ,0 (Q)]′, where 〈·, ·〉Q denotes again the duality pairing as extension of the

inner product in L2(Q). Moreover, a Hilbertian norm in [H1/2
,0 (0,T ;L2(Ω))]′ is

‖ f‖
[H1/2

,0 (0,T ;L2(Ω))]′,F
:= sup

06=z∈H1/2
,0 (0,T ;L2(Ω))

|〈 f ,z〉Q|
‖z‖

H1/2
,0 (0,T ;L2(Ω)),F

for f ∈ [H1/2
,0 (0,T ;L2(Ω))]′.
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Lemma 3.4.16. For f ∈ [H1,1/2
0; ,0 (Q)]′, the expansion

‖ f‖2
[H1,1/2

0; ,0 (Q)]′,F
=

T

2

∞

∑
i=1

∞

∑
k=0

1
1
T

(
π
2 + kπ

)
+µi

f 2
i,k

is valid, where fi,k := 2
T 〈 f ,Wkφi〉Q with Wk(t) = cos

((
π
2 + kπ

)
t
T

)
.

Analogously, for f ∈ [H1/2
,0 (0,T ;L2(Ω))]′, the equality

‖ f‖2
[H1/2

,0 (0,T ;L2(Ω))]′,F
=

1
2

∞

∑
i=1

∞

∑
k=0

(π

2
+ kπ

)−1
f 2
i,k

holds true.

Proof. For z ∈ H1,1/2
0; ,0 (Q) with (3.67), the representations

z(x, t) =
∞

∑
i=1

∞

∑
k=0

zi,k cos
((π

2
+ kπ

) t

T

)
φi(x) =

∞

∑
i=1

∞

∑
k=0

zi,kWk(t)φi(x),

‖z‖2
H1,1/2

0; ,0 (Q),F
=

T

2

∞

∑
i=1

∞

∑
k=0

(
1
T

(π

2
+ kπ

)
+µi

)
z2

i,k

and therefore, with the continuity of f ,

〈 f ,z〉Q =
∞

∑
i=1

∞

∑
k=0

zi,k〈 f ,Wkφi〉Q =
T

2

∞

∑
i=1

∞

∑
k=0

zi,k · fi,k

hold true. Set zN
i,k :=

(
1
T

(
π
2 + kπ

)
+µi

)−1
fi,k for i = 1, . . . ,N, k = 0, . . . ,N and zN

i,k = 0

for i > N or k > N. Assume w.l.o.g. that zN 6= 0. Thus, zN ∈ H1,1/2
0; ,0 (Q) and one obtains


T

2

N

∑
i=1

N

∑
k=0

1
1
T

(
π
2 + kπ

)
+µi

f 2
i,k




1/2

=

√
T
2

N
∑

i=1

N
∑

k=0

(
1
T

(
π
2 + kπ

)
+µi

)−1
f 2
i,k

(
N
∑

i=1

N
∑

k=0

(
1
T

(
π
2 + kπ

)
+µi

)−1
f 2
i,k

)1/2

=

√
T
2

N
∑

i=1

N
∑

k=0
zN

i,k fi,k

(
N
∑

i=1

N
∑

k=0

(
1
T

(
π
2 + kπ

)
+µi

)
(zN

i,k)
2

)1/2

=

〈
f ,zN

〉
Q

‖zN‖
H1,1/2

0; ,0 (Q),F

≤ sup
06=z∈H1,1/2

0; ,0 (Q)

|〈 f ,z〉Q|
‖z‖

H1,1/2
0; ,0 (Q),F

.
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Hence,

‖ f‖2
[H1,1/2

0; ,0 (Q)]′,F
≥ T

2

∞

∑
i=1

∞

∑
k=0

1
1
T

(
π
2 + kπ

)
+µi

f 2
i,k

follows as N → ∞.

On the other hand, the Cauchy-Schwarz inequality yields

‖ f‖
[H1,1/2

0; ,0 (Q)]′,F
= sup

06=z∈H1,1/2
0; ,0 (Q)

|〈 f ,z〉Q|
‖z‖

H1,1/2
0; ,0 (Q),F

=

√
T

2
sup

06=z∈H1,1/2
0; ,0 (Q)

∞

∑
i=1

∞

∑
k=0

zi,k fi,k

(
1
T

(
π
2 + kπ

)
+µi

)1/2(
1
T

(
π
2 + kπ

)
+µi

)−1/2

(
∞

∑
i=1

∞

∑
k=0

(
1
T

(
π
2 + kπ

)
+µi

)
z2

i,k

)1/2

≤


T

2

∞

∑
i=1

∞

∑
k=0

1
1
T

(
π
2 + kπ

)
+µi

f 2
i,k




1/2

and thus, the first assertion is proven.

For f ∈ [H1/2
,0 (0,T ;L2(Ω))]′, the proof is obtained in the same manner.

Analogous to the case of the ordinary differential equation, see Theorem 3.4.6, the distri-

butional derivative ∂t on Q of a function u ∈ H1/2
0, (0,T ;L2(Ω)) is investigated.

Theorem 3.4.17. For a function u ∈ H1/2
0, (0,T ;L2(Ω)), the distributional derivative ∂t

on Q fulfils ∂tu ∈ [H1/2
,0 (0,T ;L2(Ω))]′. More precisely, a uniquely determined element

g ∈ [H1/2
,0 (0,T ;L2(Ω))]′ exists, satisfying

∀ϕ ∈ D(Q) : ∂tTu(ϕ) = 〈g,ϕ〉Q,

where Tu : D(Q)→❘, Tu(ϕ) = 〈u,ϕ〉L2(Q), is the to u related distribution, see Section 2.1.

In addition, it holds true that

‖∂tu‖[H1/2
,0 (0,T ;L2(Ω))]′,F

≤ ‖u‖
H1/2

0, (0,T ;L2(Ω)),F

and

〈∂tu,z〉Q =
1
2

∞

∑
i=1

∞

∑
k=0

ui,k

(π

2
+ kπ

)
zi,k (3.69)

for all z ∈ H1/2
,0 (0,T ;L2(Ω)) with expansion coefficients ui,k from (3.66) and zi,k from

(3.67).
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Proof. The proof is analogous to the proof of Theorem 3.4.6, since the algebraic tensor-

product C∞
0 (Ω)⊗C∞

0 (0,T )⊂C∞
0 (Q) is dense in H1/2

,0 (0,T ;L2(Ω)).

Remark 3.4.18. The equation (3.69) leads, with the bijective transformation operator

HT : H1/2
0, (0,T ;L2(Ω))→ H1/2

,0 (0,T ;L2(Ω)), to

〈∂tu,HT û〉Q =
1
2

∞

∑
i=1

∞

∑
k=0

ui,k

(π

2
+ kπ

)
ûi,k = 〈u, û〉

H1/2
0, (0,T ;L2(Ω)),F

(3.70)

for all u, û ∈ H1/2
0, (0,T ;L2(Ω)) with expansion coefficients ui,k, ûi,k from (3.66).

As in Section 3.3, the variational formulation of (3.65) is to find u ∈ H1,1/2
0;0, (Q) such that

a(u,z) = 〈 f ,z〉Q (3.71)

for all z ∈ H1,1/2
0; ,0 (Q), where f ∈ [H1,1/2

0; ,0 (Q)]′ is a given right-hand side and the bilinear
form

a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘

is defined by
a(u,z) := 〈∂tu,z〉Q + 〈∇xu,∇xz〉L2(Q)

for u ∈ H1,1/2
0;0, (Q), z ∈ H1,1/2

0; ,0 (Q). Note that
∣∣∣〈∂tu,z〉Q

∣∣∣≤ ‖∂tu‖[H1/2
,0 (0,T ;L2(Ω))]′,F

‖z‖
H1/2

,0 (0,T ;L2(Ω)),F

≤ ‖u‖
H1/2

0, (0,T ;L2(Ω)),F
‖z‖

H1/2
,0 (0,T ;L2(Ω)),F

for u ∈ H1,1/2
0;0, (Q) ⊂ H1/2

0, (0,T ;L2(Ω)) and for z ∈ H1,1/2
0; ,0 (Q) ⊂ H1/2

,0 (0,T ;L2(Ω)) due to
Theorem 3.4.17, i.e. 〈∂tu,z〉Q is well-defined and bounded on

H1/2
0, (0,T ;L2(Ω))×H1/2

,0 (0,T ;L2(Ω)).

With this last estimate, it follows the boundedness of the bilinear form

a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘,

i.e. with the Cauchy-Schwarz inequality, it holds true that

|a(u,z)| ≤
∣∣∣〈∂tu,z〉Q

∣∣∣+
∣∣∣〈∇xu,∇xz〉L2(Q)

∣∣∣
≤ ‖u‖

H1/2
0, (0,T ;L2(Ω)),F

‖z‖
H1/2

,0 (0,T ;L2(Ω)),F
+‖∇xu‖L2(Q)‖∇xz‖L2(Q)

≤ ‖u‖
H1,1/2

0;0, (Q),F
‖z‖

H1,1/2
0; ,0 (Q),F

for u ∈ H1,1/2
0;0, (Q), z ∈ H1,1/2

0; ,0 (Q).
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Theorem 3.4.19. For a given f ∈ [H1,1/2
0; ,0 (Q)]′, a unique solution u ∈ H1,1/2

0;0, (Q) of the
variational formulation (3.71) exists, satisfying

‖u‖
H1,1/2

0;0, (Q),F
≤ 2‖ f‖

[H1,1/2
0; ,0 (Q)]′,F

.

Furthermore, the solution operator

L : [H1,1/2
0; ,0 (Q)]′ → H1,1/2

0;0, (Q), L f := u,

is an isomorphism. In addition, the bilinear form

a(·, ·) : H1,1/2
0;0, (Q)×H1,1/2

0; ,0 (Q)→❘

is continuous and fulfils the condition (N1), i.e.

1
2
≤ inf

06=v∈H1,1/2
0;0, (Q)

sup
06=z∈H1,1/2

0; ,0 (Q)

|a(v,z)|
‖v‖

H1,1/2
0;0, (Q),F

‖z‖
H1,1/2

0; ,0 (Q),F

, (3.72)

and the condition (N2), i.e. for each z ∈ H1,1/2
0; ,0 (Q), z 6= 0, an element v ∈ H1,1/2

0;0, (Q) exists
such that a(v,z) 6= 0.

Proof. For the solution u of the variational problem (3.71), consider the ansatz (3.66)

u(x, t) =
∞

∑
i=1

∞

∑
k=0

ui,kVk(t)φi(x) =
∞

∑
i=1

Ui(t)φi(x), Ui(t) =
∞

∑
k=0

ui,kVk(t),

where Ui ∈ H1/2
0, (0,T ) are unknown functions to be determined. When choosing, for a

fixed j ∈ ◆, z(x, t) := Z(t)φ j(x) with an arbitrary Z ∈ H1/2
,0 (0,T ) as test function, the

variational formulation (3.71) leads to find U j ∈ H1/2
0, (0,T ) such that

〈∂tU j,Z〉(0,T )+µ j〈U j,Z〉L2(0,T ) = 〈 f ,Zφ j〉Q (3.73)

for all Z ∈ H1/2
,0 (0,T ). With Lemma 3.4.5, it holds true that

∣∣〈 f ,Zφ j〉Q
∣∣≤ ‖ f‖

[H1,1/2
0; ,0 (Q)]′,F

∥∥Zφ j
∥∥

H1,1/2
0; ,0 (Q),F

= ‖ f‖
[H1,1/2

0; ,0 (Q)]′,F

√
‖Z‖2

H1/2
,0 (0,T ),F

+µ j‖Z‖2
L2(0,T )

≤
√

1+
2T µ j

π
‖ f‖

[H1,1/2
0; ,0 (Q)]′,F

‖Z‖
H1/2

,0 (0,T ),F
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for all Z ∈ H1/2
,0 (0,T ), and so,

〈
Fj,Z

〉
(0,T ) := 〈 f ,Zφ j〉Q

fulfils Fj ∈ [H1/2
,0 (0,T )]′. The unique solvability of (3.73) follows from the unique solv-

ability of (3.47). So, there exists for every j ∈◆ a unique solution U j ∈ H1/2
0, (0,T ) of the

variational formulation (3.73), satisfying

‖U j‖2
H1/2

0, (0,T ),F
= 〈∂tU j,HTU j〉(0,T )

≤ 〈∂tU j,HTU j〉(0,T )+µ j〈U j,HTU j〉L2(0,T )

= 〈 f ,φ jHTU j〉Q.

Hence, the coefficients Ui ∈ H1/2
0, (0,T ) are uniquely determined. Next, the convergence

properties of the series expansion of u are investigated. Therefore, define the partial sums

uM(x, t) :=
M

∑
j=1

U j(t)φ j(x)

for M ∈◆, and one concludes

‖uM‖2
H1/2

0, (0,T ;L2(Ω)),F
=

M

∑
j=1

‖U j‖2
H1/2

0, (0,T ),F
≤

M

∑
j=1

〈 f ,φ jHTU j〉Q =

〈
f ,

M

∑
j=1

φ jHTU j

〉

Q

≤ ‖ f‖
[H1,1/2

0; ,0 (Q)]′,F
‖HT uM‖

H1,1/2
0; ,0 (Q),F

= ‖ f‖
[H1,1/2

0; ,0 (Q)]′,F
‖uM‖

H1,1/2
0;0, (Q),F

.

Hence, using (3.52) for fi,k =
2
T 〈Fi,Wk〉(0,T ) =

2
T 〈 f ,φiWk〉Q, one obtains

‖uM‖2
L2(0,T ;H1

0 (Ω))
=

M

∑
i=1

µi‖Ui‖2
L2(0,T ) ≤

T

2

M

∑
i=1

∞

∑
k=0

µi

µ2
i +

1
T 2 (

π
2 + kπ)2

f 2
i,k

≤ T
M

∑
i=1

∞

∑
k=0

1

µi +
1
T (

π
2 + kπ)

f 2
i,k ≤ 2‖ f‖2

[H1,1/2
0; ,0 (Q)]′,F

with the help of the inequality

a

a2 +b2 ≤ a+b
1
2(a+b)2

=
2

a+b
for 0 < a,b ∈❘.

With this, it holds true that

‖uM‖2
H1,1/2

0;0, (Q),F
= ‖uM‖2

H1/2
0, (0,T ;L2(Ω)),F

+‖uM‖2
L2(0,T ;H1

0 (Ω))

≤ ‖ f‖
[H1,1/2

0; ,0 (Q)]′,F
‖uM‖

H1,1/2
0;0, (Q),F

+2‖ f‖2
[H1,1/2

0; ,0 (Q)]′,F
,
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and therefore, by solving the corresponding quadratic equation,

‖uM‖
H1,1/2

0;0, (Q),F
≤ 2‖ f‖

[H1,1/2
0;,0 (Q)]′,F

follows for all M ∈◆. The last inequality yields with Ui(t) = ∑
∞
k=0 ui,kVk(t) the bound

T

2

∞

∑
i=1

∞

∑
k=0

[
1
T

(π

2
+ kπ

)
+µi

]
u2

i,k = lim
M→∞

M

∑
i=1

[
‖Ui‖2

H1/2
0, (0,T ),F

+µi‖Ui‖2
L2(0,T )

]

= lim
M→∞

‖uM‖2
H1,1/2

0;0, (Q),F

≤ 4‖ f‖2
[H1,1/2

0; ,0 (Q)]′,F
< ∞

and thus, u ∈ H1,1/2
0;0, (Q) with limM→∞ uM = u in H1,1/2

0;0, (Q).

Next, it is shown that u is a solution of the variational formulation (3.71). This follows

with the expansion z =
∞

∑
j=1

Z jφ j ∈ H1,1/2
0; ,0 (Q), Z j ∈ H1/2

,0 (0,T ), which is given by (3.67),

from

a(u,z) = 〈∂tu,z〉Q + 〈∇xu,∇xz〉L2(Q)

= lim
M→∞

〈∂tuM,z〉Q + lim
M→∞

〈∇xuM,∇xz〉L2(Q)

=
∞

∑
j=1

〈
∂tU jφ j,z

〉
Q +

∞

∑
j=1

〈U j∇xφ j,∇xz〉L2(Q)

=
∞

∑
j=1

∞

∑
i=1

〈
∂tU jφ j,Ziφi

〉
Q +

∞

∑
j=1

∞

∑
i=1

〈U j∇xφ j,Zi∇xφi〉L2(Q)

and by using (3.73), from

a(u,z) =
∞

∑
j=1

〈
∂tU j,Z j

〉
(0,T )+

∞

∑
j=1

µ j〈U j,Z j〉L2(0,T ) =
∞

∑
j=1

〈
f ,Z jφ j

〉
Q = 〈 f ,z〉Q.

The uniqueness of u is a consequence of the uniqueness of the coefficients U j.

The remaining parts of the theorem follow from the Nečas Theorem 2.9.1.

The variational formulation (3.71) is equivalent to find u ∈ H1,1/2
0;0, (Q) such that

a(u,HT v) = 〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q)
!
= 〈 f ,HT v〉Q (3.74)
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for all v ∈ H1,1/2
0;0, (Q). Hence, unique solvability of the variational formulation (3.74) fol-

lows from the unique solvability of (3.71). In addition, the stability estimate (3.72) implies
the stability estimate

1
2
‖u‖

H1,1/2
0;0, (Q),F

≤ sup
06=v∈H1,1/2

0;0, (Q)

〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q)

‖v‖
H1,1/2

0;0, (Q),F

for all u ∈ H1,1/2
0;0, (Q).

To introduce approximate solutions, the bounded Lipschitz domain Ω ⊂❘d is assumed to
be an interval Ω = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. When

using some conforming space-time finite element space Vh ⊂ H1,1/2
0;0, (Q), the Galerkin vari-

ational formulation of (3.74) is to find uh ∈ Vh such that

a(uh,HT vh) = 〈 f ,HT vh〉Q (3.75)

for all vh ∈ Vh. Note that ansatz and test spaces are equal.

Theorem 3.4.20. Let Vh ⊂ H1,1/2
0;0, (Q) be a conforming space-time finite element space

and let f ∈ [H1,1/2
0; ,0 (Q)]′ be a given right-hand side. Then, a unique solution uh ∈ Vh of the

Galerkin-Bubnov variational formulation (3.75) exists. If, in addition, the right-hand side

fulfils f ∈ [H1/2
,0 (0,T ;L2(Ω))]′ ⊂ [H1,1/2

0; ,0 (Q)]′, then the stability estimate

‖uh‖H1/2
0, (0,T ;L2(Ω)),F

≤ ‖ f‖
[H1/2

,0 (0,T ;L2(Ω))]′,F

is true.

Proof. Let u0
h ∈Vh be any solution of the homogeneous variational formulation (3.75) with

f = 0. With (3.70), vh = u0
h ∈ Vh in (3.75) and Lemma 3.4.8, it follows that

‖u0
h‖2

H1/2
0, (0,T ;L2(Ω)),F

=
〈
∂tu

0
h,HT u0

h

〉
Q

≤
〈
∂tu

0
h,HT u0

h

〉
Q +

d

∑
m=1

∫

Ω

〈
∂xmu0

h(x, ·),∂xmHT u0
h(x, ·)

〉
L2(0,T )︸ ︷︷ ︸

≥0

dx

=
〈

f ,HT u0
h

〉
Q (3.76)

= 0,

which implies u0
h = 0 and thus, the uniqueness of a solution uh ∈ Vh of the inhomogeneous

variational formulation (3.75). Since ansatz and test spaces of the variational formulation
(3.75) are equal, the unique solvability of the Galerkin-Bubnov variational formulation
(3.75) follows.
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If, in addition, the right-hand side fulfils f ∈ [H1/2
,0 (0,T ;L2(Ω))]′ ⊂ [H1,1/2

0; ,0 (Q)]′, then,
with (3.76) for the unique solution uh ∈Vh of the Galerkin-Bubnov variational formulation
(3.75), the inequality

‖uh‖2
H1/2

0, (0,T ;L2(Ω)),F
≤ 〈 f ,HT uh〉Q

≤ ‖ f‖
[H1/2

,0 (0,T ;L2(Ω))]′,F
‖HT uh‖H1/2

,0 (0,T ;L2(Ω)),F

= ‖ f‖
[H1/2

,0 (0,T ;L2(Ω))]′,F
‖uh‖H1/2

0, (0,T ;L2(Ω)),F

and hence, the stability estimate hold true.

A possible choice for a conforming space-time discretisation of (3.74) is the space of piece-

wise linear, continuous functions Vh = S1
h(Q)∩H1,1/2

0;0, (Q), see Section 2.8 for more details.
However, to perform the temporal transformation HT easily, and to derive error estimates,
based on the tensor-product structure, only a tensor-product space-time finite element

space Vh = Q1
h(Q)∩H1,1/2

0;0, (Q) from (2.42) is considered in the remainder of this section.

The Galerkin-Bubnov variational formulation of (3.74) is to find uh ∈ Q1
h(Q)∩H1,1/2

0;0, (Q)
such that

a(uh,HT vh) = 〈 f ,HT vh〉Q (3.77)

for all vh ∈ Q1
h(Q)∩H1,1/2

0;0, (Q). After an appropriate ordering of the degrees of freedom,
the discrete variational formulation (3.77) is equivalent to the global linear system

Khu = F

with the system matrix

Kh = AHT
ht

⊗Mhx +MHT
ht

⊗Ahx ∈❘Nt ·Mx×Nt ·Mx ,

where Mhx ∈❘Mx×Mx and Ahx ∈❘Mx×Mx denote spatial mass and stiffness matrices given
in (2.37) and (2.38), MHT

ht
∈❘Nt×Nt and AHT

ht
∈❘Nt×Nt are defined by

MHT
ht

[ℓ,k] := 〈ϕk,HT ϕℓ〉L2(0,T ),

AHT
ht

[ℓ,k] := 〈∂tϕk,HT ϕℓ〉L2(0,T ),

ℓ,k = 1, . . . ,Nt , and with the corresponding vector F ∈❘Nt ·Mx of the right-hand side.

The next aim is to derive error estimates in the space-time norms. First of all, for the

unique solution u ∈ H1,1/2
0;0, (Q) of the variational formulation (3.74) and for the unique

solution uh ∈Q1
h(Q)∩H1,1/2

0;0, (Q) of the discrete variational formulation (3.77), the Galerkin
orthogonality

a(u−uh,HT vh) = 0 (3.78)
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holds true for all vh ∈ Q1
h(Q)∩H1,1/2

0;0, (Q). To derive an L2(Q) error estimate, a space-time
projection

Q1/2
ht

Q1
hx

v ∈ Q1
h(Q)∩H1,1/2

0;0, (Q)

for a sufficiently smooth function v ∈ H1,1/2
0;0, (Q) is introduced, see Section 2.8.

For a function v ∈ H1/2
0, (0,T ;L2(Ω)), the H1/2

0, projection Q1/2
ht

v ∈ L2(Ω)⊗ S1
ht ,0,(0,T ) is

defined by

〈Q1/2
ht

v,vht 〉H1/2
0, (0,T ;L2(Ω)),F

= 〈v,vht 〉H1/2
0, (0,T ;L2(Ω)),F

(3.79)

for all vht ∈ L2(Ω)⊗S1
ht ,0,(0,T ). The properties of the H1/2

0, projection Q1/2
ht

are summarised
in the following lemma.

Lemma 3.4.21. Let v ∈ H1/2
0, (0,T ;L2(Ω)) be a given function. For the H1/2

0, projection

Q1/2
ht

v, defined in (3.79), the following properties hold true:

1. The stability estimate

‖Q1/2
ht

v‖
H1/2

0, (0,T ;L2(Ω)),F
≤ ‖v‖

H1/2
0, (0,T ;L2(Ω)),F

is true.

2. If, in addition, v ∈ Hs(0,T ;L2(Ω)) for some s ∈ (1/2,2], then the error estimates

‖v−Q1/2
ht

v‖
H1/2

0, (0,T ;L2(Ω)),F
≤ chs−1/2

t ‖v‖Hs(0,T ;L2(Ω))

and
‖v−Q1/2

ht
v‖L2(Q) ≤ chs

t‖v‖Hs(0,T ;L2(Ω))

are valid with a constant c > 0.

Proof. First, the stability estimate follows from the Cauchy-Schwarz inequality with

vht = Q1/2
ht

v ∈ L2(Ω)⊗S1
ht ,0,(0,T )

in the variational formulation (3.79).

Second, with the Galerkin orthogonality

〈v−Q1/2
ht

v,vht 〉H1/2
0, (0,T ;L2(Ω)),F

= 0 for all vht ∈ L2(Ω)⊗S1
ht ,0,(0,T ),
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the first error estimate is given by

‖v−Q1/2
ht

v‖2
H1/2

0, (0,T ;L2(Ω)),F
= 〈v−Q1/2

ht
v,v−Q1/2

ht
v〉

H1/2
0, (0,T ;L2(Ω)),F

= 〈v−Q1/2
ht

v,v〉
H1/2

0, (0,T ;L2(Ω)),F

= 〈v−Q1/2
ht

v,v− Iht v〉H1/2
0, (0,T ;L2(Ω)),F

≤ ‖v−Q1/2
ht

v‖
H1/2

0, (0,T ;L2(Ω)),F
‖v− Iht v‖H1/2

0, (0,T ;L2(Ω)),F

≤ ‖v−Q1/2
ht

v‖
H1/2

0, (0,T ;L2(Ω)),F
chs−1/2

t ‖v‖Hs(0,T ;L2(Ω)),

where Iht is the extended time interpolant (2.44) and c > 0 is the constant coming from
standard interpolation error estimates.

The second error estimate is proven by an Aubin-Nitsche argument. Therefore, let the

function w ∈ H1/2
0, (0,T ;L2(Ω)) be the unique solution of

〈w,z〉
H1/2

0, (0,T ;L2(Ω)),F
= 〈∂tw,HT z〉Q

!
= 〈HT (v−Q1/2

ht
v),HT z〉L2(Q) = 〈v−Q1/2

ht
v,z〉L2(Q)

(3.80)
for all z ∈ H1/2

0, (0,T ;L2(Ω)), i.e.

∂tw(x, t) =HT (v−Q1/2
ht

v)(x, t) for (x, t) ∈ Q.

For z = v−Q1/2
ht

v ∈ H1/2
0, (0,T ;L2(Ω)) in (3.80), it follows with the Galerkin orthogonality

and the first error estimate of this proof that

‖v−Q1/2
ht

v‖2
L2(Q) = 〈w,v−Q1/2

ht
v〉

H1/2
0, (0,T ;L2(Ω)),F

= 〈w−Q1/2
ht

w,v−Q1/2
ht

v〉
H1/2

0, (0,T ;L2(Ω)),F

≤ ‖w−Q1/2
ht

w‖
H1/2

0, (0,T ;L2(Ω)),F
‖v−Q1/2

ht
v‖

H1/2
0, (0,T ;L2(Ω)),F

≤ ch1/2
t ‖∂tw‖L2(Q)h

s−1/2
t ‖v‖Hs(0,T ;L2(Ω))

= chs
t‖v−Q1/2

ht
v‖L2(Q)‖v‖Hs(0,T ;L2(Ω)),

where the constant c > 0 comes from standard interpolation error estimates.

Lemma 3.4.22. For a function v ∈ H1/2
0, (0,T ;H1(Ω)), it holds true that

Q1/2
ht

v ∈ H1(Ω)⊗S1
ht ,0,(0,T )

and if, in addition, v ∈ H1/2
0, (0,T ;H1

0 (Ω)), then

Q1/2
ht

v ∈ H1
0 (Ω)⊗S1

ht ,0,(0,T ).
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Proof. The proof is analogous to the proof of Lemma 2.8.1.

The next lemma shows that

Q1/2
ht

Q1
hx

v ∈ Q1
h(Q)∩H1,1/2

0;0, (Q)

is well-defined under regularity assumptions on the given function v and that the operators
in space and time commute, where the extended H1

0 projection Q1
hx

is given in (2.47).

Lemma 3.4.23. For a given function v ∈ H1,1/2
0;0, (Q) with regularity ∂tv ∈ L2(0,T ;H1

0 (Ω))

and ∂xmv ∈ H1/2
0, (0,T ;L2(Ω)) for m = 1, . . . ,d,

1. the relation
∂xmQ1/2

ht
v = Q1/2

ht
∂xmv ∈ L2(Ω)⊗S1

ht ,0,(0,T )

for m = 1, . . . ,d and

2. the relation
Q1/2

ht
Q1

hx
v = Q1

hx
Q1/2

ht
v ∈ Q1

h(Q)∩H1,1/2
0;0, (Q)

hold true. In particular, the space-time projections Q1/2
ht

Q1
hx

v and Q1
hx

Q1/2
ht

v are well-
defined.

Furthermore, the error estimates

‖v−Q1/2
ht

Q1
hx

v‖L2(Q) ≤ ‖v−Q1/2
ht

v‖L2(Q)+‖v−Q1
hx

v‖L2(Q)+ chx ht‖∂t∇xv‖L2(Q)

and

‖v−Q1/2
ht

Q1
hx

v‖
H1/2

0, (0,T ;L2(Ω)),F
≤ ‖v−Q1/2

ht
v‖

H1/2
0, (0,T ;L2(Ω)),F

+‖v−Q1
hx

v‖
H1/2

0, (0,T ;L2(Ω)),F
+ chx h1/2

t ‖∂t∇xv‖
H1/2

0, (0,T ;L2(Ω)),F

with a constant c > 0 are valid.

Proof. The proof is analogous to the proof of Lemma 2.8.2.

Theorem 3.4.24. Let the unique solution u ∈ H1,1/2
0;0, (Q) of (3.74) satisfy the assump-

tions ∂tu ∈ L2(0,T ;H1
0 (Ω)) and ∂xmu ∈ H1/2

0, (0,T ;L2(Ω)) for m = 1, . . . ,d, and further,

∆xu ∈ H1/2
0, (0,T ;L2(Ω)). Then, the solution uh ∈ Q1

h(Q)∩ H1,1/2
0;0, (Q) of the Galerkin-

Bubnov finite element discretisation (3.77) satisfies

‖u−uh‖H1/2
0, (0,T ;L2(Ω)),F

≤ ‖u−Q1/2
ht

u‖
H1/2

0, (0,T ;L2(Ω)),F
+2
∥∥u−Q1

hx
u
∥∥

H1/2
0, (0,T ;L2(Ω)),F

+ chx h1/2
t ‖∂t∇xu‖

H1/2
0, (0,T ;L2(Ω)),F

+
∥∥∥∆xu−Q1/2

ht
∆xu
∥∥∥
[H1/2

,0 (0,T ;L2(Ω))]′,F
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and

‖u−uh‖L2(Q) ≤ ‖u−Q1/2
ht

u‖L2(Q)+‖u−Q1
hx

u‖L2(Q)+ chx ht‖∂t∇xu‖L2(Q)

+
2T

π

∥∥∂tu−Q1
hx

∂tu
∥∥

L2(Q)
+

2T

π

∥∥∥∆xu−Q1/2
ht

∆xu
∥∥∥

L2(Q)

with a constant c > 0 independent of ht and hx.

Proof. With the H1/2
0, (0,T ;L2(Ω)) ellipticity of a(·, ·), the Galerkin orthogonality (3.78)

of a(·, ·), the properties of the H1/2
0, projection Q1/2

ht
, the properties of the H1

0 projection

Q1
hx

and integration by parts, it holds true that

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

2

H1/2
0, (0,T ;L2(Ω)),F

≤ a(uh −Q1/2
ht

Q1
hx

u,uh −Q1/2
ht

Q1
hx

u)

= a(u−Q1/2
ht

Q1
hx

u,uh −Q1/2
ht

Q1
hx

u)

=
〈

∂t(u−Q1/2
ht

Q1
hx

u),HT (uh −Q1/2
ht

Q1
hx

u)
〉

Q

+
〈

∇x(u−Q1/2
ht

Q1
hx

u),∇xHT (uh −Q1/2
ht

Q1
hx

u)
〉

L2(Q)

and further,

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

2

H1/2
0, (0,T ;L2(Ω)),F

=
〈

∂t(u−Q1
hx

u),HT (uh −Q1/2
ht

Q1
hx

u)
〉

Q

+
〈

∇x(u−Q1/2
ht

u),∇xHT (uh −Q1/2
ht

Q1
hx

u)
〉

L2(Q)

=
〈

∂t(u−Q1
hx

u),HT (uh −Q1/2
ht

Q1
hx

u)
〉

Q

−
〈

∆x(u−Q1/2
ht

u),HT (uh −Q1/2
ht

Q1
hx

u)
〉

L2(Q)
. (3.81)

The relation (3.81) yields

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

2

H1/2
0, (0,T ;L2(Ω)),F

≤
∥∥u−Q1

hx
u
∥∥

H1/2
0, (0,T ;L2(Ω)),F

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

H1/2
0, (0,T ;L2(Ω)),F

+
∥∥∥∆xu−Q1/2

ht
∆xu
∥∥∥
[H1/2

,0 (0,T ;L2(Ω))]′,F

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

H1/2
0, (0,T ;L2(Ω)),F
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and so

‖u−uh‖H1/2
0, (0,T ;L2(Ω)),F

≤
∥∥∥u−Q1/2

ht
Q1

hx
u
∥∥∥

H1/2
0, (0,T ;L2(Ω)),F

+
∥∥∥uh −Q1/2

ht
Q1

hx
u
∥∥∥

H1/2
0, (0,T ;L2(Ω)),F

≤
∥∥∥u−Q1/2

ht
Q1

hx
u
∥∥∥

H1/2
0, (0,T ;L2(Ω)),F

+
∥∥u−Q1

hx
u
∥∥

H1/2
0, (0,T ;L2(Ω)),F

+
∥∥∥∆xu−Q1/2

ht
∆xu
∥∥∥
[H1/2

,0 (0,T ;L2(Ω))]′,F
.

This gives, with the second error estimate from Lemma 3.4.23, the H1/2
0, (0,T ;L2(Ω)) error

estimate.

It remains to prove the L2(Q) error estimate. With the Poincaré type inequality from
Lemma 3.4.5, the relation (3.81) and the Cauchy-Schwarz inequality, it follows that

π

2T

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

2

L2(Q)
≤
∥∥∥uh −Q1/2

ht
Q1

hx
u
∥∥∥

2

H1/2
0, (0,T ;L2(Ω)),F

≤
∥∥∂tu−Q1

hx
∂tu
∥∥

L2(Q)

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

L2(Q)

+
∥∥∥∆xu−Q1/2

ht
∆xu
∥∥∥

L2(Q)

∥∥∥uh −Q1/2
ht

Q1
hx

u
∥∥∥

L2(Q)
.

This implies that

‖u−uh‖L2(Q) ≤
∥∥∥u−Q1/2

ht
Q1

hx
u
∥∥∥

L2(Q)
+
∥∥∥uh −Q1/2

ht
Q1

hx
u
∥∥∥

L2(Q)

≤
∥∥∥u−Q1/2

ht
Q1

hx
u
∥∥∥

L2(Q)

+
2T

π

∥∥∂tu−Q1
hx

∂tu
∥∥

L2(Q)
+

2T

π

∥∥∥∆xu−Q1/2
ht

∆xu
∥∥∥

L2(Q)

and with the L2 error estimate from Lemma 3.4.23, the assertion follows.

Corollary 3.4.25. Let the assumption of Theorem 3.4.24 be satisfied. If, in addition, the
unique solution u of (3.74) is sufficiently smooth and the spatial H1

0 projection Q1
hx

fulfils

the standard L2 error estimate

‖u−Q1
hx

u‖L2(Q) ≤C h2
x‖u‖L2(0,T ;H2(Ω))

with a constant C > 0, see (2.48), then, for the unique solution uh ∈ Q1
h(Q)∩H1,1/2

0;0, (Q) of
the Galerkin-Bubnov finite element discretisation (3.77), the error estimates

‖u−uh‖H1/2
0, (0,T ;L2(Ω)),F

≤ ch3/2
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and
‖u−uh‖L2(Q) ≤ ch2

hold true with a constant c > 0 independent of the mesh size h = max{ht ,hx}.

Corollary 3.4.26. Let the assumption of Theorem 3.4.24 be satisfied. Furthermore, let
u ∈ H1+s(Q)∩H1,1

0;0, (Q) be for some s ∈ [0,1] and let the H1,1
0;0, (Q) projection Q1

h, given in
(2.45), fulfil the standard error estimate

‖u−Q1
hu‖L2(Q) ≤ ch1+s‖u‖H1+s(Q)

with a constant c > 0, see (2.46). Moreover, assume for Q1
h(Q)∩H1,1

0;0, (Q) the inverse
inequality

∀vh ∈ Q1
h(Q)∩H1,1

0;0, (Q) : |vh|H1(Q) ≤ cinv h−1‖vh‖L2(Q)

with a constant cinv > 0 and h = max{ht ,hx}. Then, the error estimate

|u−uh|H1(Q) ≤C cinv hs‖u‖Hs+1(Q)+ cinv h−1‖uh −u‖L2(Q)

is valid with a constant C > 0 independent of h. If, in addition, the assumption of Corol-
lary 3.4.25 is fulfilled, then, the error estimate

|u−uh|H1(Q) ≤ C̃ h

holds true with a constant C̃ > 0.

Proof. Note that
Q1

h(Q)∩H1,1
0;0, (Q) = Q1

h(Q)∩H1,1/2
0;0, (Q).

It follows with the triangle inequality, standard error estimates for Q1
h and the inverse

inequality in Q1
h(Q)∩H1,1

0;0, (Q) that

|u−uh|H1(Q) ≤
∣∣u−Q1

hu
∣∣
H1(Q)

+
∣∣Q1

hu−uh

∣∣
H1(Q)

≤ C̃ hs‖u‖Hs+1(Q)+ cinv h−1
∥∥Q1

hu−uh

∥∥
L2(Q)

≤ C̃ hs‖u‖Hs+1(Q)+ cinv h−1
∥∥Q1

hu−u
∥∥

L2(Q)
+ cinv h−1‖uh −u‖L2(Q)

≤C cinv hs‖u‖Hs+1(Q)+ cinv h−1‖uh −u‖L2(Q)

with a constant C > 0 and hence, the assertion.

Remark 3.4.27. The assumptions on the spatial H1
0 projection Q1

hx
and on the H1,1

0;0, (Q)

projection Q1
h in Corollary 3.4.25 and Corollary 3.4.26 are fulfilled, if Ω is sufficiently

regular. Thus, for less regular Ω, one expects reduced orders for the error estimates given
in Corollary 3.4.25 and Corollary 3.4.26.
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Remark 3.4.28. Analogous space-time error estimates, as proven in Theorem 3.4.24,
Corollary 3.4.25 and Corollary 3.4.26, are true for conforming tensor-product space-time
finite element discretisations of (3.75) with piecewise polynomial, continuous functions of
polynomial degree p > 1, i.e. the space-time error estimates

‖u−uh‖H1/2
0, (0,T ;L2(Ω)),F

≤ chp+1/2,

‖u−uh‖L2(Q) ≤ chp+1,

|u−uh|H1(Q) ≤ chp

are valid with a constant c > 0 for analogous assumptions as in Theorem 3.4.24, Corol-
lary 3.4.25 and Corollary 3.4.26.

In the last part of this section, some numerical examples for the Galerkin-Bubnov varia-
tional formulation (3.77) are presented. Therefore, consider the space-time cylinder

Q = Ω× (0,T ) = (0,1)× (0,2)

for the finite element space Q1
h(Q)∩H1,1/2

0;0, (Q) with a uniform discretisation with mesh
sizes

hx =
1

Nx
and ht =

2
Nt

with
Nx = Nt = 2 j, j = 1, . . . ,11,

see Section 2.8 for the notations. The number of the degrees of freedom is given as

dof = (Nx −1) ·Nt .

The temporal transformation HT of the nodal basis functions of the finite-dimensional

space Q1
h(Q)∩H1,1/2

0;0, (Q) is realised via the series representation (3.68) and the appearing
integrals in (3.77) are calculated by the usage of high-order integration rules. In Table 3.10
the minimal and maximal singular values of the system matrix Kh, corresponding to (3.77),
as well as the resulting spectral condition number of Kh are given. Note that the finite
element stiffness matrix Kh is still positive definite, but not symmetric, and that no CFL
condition is needed, see Theorem 3.4.20.

Remark 3.4.29. The to (3.77) related inf-sup constant

inf
06=uh∈Q1

h(Q)∩H1,1/2
0;0, (Q)

sup
06=vh∈Q1

h(Q)∩H1,1/2
0;0, (Q)

a(uh,HT vh)

‖uh‖H1,1/2
0;0, (Q),F

‖vh‖H1,1/2
0;0, (Q),F

=: cS(h) (3.82)
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Nx Nt dof hx ht σmax(Kh) σmin(Kh) κ2(Kh)
2 2 2 0.50000000 1.00000000 2.27730420 0.90807052 2.5
4 4 12 0.25000000 0.50000000 5.67006464 0.28650743 19.8
8 8 56 0.12500000 0.25000000 7.29533890 0.11531994 63.3

16 16 240 0.06250000 0.12500000 7.80822886 0.04567559 170.9
32 32 992 0.03125000 0.06250000 7.94997290 0.01642703 484.0
64 64 4032 0.01562500 0.03125000 7.98720088 0.00472215 1691.4

128 128 16256 0.00781250 0.01562500 7.99675804 0.00120736 6623.3
256 256 65280 0.00390625 0.00781250 7.99918336 0.00030351 26355.9

Table 3.10: Stability behaviour of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0,1)× (0,2).

seems to depend at least linearly on the mesh size h. As illustration, consider the inf-sup
constant

inf
06=uh∈Q1

h(Q)∩H1,1/2
0;0, (Q)

sup
06=vh∈Q1

h(Q)∩H1,1/2
0;0, (Q)

a(uh,HT vh)

‖∇xuh‖L2(Q)‖∇xvh‖L2(Q)

=: c̃S(h), (3.83)

satisfying
c̃S(h)≥ cS(h).

The inf-sup constant c̃S(h) is given as

c̃S(h) =
√

λmin,

where λmin is the minimal eigenvalue of the generalised eigenvalue problem [84, Subsec-
tion 3.6.6, page 124]

K⊤
h A−1

h,0,Khu = λAh,0,u

with the matrices
Kh[k, i] := a(χi,HT χk)

and
Ah,0,[k, i] := 〈∇xχi,∇xχk〉L2(Q)

for i,k = 1, . . . ,dof, where χi are the nodal basis functions of the space Q1
h(Q)∩H1,1/2

0;0, (Q),
i.e.

Q1
h(Q)∩H1,1/2

0;0, (Q) = span{χi}dof
i=1.

For a uniform discretisation with mesh sizes

hx =
1

Nx
and ht =

2
Nt
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with
Nx = Nt = 2 j, j = 1, . . . ,8,

and
dof = (Nx −1) ·Nt ,

the inf-sup constant c̃S(h) of (3.83) is given in Table 3.11, where a linear dependency is
observed. Hence, the inf-sup constant cS(h) of (3.82) seems to depend at least linearly on
the mesh size h = max{ht ,hx}.

Nx Nt dof hx ht c̃S(h)
2 2 2 0.500000 1.000000 0.673637
4 4 12 0.250000 0.500000 0.375800
8 8 56 0.125000 0.250000 0.216577

16 16 240 0.062500 0.125000 0.117912
32 32 992 0.031250 0.062500 0.061679
64 64 4032 0.015625 0.031250 0.031558

128 128 16256 0.007813 0.015625 0.015963
256 256 65280 0.003906 0.007813 0.008028

Table 3.11: Optimal discrete inf-sup constant c̃S(h) of (3.83) with a uniform temporal
mesh size ht and a uniform spatial mesh size hx for the space-time cylinder
Q = (0,1)× (0,2).

Next, numerical examples concerning convergence rates are given. Therefore, consider the
functions

u1(x, t) := sin

(
5π

4
t

)
sin(πx) ,

u2(x, t) := t2/3 sin(πx) ,

u3(x, t) := x3/5(x−1)t

for (x, t) ∈ Q,
Q = Ω× (0,T ) = (0,1)× (0,2),

as the solutions of (3.74). Since the solution u1 is smooth, a quadratic convergence in
L2(Q) and a linear convergence in H1(Q) are expected by Corollary 3.4.25 and by Corol-
lary 3.4.26. This behaviour is confirmed by the numerical results given in Table 3.12.

The solutions u2 and u3 satisfy only

u2 ∈ H7/6−ε(Q) and u3 ∈ H11/10−ε(Q) for ε > 0,

which leads to a reduced order of convergence in ‖·‖L2(Q) and |·|H1(Q), see Table 3.13 and
Table 3.14.
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Nx,Nt dof hx ht ‖u1 −u1,h‖L2(Q) eoc |u1 −u1,h|H1(Q) eoc
2 2 0.500000 1.000000 0.91082337 - 4.48444176 -
4 12 0.250000 0.500000 0.15773958 2.53 1.89079374 1.25
8 56 0.125000 0.250000 0.02936109 2.43 0.84238860 1.17

16 240 0.062500 0.125000 0.00689515 2.09 0.41495827 1.02
32 992 0.031250 0.062500 0.00169574 2.02 0.20679353 1.00
64 4032 0.015625 0.031250 0.00042208 2.01 0.10331240 1.00

128 16256 0.007812 0.015625 0.00010539 2.00 0.05164563 1.00
256 65280 0.003906 0.007812 0.00002634 2.00 0.02582149 1.00
512 261632 0.001953 0.003906 0.00000658 2.00 0.01291058 1.00

1024 1047552 0.000977 0.001953 0.00000165 2.00 0.00645527 1.00
2048 4192256 0.000488 0.000977 0.00000041 2.01 0.00322763 1.00

Table 3.12: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0,1)×(0,2) and for the
function u1.

Nx,Nt dof hx ht ‖u2 −u2,h‖L2(Q) eoc |u2 −u2,h|H1(Q) eoc
2 2 0.500000 1.000000 0.23826687 - 1.52140890 -
4 12 0.250000 0.500000 0.06709046 1.83 0.82368146 0.89
8 56 0.125000 0.250000 0.02030948 1.72 0.46578105 0.82

16 240 0.062500 0.125000 0.00707197 1.52 0.29871905 0.64
32 992 0.031250 0.062500 0.00280561 1.33 0.22207053 0.43
64 4032 0.015625 0.031250 0.00119675 1.23 0.18306107 0.28

128 16256 0.007812 0.015625 0.00052531 1.19 0.15842749 0.21
256 65280 0.003906 0.007812 0.00023285 1.17 0.13968147 0.18
512 261632 0.001953 0.003906 0.00010355 1.17 0.12397096 0.17

1024 1047552 0.000977 0.001953 0.00004610 1.17 0.11028663 0.17
2048 4192256 0.000488 0.000977 0.00002053 1.17 0.09819766 0.17

Table 3.13: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0,1)×(0,2) and for the
function u2.
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Nx,Nt dof hx ht ‖u3 −u3,h‖L2(Q) eoc |u3 −u3,h|H1(Q) eoc
2 2 0.500000 1.000000 0.15232131 - 1.13419849 -
4 12 0.250000 0.500000 0.06042186 1.33 0.91981810 0.30
8 56 0.125000 0.250000 0.02557510 1.24 0.79291178 0.21

16 240 0.062500 0.125000 0.01129138 1.18 0.70947658 0.16
32 992 0.031250 0.062500 0.00511443 1.14 0.64798432 0.13
64 4032 0.015625 0.031250 0.00234984 1.12 0.59815237 0.12

128 16256 0.007812 0.015625 0.00108778 1.11 0.55512396 0.11
256 65280 0.003906 0.007812 0.00050549 1.11 0.51657314 0.10
512 261632 0.001953 0.003906 0.00023536 1.10 0.48134128 0.10

1024 1047552 0.000977 0.001953 0.00010969 1.10 0.44881042 0.10
2048 4192256 0.000488 0.000977 0.00005115 1.10 0.41861673 0.10

Table 3.14: Numerical results of the Galerkin-Bubnov finite element discretisation (3.77)
with uniform meshes for the space-time cylinder Q = (0,1)×(0,2) and for the
function u3.

Outlook for Possible Extensions of Section 3.4

Since the constructions of the methods and the proofs in this section mainly rely on the
treatment of the first-order temporal differential operator ∂t + µ with a parameter µ > 0,
the results of this section for the model problem (3.65) can be transferred to a more general
parabolic equation (3.2) under certain assumptions of the involved functions and function
spaces, where details are left for future considerations.





4 WAVE EQUATION

The main focus of this chapter is on space-time variational formulations and conforming
discretisations for hyperbolic problems. First, a highly non-exhaustive list of references,
second, an overview of the sections of this chapter, where for each section the relevant
literature is cited, and third, an outlook for possible extensions are given. Here, the model
problem for a hyperbolic partial differential equation is the homogeneous Dirichlet prob-
lem for the wave equation,

∂ttu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),

u(x, t) = 0 for (x, t) ∈ Σ = Γ× [0,T ],

u(x,0) = u0(x) for x ∈ Ω,
∂tu(x,0) = v0(x) for x ∈ Ω,





(4.1)

where Ω ⊂ R
d , d = 1,2,3, is a bounded Lipschitz domain with boundary Γ = ∂Ω, T > 0

is a terminal time, u0, v0 are given initial conditions and f is a given right-hand side. To
compute an approximate solution of the wave equation (4.1), different numerical schemes
including different approaches of the underlying mathematical framework are available.
On the one hand, some of them are repeated in this chapter, but on the other hand, power-
ful tools like semigroup theory as in [91, 123] on the continuous part or on the discretisa-
tion side, any kind of discontinuous Galerkin methods [33,42,67,86,88,89,111,130,140]
or finite difference methods [32, 33, 65, 97, 147] or boundary element methods, see Re-
mark 1.2.1, are not in the scope of this work. Furthermore, all approaches where the wave
equation (4.1) is reformulated as a first-order system in the spatial and/or time variables
are excluded in this work, see [19, 22, 24, 42, 45, 46, 55, 83, 94, 163]. In addition, see also
the approaches in [53, 63, 66, 80, 81, 85, 114, 115, 124].

Outline of Chapter 4

The remainder of this chapter examines the wave equation (4.1) as follows:

In Section 4.1 a pointwise spatial variational formulation coming from a so-called Galerkin
method [36,97,102,160,162] and time stepping schemes [18,22,27,28,44,95,113,126,127]
are cited. In Section 4.2 a space-time variational formulation [97] in a subspace of H1(Q) is
examined, which fits very well to finite element methods with piecewise linear, continuous
functions. This conforming finite element method is only conditionally stable, i.e. a CFL
condition plays a decisive role for stability. To gain a deeper understanding of the CFL
condition, an ordinary differential equation corresponding to the wave equation is anal-
ysed. For this ordinary differential equation, an unconditionally stable numerical scheme
is introduced. By transferring this idea to the wave equation, a stabilised space-time finite
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element method for the wave equation is obtained. This stabilisation is proposed in [164].
Finally, for this stabilised space-time finite element method, L2(Q) stability, L2(Q) and
H1(Q) error estimates are proven, see [146]. In the last part of Section 4.2, numerical
examples for a one-dimensional spatial domain and a two-dimensional spatial domain are
given, including spatially adaptive refined meshes. In Section 4.3 and Section 4.4, ex-
istence and uniqueness results for the wave equation as a partial differential equation in
L2(Q) and in a weaker sense than L2(Q) are derived, including isomorphic solution oper-
ators and corresponding inf-sup conditions.

Outlook for Possible Extensions of Chapter 4

The results of this chapter for the model problem (4.1) can be transferred to hyperbolic
equations for vector fields, e.g., the Maxwell’s equations, as well as to a more general
hyperbolic equation for scalar functions

ρ(x, t)∂ttu(x, t)−∑
d
i, j=1

∂
∂xi

(
ai, j(x, t) ∂u

∂x j
(x, t)

)

+∑
d
i=1 ai(x, t) ∂u

∂xi
(x, t)+ad+1(x, t)∂u

∂ t (x, t)
+a(x, t)u(x, t) = f (x, t) for (x, t) ∈ Q,

u(x, t) = g(x, t) for (x, t) ∈ Σ,
u(x,0) = u0(x) for x ∈ Ω,

∂tu(x,0) = v0(x) for x ∈ Ω,





(4.2)

where ρ , ai, j, ai, a are given coefficients, f is a given right-hand side, g is a given Dirichlet
datum and u0, v0 are given initial conditions, which have to satisfy smoothness and bound-
edness conditions, see, e.g., the classical references [36, 97, 102, 103, 160, 162, 164].

In particular, since the proofs of the results in Section 4.2, Section 4.3 and Section 4.4
mainly rely on the treatment of the second-order ordinary differential equation for the tem-
poral differential operator ∂tt + µ with a parameter µ > 0, a generalisation to differential
operators

∂tt +Ax

with a spatial differential operator Ax, acting on vector fields, is possible. Since the proofs
have to be done with great care, they are left for future work, including precise assumptions
on Ax and the involved function spaces.
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4.1 Variational Formulation in Space and Pointwise in Time

In this section, a short overview of a pointwise in time variational formulation is given.
Furthermore, numerical examples for lowest order in space, i.e. piecewise linear, continu-
ous ansatz functions, combined with lowest order time stepping are presented.

The pointwise in time variational formulation of (4.1) is given, with the notations of Sec-
tion 2, as follows:

Find u∈ L2(0,T ;H1
0 (Ω)) with ∂tu∈ L2(Q), ∂ttu∈ L2(0,T ; [H1

0 (Ω)]′), u(·,0)= u0 in H1
0 (Ω)

and ∂tu(·,0) = v0 in L2(Ω) such that

〈∂ttu(·, t),v〉Ω + 〈∇xu(·, t),∇xv〉L2(Ω) = 〈 f (·, t),v〉L2(Ω) (4.3)

for almost all t ∈ (0,T ) and all v ∈ H1
0 (Ω), where f ∈ L2(Q), u0 ∈ H1

0 (Ω) and v0 ∈ L2(Ω)
are the given right-hand side and the given initial conditions. Here, ∂tt is the distributional
derivative on (0,T ), i.e. equality (4.3) means that

T∫

0

〈u(·, t),v〉Ω

d2ϕ

dt2 (t)dt +

T∫

0

〈∇xu(·, t),∇xv〉L2(Ω)ϕ(t)dt =

T∫

0

〈 f (·, t),v〉L2(Ω)ϕ(t)dt

for all ϕ ∈C∞
0 (0,T ). The variational formulation in (4.3) is examined in many books, for

example, [102, Théorème 8.1, Chapitre 3, page 287, and Théorème 8.2, Chapitre 3, page
296], [97, Theorem 4.2, Chapter IV, page 167], [160, Satz 29.1, Kapitel V, page 422], [162,
Section 24.1, Chapter 24, page 453] or [36, Mathematical Example 1, Chapter XVIII, page
581]. In these books, the following existence and uniqueness result is proven.

Theorem 4.1.1. For given f ∈ L2(Q), u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω), a unique solution u of

the variational formulation (4.3) exists, satisfying

u ∈ L2(0,T ;H1
0 (Ω))∩C([0,T ];H1

0 (Ω)),

∂tu ∈ L2(Q)∩C([0,T ];L2(Ω)),

∂ttu ∈ L2(0,T ; [H1
0 (Ω)]′),

and the stability estimate

√
‖u‖2

L2(0,T ;H1
0 (Ω))+‖∂tu‖2

L2(Q) ≤ c
(
|u0|H1(Ω)+‖v0‖L2(Ω)+‖ f‖L2(Q)

)

with a constant c > 0.

Proof. See the books [36, 97, 102, 160, 162] as mentioned above.
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For a discretisation scheme, let the bounded Lipschitz domain Ω ⊂ ❘d be an interval
Ω = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
of Section 2.8, consider a discretisation of a tensor-product type (2.41) with the finite-
dimensional space Q1

h(Q) =Vhx,0(Ω)⊗S1
ht
(0,T ), see (2.42). Therefore, introduce for x∈Ω

and ℓ ∈ {0, . . . ,Nt} the approximations

Uhx,ℓ(x) :=
Mx

∑
i=1

Uℓ
i ψi(x)≈ u(x, tℓ)

and

Ûhx,ℓ(x) :=
Mx

∑
i=1

Ûℓ
i ψi(x)≈ ∂tu(x, tℓ),

where Uℓ
i , Ûℓ

i ∈ ❘ are the unknown coefficients of Uhx,ℓ, Ûhx,ℓ ∈ Vhx,0(Ω) ⊂ H1
0 (Ω) for

ℓ ∈ {0, . . . ,Nt}. Furthermore, set for (x, t) ∈ Q

uh(x, t) :=
Nt

∑
ℓ=0

Mx

∑
i=1

Uℓ
i ψi(x)ϕℓ(t) =

Nt

∑
ℓ=0

Uhx,ℓ(x)ϕℓ(t)≈ u(x, t) (4.4)

and

ûh(x, t) :=
Nt

∑
ℓ=0

Mx

∑
i=1

Ûℓ
i ψi(x)ϕℓ(t) =

Nt

∑
ℓ=0

Ûhx,ℓ(x)ϕℓ(t)≈ ∂tu(x, t), (4.5)

i.e. uh, ûh ∈ Q1
h(Q).

For the pointwise in time variational formulation (4.3), a conforming discretisation in space
with Vhx,0(Ω)⊂ H1

0 (Ω) in combination with the Newmark scheme with Newmark param-
eters β = 1

4 , γ = 1
2 leads to the so-called Newmark Galerkin method to find the functions

Uhx,ℓ, Ûhx,ℓ ∈Vhx,0(Ω)⊂ H1
0 (Ω) for ℓ ∈ {0, . . . ,Nt} such that

Uhx,0 = Qhxu0, Ûhx,0 = Qhxv0,

and for ℓ= 1, . . . ,Nt

1

h2
t,ℓ

〈
Uhx,ℓ−Uhx,ℓ−1 +ht,ℓÛhx,ℓ−1,vhx

〉
L2(Ω)

+
1
4
〈∇xUhx,ℓ+∇xUhx,ℓ−1,∇xvhx〉L2(Ω)

=
1
4
〈 f (·, tℓ)+ f (·, tℓ−1),vhx〉L2(Ω) (4.6)

for all vhx ∈Vhx,0(Ω) and

1
ht,ℓ

〈
Ûhx,ℓ−Ûhx,ℓ−1, v̂hx

〉
L2(Ω)

+
1
2
〈∇xUhx,ℓ+∇xUhx,ℓ−1,∇xv̂hx〉L2(Ω)

=
1
2
〈 f (·, tℓ)+ f (·, tℓ−1), v̂hx〉L2(Ω) (4.7)
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for all v̂hx ∈Vhx,0(Ω), where Qhx : L2(Ω)→Vhx,0(Ω) denotes the L2 projection (2.39). This
method is given in [127, (8.6-4), (8.6-5), (8.6-6), page 205], see also [18,22,27,28,44,95,
113,126]. The Newmark Galerkin method (4.6), (4.7) is equivalent to the linear systems

MhxU
0 = u0, MhxÛ

0
= v0,

and for all ℓ= 1, . . . ,Nt(
Mhx +

1
4

h2
t,ℓAhx

)
Uℓ =

(
Mhx −

1
4

h2
t,ℓAhx

)
Uℓ−1 +ht,ℓMhxÛ

ℓ−1
+

1
4

h2
t,ℓ

(
Fℓ+Fℓ−1

)
,

(4.8)

MhxÛ
ℓ
= MhxÛ

ℓ−1 − 1
2

ht,ℓAhx

(
Uℓ+Uℓ−1

)
+

1
2

ht,ℓ

(
Fℓ+Fℓ−1

)
, (4.9)

where Mhx ∈❘Mx×Mx is the mass matrix (2.37), Ahx ∈❘Mx×Mx is the stiffness matrix (2.38)
and the vectors u0, v0, Fℓ ∈❘Mx are defined by

u0[i] := 〈u0,ψi〉L2(Ω), v0[i] := 〈v0,ψi〉L2(Ω), Fℓ[i] := 〈 f (·, tℓ),ψi〉L2(Ω) (4.10)

for i = 1, . . . ,Mx with the nodal basis functions ψi satisfying Vhx,0(Ω) = span{ψi}Mx
i=1. The

matrix Mhx +
1
4h2

t,ℓAhx is positive definite and hence, the linear systems (4.8), (4.9) are
uniquely solvable for all ℓ= 1, . . . ,Nt . Stability of the numerical scheme (4.6), (4.7) holds
true without any CFL condition because the Newmark method is unconditionally stable,
see [22, 95, 113, 127]. Concerning error estimates, it seems that error estimates of the
quantities ‖u(·, tℓ)−Uhx,ℓ‖L2(Ω) for each ℓ = 0, . . . ,Nt are standard, which are of optimal

order O(h2
t + h2

x), see [127, Chapitre 8], [113, Section 4.2] or [18, 27, 28, 44]. However,
here, error estimates in space-time norms ‖·‖L2(Q) and |·|H1(Q) for the approximate solution

uh ∈ Q1
h(Q), defined in (4.4), are considered. It seems that proofs of such error estimates

are not available. Hence, the proofs of such statements are left for future work.

In the last part of this section, some numerical examples are presented. So, for the space-
time cylinder Q = Ω× (0,T ) = (0,1)× (0,10), consider the solution of (4.3)

u1(x, t) = sin(πx)sin2
(

5
4

πt

)
, (x, t) ∈ Q,

see also the numerical examples of Section 4.2 for a comparison. The discretisation is done
with respect to nonuniform meshes as shown in Figure 4.1, where a uniform refinement
strategy is applied. The appearing integrals for the initial conditions and right-hand side
in (4.10) are calculated by the usage of high-order integration rules, and the degrees of
freedom are denoted by

dof = dimQ1
h(Q)∩H1,1

0;0, (Q)

due to the homogeneous Dirichlet boundary condition and the initial conditions, see (2.14).
In Table 4.1 the errors in the space-time norms ‖·‖L2(Q) and |·|H1(Q) are presented for
the smooth function u1, where the convergence rates are as expected. Note that no CFL
condition is needed because the Newmark method is unconditionally stable.
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Figure 4.1: Nonuniform meshes: Starting mesh and the mesh after one uniform refinement
step.

dof hx,max hx,min ht,max ht,min ‖u1 −u1,h‖L2(Q) eoc |u1 −u1,h|H1(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 7.088e+00 - 2.622e+01 -

132 0.18750 0.03125 1.87500 0.31250 2.921e+00 1.20 1.276e+01 0.97
552 0.09375 0.01562 0.93750 0.15625 4.728e+00 -0.67 1.811e+01 -0.49

2256 0.04688 0.00781 0.46875 0.07812 1.670e+00 1.48 8.558e+00 1.06
9120 0.02344 0.00391 0.23438 0.03906 6.701e-01 1.31 4.571e+00 0.90

36672 0.01172 0.00195 0.11719 0.01953 2.023e-01 1.72 1.813e+00 1.33
147072 0.00586 0.00098 0.05859 0.00977 5.326e-02 1.92 7.733e-01 1.23
589056 0.00293 0.00049 0.02930 0.00488 1.349e-02 1.98 3.652e-01 1.08

2357760 0.00146 0.00024 0.01465 0.00244 3.384e-03 1.99 1.797e-01 1.02
9434112 0.00073 0.00012 0.00732 0.00122 8.467e-04 2.00 8.950e-02 1.01

37742592 0.00037 0.00006 0.00366 0.00061 2.117e-04 2.00 4.471e-02 1.00

Table 4.1: Numerical results of the Newmark Galerkin method (4.6), (4.7) with nonuni-
form meshes for Q = (0,1)× (0,10) and for the function u1.
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Remark 4.1.2. For a solution of (4.3)

u2(x, t) = sin(πx)t2(10− t)3/4, (x, t) ∈ (0,1)× (0,10),

as considered as numerical example in Section 4.2, the Newmark Galerkin method (4.6),
(4.7) is not applicable because the corresponding right-hand side f has a singularity with
respect to t = T = 10. However, an alternative is to adapt the treatment of the right-hand
side f .

Remark 4.1.3. The Newmark Galerkin method (4.6), (4.7) fulfils a conservation of the
total energy

E(t) :=
1
2
‖∂tu(·, t)‖2

L2(Ω)+
1
2
‖∇xu(·, t)‖2

L2(Ω), t ∈ [0,T ],

see [22, 95]. As illustration, consider a solution of the homogeneous wave equation, i.e.

u3(x, t) = (cos(πt)+ sin(πt))sin(πx), (x, t) ∈ Q = (0,1)× (0,10),

with the total energy

E(t) =
π2

2
, t ∈ [0,10].

Here, the initial conditions are

u3(x,0) = u0(x) = sin(πx), ∂tu3(x,0) = v0(x) = π sin(πx), x ∈ Ω.

For the solution u3 and for the mesh as given in Figure 4.1, the discrete total energy

Eh(t) :=
1
2
‖ûh(·, t)‖2

L2(Ω)+
1
2
‖∇xuh(·, t)‖2

L2(Ω), t ∈ [0,T ],

is computed, where the approximation ûh ≈ ∂tu, given in (4.5), is used. In Figure 4.2 the
difference

Eh(t)−E(t) = Eh(t)−
π2

2
, t ∈ [0,10],

is plotted pointwise for the approximate solution u3,h of the finest level of Table 4.2, where
a conservation of the total energy is observed. In addition, the errors in the space-time
norms ‖·‖L2(Q) and |·|H1(Q) are given in Table 4.2, where the convergence rates are as
expected.
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dof hx,max hx,min ht,max ht,min ‖u3 −u3,h‖L2(Q) eoc |u3 −u3,h|H1(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 2.561e+00 - 1.066e+01 -

132 0.18750 0.03125 1.87500 0.31250 2.503e+00 0.03 9.821e+00 0.11
552 0.09375 0.01562 0.93750 0.15625 2.243e+00 0.15 9.780e+00 0.01

2256 0.04688 0.00781 0.46875 0.07812 2.581e+00 -0.20 1.152e+01 -0.23
9120 0.02344 0.00391 0.23438 0.03906 1.082e+00 1.25 4.845e+00 1.24

36672 0.01172 0.00195 0.11719 0.01953 3.012e-01 1.84 1.444e+00 1.74
147072 0.00586 0.00098 0.05859 0.00977 7.695e-02 1.97 4.605e-01 1.65
589056 0.00293 0.00049 0.02930 0.00488 1.933e-02 1.99 1.804e-01 1.35

2357760 0.00146 0.00024 0.01465 0.00244 4.839e-03 2.00 8.268e-02 1.12
9434112 0.00073 0.00012 0.00732 0.00122 1.210e-03 2.00 4.034e-02 1.03

37742592 0.00037 0.00006 0.00366 0.00061 3.026e-04 2.00 2.005e-02 1.01

Table 4.2: Numerical results of the Newmark Galerkin method (4.6), (4.7) with nonuni-
form meshes for Q = (0,1)× (0,10) and for the function u3.
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Figure 4.2: Difference of the total energy E(t) = π2

2 and Eh(t) of the Newmark Galerkin
method (4.6), (4.7) with a nonuniform mesh for Q = (0,1)×(0,10) and for the
function u3.
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4.2 Space-Time Variational Formulation in H1(Q)

In this section, a space-time variational formulation in subspaces of H1(Q) of the homo-
geneous Dirichlet problem for the wave equation,

∂ttu(x, t)−∆xu(x, t) = f (x, t) for (x, t) ∈ Q = Ω× (0,T ),

u(x, t) = 0 for (x, t) ∈ Σ = Γ× [0,T ],

u(x,0) = ∂tu(x,0) = 0 for x ∈ Ω,





(4.11)

where Ω ⊂R
d , d = 1,2,3, is a bounded Lipschitz domain with boundary Γ = ∂Ω, T > 0 is

a terminal time and f is a given right-hand side, is examined and space-time finite element
methods with piecewise linear, continuous functions are considered, see [146]. The unique
solvability of this space-time variational formulation is given in [97], where the proof of
the stability estimate is repeated in this section. A (natural) tensor-product approach by
piecewise linear, continuous functions leads to a CFL condition

ht ≤C hx

with a constant C > 0, where ht and hx are the uniform mesh sizes in time and space.
To gain a deeper understanding of the CFL condition, an ordinary differential equation
corresponding to the wave equation is analysed. For this ordinary differential equation,
an unconditionally stable numerical scheme is introduced. By transferring this idea to
the wave equation, a stabilised space-time finite element method for the wave equation is
obtained. In the last part of this section, unconditional stability in L2(Q), error estimates
in the space-time norms ‖·‖L2(Q) and |·|H1(Q), and numerical examples are given.

4.2.1 Variational Formulation for ∂ttu+µu = f

As a model problem for µ > 0, consider the second-order linear equation,

∂ttu(t)+µ u(t) = f (t) for t ∈ (0,T ), u(0) = ∂tu(0) = 0, (4.12)

and the variational formulation to find u ∈ H1
0,(0,T ) such that

a(u,w) = 〈 f ,w〉(0,T ) (4.13)

for all w ∈ H1
,0(0,T ), where T > 0 and f ∈ [H1

,0(0,T )]′ are given. In (4.13), the bilinear
form

a(·, ·) : H1
0,(0,T )×H1

,0(0,T )→❘

is defined by
a(u,w) :=−〈∂tu,∂tw〉L2(0,T )+µ〈u,w〉L2(0,T ) (4.14)
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for all u ∈ H1
0,(0,T ), w ∈ H1

,0(0,T ). Note that 〈·, ·〉(0,T ) denotes the duality pairing as ex-
tension of the inner product in L2(0,T ), and the Sobolev spaces H1

0,(0,T ), H1
,0(0,T ),

[H1
,0(0,T )]′ are introduced in Section 2.2.

Lemma 4.2.1. The bilinear form a(·, ·) : H1
0,(0,T )×H1

,0(0,T ) → ❘ is bounded, i.e. it
holds true that

|a(u,w)| ≤
(

1+
4T 2µ

π2

)
|u|H1(0,T )|w|H1(0,T )

for all u ∈ H1
0,(0,T ), w ∈ H1

,0(0,T ).

Proof. The Cauchy-Schwarz inequality and the Poincaré inequality of Lemma 3.4.5 yield

|a(u,w)| ≤ |u|H1(0,T ) |w|H1(0,T )+µ‖u‖L2(0,T )‖w‖L2(0,T )

≤
(

1+
4T 2µ

π2

)
|u|H1(0,T ) |w|H1(0,T )

for u ∈ H1
0,(0,T ), w ∈ H1

,0(0,T ) and therefore, the assertion.

For v ∈ H1
0,(0,T ), one defines

(HT v)(t) := v(T )− v(t), t ∈ (0,T ), (4.15)

i.e. it holds true that HT v ∈ H1
,0(0,T ). The operator

HT : H1
0,(0,T )→ H1

,0(0,T )

is norm preserving, i.e.

‖v‖H1
0,(0,T ) = ‖∂tv‖L2(0,T ) =

∥∥∂tHT v
∥∥

L2(0,T ) =
∥∥HT v

∥∥
H1

,0(0,T ),

and bijective, where the inverse operator

H−1
T : H1

,0(0,T )→ H1
0,(0,T )

is given by

(H−1
T w)(t) := w(0)−w(t), t ∈ (0,T ),

for w ∈ H1
,0(0,T ). Then the variational formulation (4.13) is equivalent to the variational

formulation to find u ∈ H1
0,(0,T ) such that

a(u,HT v) =−〈∂tu,∂tHT v〉L2(0,T )+µ〈u,HT v〉L2(0,T )
!
= 〈 f ,HT v〉(0,T ) (4.16)

for all v ∈ H1
0,(0,T ). Note that for the variational formulation (4.16), the ansatz and test

spaces are equal. So, the existence and the uniqueness of a solution of (4.16) follow by a
compact perturbation argument.
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Theorem 4.2.2. For given f ∈ [H1
,0(0,T )]′, the variational formulation (4.13) admits a

unique solution u ∈ H1
0,(0,T ), satisfying

|u|H1(0,T ) ≤C(T , µ) ‖ f‖[H1
,0(0,T )]′ (4.17)

with a constant C(T , µ)> 0 depending on T and µ.

Proof. By using the Riesz representation theorem, the variational formulation (4.16) is
equivalent to the operator equation

Au+µCu = f̂ ,

where A : H1
0,(0,T )→ [H1

0,(0,T )]′, defined via

〈Au,v〉 :=−〈∂tu,∂tHT v〉L2(0,T ) = 〈∂tu,∂tv〉L2(0,T ) for u,v ∈ H1
0,(0,T ),

is elliptic, and hence, invertible, and C : H1
0,(0,T )→ [H1

0,(0,T )]′, defined via

〈Cu,v〉 := 〈u,HT v〉L2(0,T ) = 〈u,−v+ v(T )〉L2(0,T ) for u,v ∈ H1
0,(0,T ),

is compact, see [12, Satz 5.12, page 148]. Furthermore, the corresponding right-hand side
f̂ : H1

0,(0,T )→❘ is given by

f̂ (v) := 〈 f ,HT v〉(0,T ), v ∈ H1
0,(0,T ),

satisfying
∣∣ f̂ (v)

∣∣≤ ‖ f‖[H1
,0(0,T )]′

∥∥HT v
∥∥

H1
,0(0,T ) = ‖ f‖[H1

,0(0,T )]′ ‖v‖H1
0,(0,T ) = ‖ f‖[H1

,0(0,T )]′ |v|H1(0,T )

for all v ∈ H1
0,(0,T ), i.e. f̂ ∈ [H1

0,(0,T )]′. Hence, by applying the Fredholm alternative,
it remains to ensure the injectivity of A+ µC. Let u ∈ H1

0,(0,T ) be a solution of the
homogeneous equation (A+µC)u = 0, i.e.

〈∂tu,∂tw〉L2(0,T ) = µ〈u,w〉L2(0,T ) for all w ∈ H1
,0(0,T ).

This is the weak formulation of the eigenvalue problem

−∂ttu(t) = µ u(t) for t ∈ (0,T ), u(0) = ∂tu(0) = 0,

which only admits the trivial solution u ≡ 0.

To examine the dependency of the constant C(T , µ) in (4.17) on T and µ , the continu-
ous bilinear form a(·, ·) : H1

0,(0,T )×H1
,0(0,T ) → ❘ is investigated. Hence, some basic

properties of the bilinear form a(·, ·) : H1
0,(0,T )×H1

,0(0,T )→❘ are shown.
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Lemma 4.2.3. The bilinear form a(·, ·) : H1
0,(0,T )×H1

,0(0,T )→❘ satisfies the condition
(N1), i.e.

2
2+

√
µT

|u|H1(0,T ) ≤ sup
06=w∈H1

,0(0,T )

|a(u,w)|
|w|H1(0,T )

for all u ∈ H1
0,(0,T ).

Proof. Let u ∈ H1
0,(0,T ) be fixed and set for t ∈ [0,T ]

w̃(t) := u(T )−u(t)+ z(t)

with

z(t) :=
√

µ

T∫

t

sin(
√

µ(s− t)) [u(s)−u(T )]ds.

It holds true that w̃(T ) = 0 and w̃ ∈ H1
,0(0,T ). Differentiation under the integral sign yields

∂tz(t) =−µ

T∫

t

cos(
√

µ(s− t)) [u(s)−u(T )]ds,

∂ttz(t) =−µ3/2
T∫

t

sin(
√

µ(s− t)) [u(s)−u(T )]ds+µ[u(t)−u(T )]

=−µz(t)+µ[u(t)−u(T )],

i.e. the function z ∈ H1
,0(0,T ) is the unique solution of the adjoint equation

∂ttz(t)+µz(t) = µ[u(t)−u(T )] for t ∈ (0,T ), z(T ) = ∂tz(T ) = 0.

Therefore, it holds true that

a(u, w̃) = a(u,u(T )−u)+a(u,z)

= 〈∂tu,∂tu〉L2(0,T )+µ〈u,u(T )−u〉L2(0,T )+µ〈u,u−u(T )〉L2(0,T )

= |u|2H1(0,T ) .

Integration by parts gives

∂tz(t) =−µ

T∫

t

cos(
√

µ(s− t)) [u(s)−u(T )]ds =
√

µ

T∫

t

sin(
√

µ(s− t))∂tu(s)ds

and so, from the Cauchy-Schwarz inequality, it follows that

|z|H1(0,T ) ≤
√

µT

2
|u|H1(0,T ).
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Finally, one gets the estimate

|w̃|H1(0,T ) ≤ |u|H1(0,T )+ |z|H1(0,T ) ≤
(

1+
√

µT

2

)
|u|H1(0,T ) =

2+
√

µT

2
|u|H1(0,T )

to conclude

sup
06=w∈H1

,0(0,T )

|a(u,w)|
|w|H1(0,T )

≥ |a(u, w̃)|
|w̃|H1(0,T )

≥ 2
2+

√
µT

|u|H1(0,T )

and so, the inf-sup condition follows.

Lemma 4.2.4. The bilinear form a(·, ·) : H1
0,(0,T )×H1

,0(0,T )→❘ satisfies the condition
(N2):

For each function 0 6= w ∈ H1
,0(0,T ), an element u ∈ H1

0,(0,T ) with a(u,w) 6= 0 exists.

Proof. Let 0 6= w ∈ H1
,0(0,T ) be fixed. Set for t ∈ [0,T ]

ũ(t) :=
1√
µ

t∫

0

w(s)sin(
√

µ(t − s))ds.

It follows that ũ ∈ H1
0,(0,T ) satisfies (4.12) for the right-hand side f = w ∈ H1

,0(0,T ).
Hence, one concludes

a(ũ,w) = 〈w,w〉L2(0,T ) = ‖w‖2
L2(0,T ) > 0

and therefore, the assertion.

With these properties of the bilinear form a(·, ·) : H1
0,(0,T )×H1

,0(0,T )→❘, the next ex-
istence and uniqueness theorem is proven, including an explicit dependency relation of the
constant C(T , µ) on T and µ.

Theorem 4.2.5. Let f ∈ [H1
,0(0,T )]′ be given. There exists a unique solution u ∈ H1

0,(0,T )
of the variational formulation (4.13). Furthermore,

L : [H1
,0(0,T )]′ → H1

0,(0,T ), L f := u,

is an isomorphism, satisfying

|u|H1(0,T ) = |L f |H1(0,T ) ≤
2+

√
µT

2
‖ f‖[H1

,0(0,T )]′ . (4.18)
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Proof. For the Hilbert spaces
(

H1
0,(0,T ),〈·, ·〉H1

0,(0,T )

)
and

(
H1

,0(0,T ),〈·, ·〉H1
,0(0,T )

)
, use

the Nečas Theorem 2.9.1 with the help of the previous lemmata to conclude the existence
and uniqueness of a solution u ∈ H1

0,(0,T ) together with the a priori estimate.

Theorem 4.2.6. There exist positive constants c1, c2 and further, a family of functions
uµ ,T ∈ H1

0,(0,T ) with

∥∥L−1uµ ,T
∥∥
[H1

,0(0,T )]′ ∈ O
(

1√
µ

)
and

∣∣uµ ,T
∣∣
H1(0,T ) → c1 as µ → ∞,

and with

∥∥L−1uµ ,T
∥∥
[H1

,0(0,T )]′ ∈ O
(

1
T

)
and

∣∣uµ ,T
∣∣
H1(0,T ) → c2 as T → ∞.

In particular, the inequality (4.18) is optimal with respect to the order of µ and T.

Proof. The asserted family of elements uµ ,T ∈ H1
0,(0,T ) is given by

uµ ,T (t) :=
1√
T 3

t∫

0

s sin(
√

µs)ds, t ∈ [0,T ],

where the initial conditions uµ ,T (0) = ∂tuµ ,T (0) = 0 are fulfilled. One computes

∣∣uµ ,T
∣∣
H1(0,T ) =

√
1
6
− sin

(
2
√

µT
)

4
√

µT
+

sin
(
2
√

µT
)

8µ3/2T 3
− cos

(
2
√

µT
)

4µT 2

and hence,
∣∣uµ ,T

∣∣
H1(0,T ) →

√
1
6

as µ → ∞ or as T → ∞. (4.19)

The corresponding right-hand side is

fµ ,T (t) := ∂ttuµ ,T (t)+µ uµ ,T (t) =
2√
T 3

sin(
√

µt), t ∈ (0,T ),

and by the usage of the Fourier series representation of ‖·‖[H1
,0(0,T )]′ , see Lemma 3.4.4, it

follows that
∥∥L−1uµ ,T

∥∥
[H1

,0(0,T )]′ =
∥∥ fµ ,T

∥∥
[H1

,0(0,T )]′

=

√
T 3

2

∞

∑
k=0

(π

2
+ kπ

)−2
f 2
µ ,T ,k

=

√
6

µT 2 +
sin
(
2
√

µT
)
−8sin

(√
µT
)

µ3/2T 3
.
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With this last equality, it holds true that
∥∥L−1uµ ,T

∥∥
[H1

,0(0,T )]′ ∈ O
(

1√
µ

)
as µ → ∞ and

∥∥L−1uµ ,T
∥∥
[H1

,0(0,T )]′ ∈ O
(

1
T

)
as T → ∞.

While for f ∈ [H1
,0(0,T )]′ the bound (4.18) shows an explicit dependence on

√
µ , an esti-

mate independent of µ is proven, when assuming f ∈ L2(0,T ).

Lemma 4.2.7. For a given right-hand side f ∈ L2(0,T ), the unique solution u ∈ H1
0,(0,T )

of the variational formulation (4.13) satisfies

|u|2H1(0,T )+µ ‖u‖2
L2(0,T ) ≤

1
2

T 2 ‖ f‖2
L2(0,T ).

In addition, the estimate above is optimal with respect to the order of the terminal time T
and the order of the parameter µ.

Proof. For the solution u ∈ H1
0,(0,T ) and its first-order derivative, the representations

u(t) =
1√
µ

t∫

0

sin
(√

µ(t − s)
)

f (s)ds, t ∈ (0,T ),

and

∂tu(t) =

t∫

0

cos
(√

µ(t − s)
)

f (s)ds, t ∈ (0,T ),

hold true. With the calculations for t ∈ (0,T )

∂tu(t)
2 +µ u(t)2 =




t∫

0

cos
(√

µ(t − s)
)

f (s)ds




2

+




t∫

0

sin
(√

µ(t − s)
)

f (s)ds




2

≤
t∫

0

cos2
(√

µ(t − s)
)

ds

t∫

0

f (s)2ds+

t∫

0

sin2
(√

µ(t − s)
)

ds

t∫

0

f (s)2ds

= t

t∫

0

f (s)2ds ≤ t

T∫

0

f (s)2ds,

it follows that

|u|2H1(0,T )+µ ‖u‖2
L2(0,T ) =

T∫

0

{
∂tu(t)

2 +µ u(t)2
}

dt

≤
T∫

0

tdt

T∫

0

f (s)2ds =
1
2

T 2 ‖ f‖2
L2(0,T ),
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and so, the estimate.

For the optimality of this estimate, take the family uµ ,T ∈ H1
0,(0,T ) of the proof of Theo-

rem 4.2.6. The L2 norm of uµ ,T is

∥∥uµ ,T
∥∥

L2(0,T ) =

√
1

6µ
− 5sin

(
2
√

µT
)

8µ5/2T 3
+

sin
(
2
√

µT
)

4µ3/2T
+

1
2µ2T 2 +

3cos
(
2
√

µT
)

4µ2T 2 ,

and hence,
∥∥uµ ,T

∥∥
L2(0,T ) ∈ O

(
1√
µ

)
as µ → ∞ and

∥∥uµ ,T
∥∥

L2(0,T ) →
√

1
6µ as T → ∞. Fur-

thermore, for the corresponding right-hand side fµ ,T (t) =
2√
T 3

sin(
√

µt), the L2 norm is
given by

∥∥ fµ ,T
∥∥

L2(0,T ) =

√
2

T 2 −
sin(2

√
µT )√

µT 3

and so, with (4.19), the assertion follows.

With the notations of Section 2.6, a conforming Galerkin-Bubnov finite element discreti-
sation of the equivalent variational formulation (4.16) is to find a function

uht ∈ S1
ht ,0,(0,T ) = span{ϕk}Nt

k=1 ⊂ H1
0,(0,T )

such that

a(uht ,HT vht ) =−〈∂tuht ,∂tHT vht 〉L2(0,T )+µ〈uht ,HT vht 〉L2(0,T )
!
= 〈 f ,HT vht 〉(0,T ) (4.20)

for all vht ∈ S1
ht ,0,(0,T ). Unique solvability of (4.20) and related error estimates follow as

for the numerical solution of elliptic operator equations with compact perturbations, which
is based on a discrete stability condition for a sufficiently small mesh size ht . Using the
optimal Poincaré constant of Lemma 3.4.5, it turns out that for a sufficiently small mesh
size

ht ≤
√

3π√
2(2+

√
µT )µT

, (4.21)

the discrete stability condition

c(µ ,T ) |uht |H1(0,T ) ≤ sup
06=vht∈S1

ht ,0,(0,T )

a(uht ,HT vht )

|vht |H1(0,T )

holds true for all uht ∈ S1
ht ,0,(0,T ) with a constant c(µ ,T ) > 0, see [145] for a proof, im-

plying the error estimate

|u−uht |H1(0,T ) ≤ c̃(µ ,T )ht ‖u‖H2(0,T )
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with a constant c̃(µ ,T )> 0, when assuming u ∈ H2(0,T )∩H1
0,(0,T ).

Alternatively, the Galerkin-Petrov finite element discretisation of the variational formula-
tion (4.13) is to find uht ∈ S1

ht ,0,(0,T ) = span{ϕk}Nt
k=1 ⊂ H1

0,(0,T ) such that

a(uht ,wht ) =−〈∂tuht ,∂twht 〉L2(0,T )+µ〈uht ,wht 〉L2(0,T )
!
= 〈 f ,wht 〉(0,T ) (4.22)

for all wht ∈ S1
ht , ,0

(0,T ) = span{ϕk}Nt−1
k=0 ⊂ H1

,0(0,T ). The related system matrix of (4.22)
is given by

Kht =−Aht +µMht ∈❘Nt×Nt (4.23)

with the stiffness matrix

Aht =




−1
ht,1

1
ht,1

+ 1
ht,2

−1
ht,2

−1
ht,2

1
ht,2

+ 1
ht,3

−1
ht,3

. . . . . . . . .
−1

ht,Nt−1

1
ht,Nt−1

+ 1
ht,Nt

−1
ht,Nt




(4.24)

and the mass matrix

Mht =
1
6




ht,1

2ht,1 +2ht,2 ht,2

ht,2 2ht,2 +2ht,3 ht,3
. . . . . . . . .

ht,Nt−1 2ht,Nt−1 +2ht,Nt ht,Nt



. (4.25)

Hence, unique solvability of (4.22) follows because Kht is a lower triangular matrix with
positive diagonal elements.

Remark 4.2.8. For a uniform discretisation with mesh size ht , one can interpret the matrix
Kht in (4.23) as a finite difference scheme

a0v1 = f1,

a1v1 +a0v2 = f2,

a0v j−2 +a1v j−1 +a0v j = f j for j > 2,

where

a0 :=
1
ht

+
µht

6
=

6+µh2
t

6ht
, a1 :=

−2
ht

+
4µht

6
=

−6+2µh2
t

3ht

and with given f j ∈ ❘. The essential case f j = 0 for j > 2 is examined. The solution of
the homogeneous linear recurrence relation

a0v j−2 +a1v j−1 +a0v j = 0 for j > 2
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is given for j ≥ 1 by

v j =





A0

(
6−2h2

t µ+
√

3ht

√
µ(h2

t µ−12)
6+h2

t µ

) j−1

+A1

(
6−2h2

t µ−
√

3ht

√
µ(h2

t µ−12)
6+h2

t µ

) j−1

, if h2
t µ > 12,

(−1) j−1(A0 +A1( j−1)), if h2
t µ = 12,

A0 cos
(
( j−1)arccos 6−2h2

t µ

6+h2
t µ

)
+A1 sin

(
( j−1)arccos 6−2h2

t µ

6+h2
t µ

)
, if h2

t µ < 12,

where the coefficients A0, A1 ∈ ❘ are determined by f1, f2 ∈ ❘. Hence, in general, the
sequence (v j) j∈◆ is bounded as j → ∞ if and only if

h2
t µ < 12 ⇐⇒ ht <

√
12
µ

, (4.26)

see Table 4.6 for a numerical illustration.

From Remark 4.2.8, one concludes that the numerical scheme (4.22) is only conditionally
stable. To overcome the mesh conditions (4.21) or (4.26), the numerical scheme in (4.22)
is stabilised. Considering that the following technical lemmata are needed, where the
trapezoidal rule is used analogously as in [164, Chapter 2]. In addition to S1

ht
(0,T ), also

the finite element space S0
ht
(0,T ) of piecewise constant functions on the same time mesh

is used, see Section 2.6.

Lemma 4.2.9. For all f ∈ L2(0,T ), the equalities

∂tIht

(·)∫

0

f (s)ds = Q0
ht

f = ∂tIht

(·)∫

T

f (s)ds (4.27)

are valid, where Iht : C[0,T ] → S1
ht
(0,T ) is the piecewise linear interpolation operator

(2.27), and Q0
ht

: L2(0,T ) → S0
ht
(0,T ) denotes the L2 projection (2.26) on the piecewise

constant finite element space S0
ht
(0,T ).

Proof. On the element τℓ = (tℓ−1, tℓ), ℓ= 1, . . . ,Nt , it holds true that

∂tIht

(·)∫

0

f (s)ds =
1

ht,ℓ




tℓ∫

0

f (s)ds−
tℓ−1∫

0

f (s)ds


=

1
ht,ℓ

tℓ∫

tℓ−1

f (s)ds = Q0
ht

f

and

∂tIht

(·)∫

T

f (s)ds =
1

ht,ℓ




tℓ∫

T

f (s)ds−
tℓ−1∫

T

f (s)ds


=

1
ht,ℓ

tℓ∫

tℓ−1

f (s)ds = Q0
ht

f .

Hence, the assertion follows.
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Lemma 4.2.10. For all uht ∈ S1
ht ,0,(0,T ) and wht ∈ S1

ht , ,0
(0,T ), the representation

〈uht ,wht 〉L2(0,T ) =
1

12

Nt

∑
ℓ=1

h2
t,ℓ〈∂tuht ,∂twht 〉L2(τℓ)

+ 〈uht ,Q
0
ht

wht 〉L2(0,T ) (4.28)

holds true, where Q0
ht

: L2(0,T )→ S0
ht
(0,T ) denotes the L2 projection (2.26) on the piece-

wise constant finite element space S0
ht
(0,T ).

Proof. With the error representation of the trapezoidal rule, one obtains on each finite
element τℓ, ℓ= 1, . . . ,Nt ,

Q0
ht

(·)∫

T

wht (s)ds =
1

ht,ℓ

tℓ∫

tℓ−1

t∫

T

wht (s)dsdt

=
1
2




tℓ−1∫

T

wht (s)ds+

tℓ∫

T

wht (s)ds


−

h2
t,ℓ

12
∂twht |τℓ

= Q0
ht

Iht

(·)∫

T

wht (s)ds−
h2

t,ℓ

12
∂twht |τℓ .

Further, using integration by parts and (4.27), it follows that

T∫

0

∂tuht (t)


Iht

(·)∫

T

wht (s)ds


(t)dt =−

T∫

0

uht (t)


∂tIht

(·)∫

T

wht (s)ds


(t)dt

=−
T∫

0

uht (t)Q0
ht

wht (t)dt.

With this, by using integration by parts and the local definition of the L2 projection Q0
ht

,
one concludes that

〈uht ,wht 〉L2(0,T ) =

T∫

0

uht (t)


∂t

(·)∫

T

wht (s)ds


(t)dt =−

T∫

0

∂tuht (t)




(·)∫

T

wht (s)ds


(t)dt

as well as

〈uht ,wht 〉L2(0,T ) =−
Nt

∑
ℓ=1

tℓ∫

tℓ−1

∂tuht (t)


Q0

ht

(·)∫

T

wht (s)ds


(t)dt

=
Nt

∑
ℓ=1

h2
t,ℓ

12

tℓ∫

tℓ−1

∂tuht (t)∂twht (t)dt −
Nt

∑
ℓ=1

tℓ∫

tℓ−1

∂tuht (t)


Q0

ht
Iht

(·)∫

T

wht (s)ds


(t)dt
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and further,

〈uht ,wht 〉L2(0,T ) =
1

12

Nt

∑
ℓ=1

h2
t,ℓ〈∂tuht ,∂twht 〉L2(τℓ)

−
Nt

∑
ℓ=1

tℓ∫

tℓ−1

∂tuht (t)


Iht

(·)∫

T

wht (s)ds


(t)dt

=
1
12

Nt

∑
ℓ=1

h2
t,ℓ〈∂tuht ,∂twht 〉L2(τℓ)

−
T∫

0

∂tuht (t)


Iht

(·)∫

T

wht (s)ds


(t)dt

=
1
12

Nt

∑
ℓ=1

h2
t,ℓ〈∂tuht ,∂twht 〉L2(τℓ)

+ 〈uht ,Q
0
ht

wht 〉L2(0,T ),

i.e. the representation (4.28).

Next, an alternative representation of the bilinear form a(·, ·) is given.

Corollary 4.2.11. For uht ∈ S1
ht ,0,(0,T ) and wht ∈ S1

ht , ,0
(0,T ), the equalities

a(uht ,wht ) =−〈∂tuht ,∂twht 〉L2(0,T )+µ〈uht ,wht 〉L2(0,T )

=−〈∂tuht ,∂twht 〉L2(0,T )+
Nt

∑
ℓ=1

µh2
t,ℓ

12
〈∂tuht ,∂twht 〉L2(τℓ)

+µ〈uht ,Q
0
ht

wht 〉L2(0,T )

=
Nt

∑
ℓ=1

(
µh2

t,ℓ

12
−1

)
〈∂tuht ,∂twht 〉L2(τℓ)

+µ〈uht ,Q
0
ht

wht 〉L2(0,T ) (4.29)

are valid.

Motivated by the representation (4.29), one defines the perturbed bilinear form

aht (uht ,wht ) :=−〈∂tuht ,∂twht 〉L2(0,T )+µ〈uht ,Q
0
ht

wht 〉L2(0,T ) (4.30)

for uht ∈ S1
ht ,0,(0,T ) and wht ∈ S1

ht , ,0
(0,T ), and consider the perturbed variational formula-

tion to find ũht ∈ S1
ht ,0,(0,T ) such that

aht (ũht ,wht ) = 〈 f ,wht 〉(0,T ) (4.31)

for all wht ∈ S1
ht , ,0

(0,T ).

Lemma 4.2.12. The perturbed bilinear form (4.30) is bounded, i.e. it holds true that

|aht (uht ,wht )| ≤
(

1+
4

π2 µT 2
)
|uht |H1(0,T )|wht |H1(0,T )

for all uht ∈ S1
ht ,0,(0,T ), wht ∈ S1

ht , ,0
(0,T ).
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Proof. With the Cauchy-Schwarz inequality, the L2 stability of Q0
ht

, and the Poincaré in-
equality of Lemma 3.4.5, it follows that

|aht (uht ,wht )| ≤ |uht |H1(0,T )|wht |H1(0,T )+µ ‖uht‖L2(0,T )‖Q0
ht

wht‖L2(0,T )

≤
(

1+
4

π2 µT 2
)
|uht |H1(0,T )|wht |H1(0,T )

for uht ∈ S1
ht ,0,(0,T ), wht ∈ S1

ht , ,0
(0,T ), and so, the assertion.

The related system matrix of (4.31) is given by

K̃ht =−Aht +µM̃ht ∈❘Nt×Nt (4.32)

with the stiffness matrix Aht in (4.24) and the perturbed mass matrix

M̃ht =
1
4




ht,1

ht,1 +ht,2 ht,2

ht,2 ht,2 +ht,3 ht,3
. . . . . . . . .

ht,Nt−1 ht,Nt−1 +ht,Nt ht,Nt



. (4.33)

Hence, unique solvability of (4.31) follows because K̃ht is a lower triangular matrix with
positive diagonal elements.

Remark 4.2.13. Note that the Galerkin-Petrov finite element discretisation (4.31) can be
realised as a two-step method, which differs from the Newmark scheme, see Section 4.1,
only in the treatment of the input data.

To prove a discrete stability condition for the perturbed bilinear form (4.30), the following
lemma is needed, which is analogous to [164, Theorem 2.1, page 168].

Lemma 4.2.14. For a given function zht ∈ S1
ht , ,0

(0,T ), represented by

zht (t) =
Nt

∑
i=0

ziϕi(t) with zNt = 0,

and a fixed index j ∈ {0, . . . ,Nt −1}, a function

v j
ht
∈ S1

ht ,0,(0,T )

exists with the following properties:

1. For t ∈ [0, t j], it holds true that v j
ht
(t) = 0.
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2. For ℓ= j+1, . . . ,Nt , the equalities

〈∂tv
j
ht

,∂tzht 〉L2(τℓ)
=

1
2

(
z2
ℓ − z2

ℓ−1

)

and

〈v j
ht

,Q0
ht

zht 〉L2(τℓ)
=

1
2




tℓ∫

t j

zht (s)ds




2

− 1
2




tℓ−1∫

t j

zht (s)ds




2

are valid.

3. The estimate
|v j

ht
|H1(0,T ) ≤ ‖zht‖L2(0,T )

holds true.

Proof. For zht ∈ S1
ht , ,0

(0,T ), consider the piecewise linear interpolation of the antideriva-
tive, i.e. for t ∈ [0,T ], one defines

vht (t) :=
Nt

∑
k=0




tk∫

0

zht (s)ds


 ϕk(t) =


Iht

(·)∫

0

zht (s)ds


(t) , vht ∈ S1

ht ,0,(0,T ).

The relation ∂tvht = Q0
ht

zht follows from (4.27). For a fixed index j ∈ {0, . . . ,Nt −1}, one
defines

z j
ht
(t) =

Nt

∑
i=0

z j
i ϕi(t), z j

i =

{
(−1) j−iz j for i = 0, . . . , j,

zi for i = j+1, . . . ,Nt .

Note that z j
ht
∈ S1

ht , ,0
(0,T ), and according to z j

ht
one introduces v j

ht
, satisfying ∂tv

j
ht
=Q0

ht
z j

ht
.

In particular, for j > 0 and t ∈ τℓ for ℓ= 1, . . . , j, it follows that

∂tv
j
ht
(t) = Q0

ht
z j

ht
(t) =

1
ht,ℓ

tℓ∫

tℓ−1

z j
ht
(s)ds =

1
2

(
z j
ℓ−1 + z j

ℓ

)
= 0,

and due to v j
ht
(0) = 0, one concludes v j

ht
(t) = 0 for t ∈ [0, t j], i.e. the first assertion.

To prove the second assertion, one computes for ℓ= j+1, . . . ,Nt

〈∂tv
j
ht

,∂tzht 〉L2(τℓ)
= 〈Q0

ht
z j

ht
,∂tzht 〉L2(τℓ)

=
1
2

(
z j
ℓ−1 + z j

ℓ

)(
zℓ− zℓ−1

)

=
1
2

(
zℓ−1 + zℓ

)(
zℓ− zℓ−1

)

=
1
2

(
z2
ℓ − z2

ℓ−1

)



4.2 Space-Time Variational Formulation in H1(Q) 143

as well as

〈v j
ht

,Q0
ht

zht 〉L2(τℓ)
=

tℓ∫

tℓ−1


Iht

(·)∫

0

z j
ht
(s)ds


(t)Q0

ht
zht (t)dt

= Q0
ht

zht |τℓ

tℓ∫

tℓ−1




tℓ−1∫

0

z j
ht
(s)dsϕℓ−1(t)+

tℓ∫

0

z j
ht
(s)dsϕℓ(t)


dt

=
1

ht,ℓ

tℓ∫

tℓ−1

zht (s)ds
1
2

ht,ℓ




tℓ−1∫

0

z j
ht
(s)ds+

tℓ∫

0

z j
ht
(s)ds




=
1
2

tℓ∫

tℓ−1

zht (s)ds




tℓ−1∫

t j

zht (s)ds+

tℓ∫

t j

zht (s)ds




and with completing the square,

〈v j
ht

,Q0
ht

zht 〉L2(τℓ)
=

1
2




tℓ∫

tℓ−1

zht (s)ds




2

+

tℓ∫

tℓ−1

zht (s)ds

tℓ−1∫

t j

zht (s)ds

=
1
2




tℓ∫

tℓ−1

zht (s)ds+

tℓ−1∫

t j

zht (s)ds




2

− 1
2




tℓ−1∫

t j

zht (s)ds




2

=
1
2




tℓ∫

t j

zht (s)ds




2

− 1
2




tℓ−1∫

t j

zht (s)ds




2

.

Finally, from the L2 stability of Q0
ht

, one concludes the third assertion, i.e.

|v j
ht
|H1(0,T ) = |v j

ht
|H1(t j,T ) = ‖Q0

ht
z j

ht
‖L2(t j,T )

= ‖Q0
ht

zht‖L2(t j,T ) ≤ ‖Q0
ht

zht‖L2(0,T ) ≤ ‖zht‖L2(0,T ).

Hence, the lemma is proven.

Lemma 4.2.15. The variational formulation to find zht ∈ S1
ht , ,0

(0,T ) such that

aht (vht ,zht ) = 〈g0,vht 〉(0,T )+ 〈g1,∂tvht 〉L2(0,T )+
Nt

∑
ℓ=1

h2
t,ℓ〈g2,∂tvht 〉L2(τℓ)

(4.34)

for all vht ∈ S1
ht ,0,(0,T ) is uniquely solvable, where the right-hand sides g0 ∈ [H1

0, (0,T )]′

and g1,g2 ∈ L2(0,T ) are given. Moreover, the stability estimate

‖zht‖L2(0,T ) ≤ 2T
{
‖g0‖[H1

0, (0,T )]′ +‖g1‖L2(0,T )+h2
t ‖g2‖L2(0,T )

}
(4.35)



144 4 Wave Equation

holds true for any mesh with maximal mesh size ht .

Proof. The related finite element system matrix K̃⊤
ht

of the variational formulation (4.34)
is upper triangular with positive diagonal elements, see (4.32), and hence, there exists a
unique solution zht ∈ S1

ht , ,0
(0,T ) of (4.34).

For the estimate, consider for each index j ∈ {0, . . . ,Nt −1} a function v j
ht
∈ S1

ht ,0,(0,T ) as

given in Lemma 4.2.14. Plugging these functions v j
ht

into (4.34) and by using the properties
of Lemma 4.2.14, this gives

aht (v
j
ht

,zht ) =−〈∂tv
j
ht

,∂tzht 〉L2(0,T )+µ〈v j
ht

,Q0
ht

zht 〉L2(0,T )

=−
Nt

∑
ℓ= j+1

〈∂tv
j
ht

,∂tzht 〉L2(τℓ)
+µ

Nt

∑
ℓ= j+1

〈v j
ht

,Q0
ht

zht 〉L2(τℓ)

=−1
2

Nt

∑
ℓ= j+1

(
z2
ℓ − z2

ℓ−1

)
+

µ

2

Nt

∑
ℓ= j+1







tℓ∫

t j

zht (s)ds




2

−




tℓ−1∫

t j

zht (s)ds




2



=
1
2

z2
j +

µ

2




T∫

t j

zht (s)ds




2

and so,

〈g0,v j
ht
〉(0,T )+ 〈g1,∂tv

j
ht
〉L2(0,T )+

Nt

∑
ℓ=1

h2
t,ℓ〈g2,∂tv

j
ht
〉L2(τℓ)

= aht (v
j
ht

,zht )

=
1
2

z2
j +

µ

2




T∫

t j

zht (s)ds




2

.

This result yields

‖zht‖2
L2(0,T ) =

Nt

∑
ℓ=1

‖zht‖2
L2(τℓ)

=
Nt

∑
ℓ=1

ht,ℓ

3

(
z2
ℓ + zℓzℓ−1 + z2

ℓ−1

)
≤ 1

2

Nt

∑
ℓ=1

ht,ℓ

(
z2
ℓ + z2

ℓ−1

)

≤ 1
2

Nt−1

∑
j=1

ht, jz
2
j +

1
2

Nt−1

∑
j=0

ht, j+1z2
j

≤
Nt−1

∑
j=1

ht, j

{
〈g0,v j

ht
〉(0,T )+ 〈g1,∂tv

j
ht
〉L2(0,T )+

Nt

∑
ℓ=1

h2
t,ℓ〈g2,∂tv

j
ht
〉L2(τℓ)

}

+
Nt−1

∑
j=0

ht, j+1

{
〈g0,v j

ht
〉(0,T )+ 〈g1,∂tv

j
ht
〉L2(0,T )+

Nt

∑
ℓ=1

h2
t,ℓ〈g2,∂tv

j
ht
〉L2(τℓ)

}
.
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With the last inequality, the Cauchy-Schwarz inequality and the use of the properties of
Lemma 4.2.14, one concludes

‖zht‖2
L2(0,T ) ≤

Nt−1

∑
j=1

ht, j

{
‖g0‖[H1

0, (0,T )]′ +‖g1‖L2(0,T )+h2
t ‖g2‖L2(0,T )

}
|v j

ht
|
H1(0,T )︸ ︷︷ ︸

≤‖zht‖L2(0,T )

+
Nt−1

∑
j=0

ht, j+1

{
‖g0‖[H1

0, (0,T )]′ +‖g1‖L2(0,T )+h2
t ‖g2‖L2(0,T )

}
|v j

ht
|
H1(0,T )︸ ︷︷ ︸

≤‖zht‖L2(0,T )

≤ 2T
{
‖g0‖[H1

0, (0,T )]′ +‖g1‖L2(0,T )+h2
t ‖g2‖L2(0,T )

}
‖zht‖L2(0,T ),

i.e. the assertion.

Corollary 4.2.16. The variational formulation to find vht ∈ S1
ht ,0,(0,T ) such that

aht (vht ,wht ) = 〈 f0,wht 〉(0,T )+ 〈 f1,∂twht 〉L2(0,T )+
Nt

∑
ℓ=1

h2
t,ℓ〈 f2,∂twht 〉L2(τℓ)

(4.36)

for all wht ∈ S1
ht , ,0

(0,T ) is uniquely solvable, where the right-hand sides f0 ∈ [H1
,0(0,T )]′

and f1, f2 ∈ L2(0,T ) are given. Moreover, the stability estimate

‖vht‖L2(0,T ) ≤ 2T
{
‖ f0‖[H1

,0(0,T )]′ +‖ f1‖L2(0,T )+h2
t ‖ f2‖L2(0,T )

}
(4.37)

holds true for any mesh with maximal mesh size ht .

Proof. The related finite element system matrix K̃ht of the variational formulation (4.36)
is lower triangular with positive diagonal elements, see (4.32), and hence, there exists a
unique solution vht ∈ S1

ht ,0,(0,T ) of (4.36).

The proof of the stability estimate is analogous to the proof of (4.35) with the help of a
corresponding lemma analogous to Lemma 4.2.14.

Lemma 4.2.17. For each uht ∈ S1
ht ,0,(0,T ), the discrete inf-sup condition

1

1+ 4
π µT 2

|uht |H1(0,T ) ≤ sup
06=wht∈S1

ht , ,0(0,T )

|aht (uht ,wht )|
|wht |H1(0,T )

holds true.
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Proof. For a fixed function uht ∈ S1
ht ,0,(0,T ), let wht ∈ S1

ht , ,0
(0,T ) be the unique solution of

(4.34) for g0 = g2 = 0 and g1 = ∂tuht ∈ L2(0,T ), i.e.

aht (vht ,wht ) = 〈∂tuht ,∂tvht 〉L2(0,T ) (4.38)

is valid for all vht ∈ S1
ht ,0,(0,T ). For the particular choice vht (t) =wht (0)−wht (t), t ∈ [0,T ],

it holds true that vht ∈ S1
ht ,0,(0,T ) and so, it follows that

〈∂twht ,∂twht 〉L2(0,T )−µ〈wht −wht (0),Q
0
ht

wht 〉L2(0,T ) =−〈∂tuht ,∂twht 〉L2(0,T ).

Hence, using the Cauchy-Schwarz inequality, the Poincaré inequality from Lemma 3.4.5
and the L2 stability of the L2 projection Q0

ht
, one concludes

|wht |2H1(0,T ) =−〈∂tuht ,∂twht 〉L2(0,T )+µ 〈wht −wht (0),Q
0
ht

wht 〉L2(0,T )

≤ |uht |H1(0,T )|wht |H1(0,T )+µ ‖wht −wht (0)‖L2(0,T )‖Q0
ht

wht‖L2(0,T )

≤ |uht |H1(0,T )|wht |H1(0,T )+
2
π

µT |wht |H1(0,T )‖wht‖L2(0,T )

≤
(

1+
4
π

µT 2
)
|uht |H1(0,T )|wht |H1(0,T ),

where in the last step, the stability estimate ‖wht‖L2(0,T ) ≤ 2T |uht |H1(0,T ) from (4.35) is
used.

The choice vht = uht ∈ S1
ht ,0,(0,T ) in (4.38) and the estimate above yield

aht (uht ,wht ) = |uht |2H1(0,T ) ≥
1

1+ 4
π µT 2

|uht |H1(0,T )|wht |H1(0,T )

and hence, the discrete inf-sup condition follows.

Theorem 4.2.18. For given f ∈ [H1
,0(0,T )]′, let the unique solution u of the variational

formulation (4.13) satisfy u ∈ H1
0,(0,T )∩Hs(0,T ) for some s ∈ [1,2]. Then, there exists a

unique solution ũht ∈ S1
ht ,0,(0,T ) of the Galerkin-Petrov finite element discretisation (4.31),

satisfying the stability estimates

‖ũht‖L2(0,T ) ≤ 2T‖ f‖[H1
,0(0,T )]′ ,

|ũht |H1(0,T ) ≤
(

1+
4
π

µT 2
)
‖ f‖[H1

,0(0,T )]′

and the error estimate

|u− ũht |H1(0,T ) ≤
[

1+
(

1+
4

π2 µT 2
)(

1+
4
π

µT 2
)]

C1 hs−1
t ‖u‖Hs(0,T )

+
1

12
µ
(

1+
4
π

µT 2
)

h2
t |u|H1(0,T ),

where the constant C1 > 0 is coming from standard interpolation error estimates.
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Proof. First, the unique solvability of the variational formulation (4.31) and the first sta-
bility estimate follow from Corollary 4.2.16 for f0 = f , f1 = f2 = 0. The second stability
estimate is a consequence of the discrete inf-sup condition given in Lemma 4.2.17.

Second, for any vht ∈ S1
ht ,0,(0,T ), it holds true that

|u− ũht |H1(0,T ) ≤ |u− vht |H1(0,T )+ |ũht − vht |H1(0,T )

and it remains to estimate the second term. With the usage the discrete inf-sup condition of
Lemma 4.2.17 and using the Galerkin orthogonality for the variational formulations (4.13)
and (4.31), it follows that

1

1+ 4
π µT 2

|ũht − vht |H1(0,T ) ≤ sup
06=wht∈S1

ht , ,0(0,T )

|aht (ũht − vht ,wht )|
|wht |H1(0,T )

= sup
06=wht∈S1

ht , ,0(0,T )

|aht (ũht ,wht )−aht (vht ,wht )|
|wht |H1(0,T )

= sup
06=wht∈S1

ht , ,0(0,T )

|a(u,wht )−aht (vht ,wht )|
|wht |H1(0,T )

= sup
06=wht∈S1

ht , ,0(0,T )

|a(u− vht ,wht )+a(vht ,wht )−aht (vht ,wht )|
|wht |H1(0,T )

.

Further, with the boundedness of the bilinear form a(·, ·) and the Poincaré inequality of
Lemma 3.4.5, one concludes

a(u− vht ,wht ) =−〈∂t(u− vht ),∂twht 〉L2(0,T )+µ〈u− vht ,wht 〉L2(0,T )

≤ |u− vht |H1(0,T )|wht |H1(0,T )+µ‖u− vht‖L2(0,T )‖wht‖L2(0,T )

≤
(

1+
4

π2 µT 2
)
|u− vht |H1(0,T )|wht |H1(0,T ).

Moreover, using the representation (4.29), one estimates the consistency error by

|a(vht ,wht )−aht (vht ,wht )|=
1

12
µ

∣∣∣∣∣
Nt

∑
ℓ=1

h2
t,ℓ〈∂tvht ,∂twht 〉L2(τℓ)

∣∣∣∣∣

≤ 1
12

µ h2
t |vht |H1(0,T )|wht |H1(0,T ).

Hence, it follows that

1

1+ 4
π µT 2

|ũht − vht |H1(0,T ) ≤
(

1+
4

π2 µT 2
)
|u− vht |H1(0,T )+

1
12

µ h2
t |vht |H1(0,T ),
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and therefore,

|u− ũht |H1(0,T ) ≤
[

1+
(

1+
4

π2 µT 2
)(

1+
4
π

µT 2
)]

|u− vht |H1(0,T )

+
1
12

µ
(

1+
4
π

µT 2
)

h2
t |vht |H1(0,T ).

In particular, for the piecewise linear interpolation vht = Iht u, it holds true that

‖u− Iht u‖H1(0,T ) ≤C1 hs−1
t ‖u‖Hs(0,T ), |Iht u|H1(0,T ) ≤ |u|H1(0,T ),

see Section 2.6 and thus, the assertion.

Remark 4.2.19. The proof of the error estimate in Theorem 4.2.18 is also given by [51,
Lemma 2.27, page 95].

Remark 4.2.20. The discrete inf-sup constant of Lemma 4.2.17 depends on the parameter
µ with order µ−1. Numerical experiments for the optimal discrete inf-sup constant

cH1(T , µ) := inf
0 6=vht∈S1

ht ,0,(0,T )
sup

06=wht∈S1
ht , ,0(0,T )

|aht (vht ,wht )|
|vht |H1(0,T )|wht |H1(0,T )

≥ 1

1+ 4
π µT 2

(4.39)

show only a dependency of order µ−1/2, where a corresponding generalised eigenvalue
problem is solved to compute cH1(T , µ), see [84, Subsection 3.6.6, page 124]. In Table 4.3
the optimal discrete inf-sup constant cH1(T , µ) is presented for µ ∈ {125,250,500,1000}
with T = 10 and a uniform mesh size ht = T/Nt .

For the optimal discrete inf-sup constant with respect to ‖·‖L2(0,T )

cL2(T , µ) := inf
0 6=vht∈S1

ht ,0,(0,T )
sup

06=wht∈S1
ht , ,0(0,T )

|aht (vht ,wht )|
‖vht‖L2(0,T )|wht |H1(0,T )

≥ 1
2T

, (4.40)

where the last inequality follows from Corollary 4.2.16, numerical experiments with the
same discretisations as for cH1(T , µ) confirm the independence of cL2(T , µ) from the pa-
rameter µ , see Table 4.4.

Numerical experiments for the bilinear form (4.14), i.e. without stabilisation, show a
similar behaviour as for the perturbed bilinear form (4.30), provided the mesh size ht is
sufficiently small, i.e. ht <

√
12/µ.

Next, an L2(0,T ) error estimate is stated, where the proof is based on the proof of [164,
Theorem 3.1, page 175].
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Nt ht cH1(10,125) cH1(10,250) cH1(10,500) cH1(10,1000)
4 2.5000000 1.12365e+01 2.21744e+01 4.40526e+01 8.78100e+01
8 1.2500000 9.77956e-01 1.62745e+00 2.96357e+00 5.65355e+00

16 0.6250000 3.33189e-01 4.22413e-01 6.05756e-01 6.80010e-01
32 0.3125000 1.12684e-01 1.35639e-01 1.79762e-01 2.31985e-01
64 0.1562500 4.89792e-02 4.96583e-02 5.60224e-02 6.97641e-02

128 0.0781250 3.33683e-02 2.72126e-02 2.47568e-02 2.50579e-02
256 0.0390625 2.91545e-02 2.16312e-02 1.66440e-02 1.36724e-02
512 0.0195312 2.83866e-02 2.02092e-02 1.46513e-02 1.08659e-02

1024 0.0097656 2.81193e-02 1.98896e-02 1.41544e-02 1.01405e-02
2048 0.0048828 2.80366e-02 1.98239e-02 1.40306e-02 9.98949e-03
4096 0.0024414 2.80160e-02 1.98080e-02 1.40038e-02 9.93791e-03
8192 0.0012207 2.80108e-02 1.98041e-02 1.39974e-02 9.92346e-03

16384 0.0006104 2.80096e-02 1.98031e-02 1.39958e-02 9.91987e-03
32768 0.0003052 2.80092e-02 1.98029e-02 1.39954e-02 9.91898e-03

Table 4.3: Optimal discrete inf-sup constant cH1(T , µ) of (4.39) for the perturbed bilinear
form (4.30) for µ ∈ {125,250,500,1000} with T = 10.

Nt ht cL2(10,125) cL2(10,250) cL2(10,500) cL2(10,1000)
4 2.5000000 1.40996e+01 2.77886e+01 5.51698e+01 1.09934e+02
8 1.2500000 2.65957e+00 4.41397e+00 8.01919e+00 1.52769e+01

16 0.6250000 1.68707e+00 2.25321e+00 3.30172e+00 3.74737e+00
32 0.3125000 8.80041e-01 1.24605e+00 1.79212e+00 2.45043e+00
64 0.1562500 4.89981e-01 6.40430e-01 8.88048e-01 1.26819e+00

128 0.0781250 3.59196e-01 4.07852e-01 4.91438e-01 6.42682e-01
256 0.0390625 3.26162e-01 3.37548e-01 3.62111e-01 4.07958e-01
512 0.0195312 3.14474e-01 3.19977e-01 3.26189e-01 3.37739e-01

1024 0.0097656 3.12185e-01 3.14389e-01 3.16821e-01 3.19974e-01
2048 0.0048828 3.11659e-01 3.12923e-01 3.14473e-01 3.14727e-01
4096 0.0024414 3.11531e-01 3.12570e-01 3.13677e-01 3.13615e-01
8192 0.0012207 3.11499e-01 3.12482e-01 3.13481e-01 3.13370e-01

16384 0.0006104 3.11491e-01 3.12460e-01 3.13432e-01 3.13310e-01
32768 0.0003052 3.11489e-01 3.12455e-01 3.13420e-01 3.13295e-01

Table 4.4: Optimal discrete inf-sup constant cL2(T , µ) of (4.40) for the perturbed bilinear
form (4.30) for µ ∈ {125,250,500,1000} with T = 10.
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Theorem 4.2.21. Let the unique solution u of (4.13) satisfy u ∈ H1
0,(0,T )∩Hs(0,T ) for

some s ∈ [1,2]. Then, the unique solution ũht ∈ S1
ht ,0,(0,T ) of the Galerkin-Petrov finite

element discretisation (4.31) from Theorem 4.2.18 satisfies

‖u− ũht‖L2(0,T ) ≤ c

(
1+

4
π

T 2µ

)
hs

t‖u‖Hs(0,T )+
µT h2

t

6
|u|H1(0,T )

with a constant c > 0 independent of µ and ht .

Proof. With the representation (4.29) and the H1
0, projection Q1

ht
u of (2.33), it holds true

that

aht (ũht −Q1
ht

u,wht ) = aht (ũht ,wht )︸ ︷︷ ︸
=a(u,wht )

−aht (Q
1
ht

u,wht )

= a(u,wht )−a(Q1
ht

u,wht )+
Nt

∑
ℓ=1

µh2
t,ℓ

12
〈∂tQ

1
ht

u,∂twht 〉L2(τℓ)

=− 〈∂tu,∂twht 〉L2(0,T )︸ ︷︷ ︸
=〈∂tQ1

ht
u,∂twht 〉L2(0,T )

+µ〈u,wht 〉L2(0,T )+ 〈∂tQ
1
ht

u,∂twht 〉L2(0,T )

−µ〈Q1
ht

u,wht 〉L2(0,T )+
Nt

∑
ℓ=1

µh2
t,ℓ

12
〈∂tQ

1
ht

u,∂twht 〉L2(τℓ)

= µ〈u−Q1
ht

u,wht 〉L2(0,T )+
Nt

∑
ℓ=1

µh2
t,ℓ

12
〈∂tQ

1
ht

u,∂twht 〉L2(τℓ)

for all wht ∈ S1
ht , ,0

(0,T ) and so, ũht −Q1
ht

u ∈ S1
ht ,0,(0,T ) is the unique solution of the varia-

tional formulation (4.36) for

f0 = µ · (u−Q1
ht

u) ∈ L2(0,T ), f2 =
µ

12
∂tQ

1
ht

u ∈ L2(0,T ) and f1 = 0.

Therefore, the stability estimate (4.37), the Poincaré inequality from Lemma 3.4.5 and the
stability of the H1

0, projection give

‖ũht −Q1
ht

u‖L2(0,T ) ≤ 2T µ
∥∥u−Q1

ht
u
∥∥
[H1

,0(0,T )]′ +
µT h2

t

6

∥∥∂tQ
1
ht

u
∥∥

L2(0,T )

≤ 4
π

T 2µ
∥∥u−Q1

ht
u
∥∥

L2(0,T )
+

µT h2
t

6
|u|H1(0,T ).

With the last estimate, the triangle inequality and the error estimate (2.34) for the H1
0,

projection, it holds true that

‖u− ũht‖L2(0,T ) ≤ ‖u−Q1
ht

u‖L2(0,T )+‖ũht −Q1
ht

u‖L2(0,T )

≤ c

(
1+

4
π

T 2µ

)
hs

t‖u‖Hs(0,T )+
µT h2

t

6
|u|H1(0,T )

with a constant c > 0 independent of µ and ht . Hence, the assertion follows.
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As a numerical example for the Galerkin finite element methods (4.22) and (4.31), a
uniform discretisation of the time interval (0,T ) with T = 10 and a uniform mesh size
ht = T/Nt is introduced. For µ = 1000, consider the solution

u(t) = sin2
(

5
4

πt

)
, t ∈ [0,T ],

where calculations of the appearing integrals for the related right-hand side in (4.22) and
(4.31) are done by the usage of high-order integration rules.

In Table 4.5 the results for the stabilised variational formulation (4.31), which is uncon-
ditionally stable, are presented, where the error estimate in the energy norm of Theo-
rem 4.2.18 is confirmed. In addition, the error in L2(0,T ) is presented, where a quadratic
convergence, as expected from Theorem 4.2.21, is observed.

Nt ht ‖u− ũht‖L2(0,10) eoc |u− ũht |H1(0,10) eoc
4 2.5000000 1.7722e+00 - 9.0867e+00 -
8 1.2500000 6.0704e+00 -1.78 2.0130e+01 -1.15

16 0.6250000 1.2687e+00 2.26 9.4204e+00 1.10
32 0.3125000 5.7861e+00 -2.19 6.0121e+01 -2.67
64 0.1562500 3.3966e-01 4.09 6.1941e+00 3.28

128 0.0781250 7.6647e-02 2.15 2.2955e+00 1.43
256 0.0390625 2.0315e-02 1.92 9.4091e-01 1.29
512 0.0195312 5.2649e-03 1.95 4.1539e-01 1.18

1024 0.0097656 1.3365e-03 1.98 1.9803e-01 1.07
2048 0.0048828 3.3682e-04 1.99 9.7671e-02 1.02
4096 0.0024414 8.4229e-05 2.00 4.8663e-02 1.01
8192 0.0012207 2.1057e-05 2.00 2.4310e-02 1.00

16384 0.0006104 5.2644e-06 2.00 1.2152e-02 1.00
32768 0.0003052 1.3161e-06 2.00 6.0758e-03 1.00

Table 4.5: Numerical results for the stabilised variational formulation (4.31), µ = 1000,
T = 10.

In Table 4.6 the related results for the variational formulation (4.22) without stabilisation
are presented, convergence is observed for a sufficiently small mesh size only. Note that√

12/µ ≈ 0.1095.

4.2.2 Variational Formulation for the Wave Equation

Instead of the ordinary differential equation (4.12), the wave equation (4.11) is considered.
The aim is to extend the results of Section 4.2.1 to the wave equation. So, for u ∈ H1,1

0;0, (Q)
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Nt ht ‖u−uht‖L2(0,10) eoc |u−uht |H1(0,10) eoc

4 2.5000000 7.0573e+01 - 9.8785e+01 -
8 1.2500000 1.6871e+03 -4.58 3.7166e+03 -5.23

16 0.6250000 9.1421e+07 -15.73 3.7247e+08 -16.61
32 0.3125000 2.3915e+15 -24.64 1.9496e+16 -25.64
64 0.1562500 1.6337e+22 -22.70 2.9536e+23 -23.85

128 0.0781250 3.1417e-02 78.78 1.7859e+00 77.13
256 0.0390625 9.2885e-03 1.76 8.2361e-01 1.12
512 0.0195312 2.4767e-03 1.91 3.9567e-01 1.06

1024 0.0097656 6.3105e-04 1.97 1.9532e-01 1.02
2048 0.0048828 1.5839e-04 1.99 9.7325e-02 1.00
4096 0.0024414 3.9633e-05 2.00 4.8620e-02 1.00
8192 0.0012207 9.9106e-06 2.00 2.4304e-02 1.00

16384 0.0006104 2.4778e-06 2.00 1.2152e-02 1.00
32768 0.0003052 6.1946e-07 2.00 6.0757e-03 1.00

Table 4.6: Numerical results for the variational formulation (4.22), µ = 1000, T = 10.

and w ∈ H1,1
0; ,0(Q), one defines the bilinear form

a(u,w) :=−〈∂tu,∂tw〉L2(Q)+ 〈∇xu,∇xw〉L2(Q),

see Section 2.5 for the details of the Sobolev spaces. The boundedness of the bilinear form
a(·, ·) is stated in the next lemma.

Lemma 4.2.22. The bilinear form a(·, ·) : H1,1
0;0, (Q)×H1,1

0; ,0(Q)→❘ is bounded, i.e.

|a(u,w)| ≤ |u|H1(Q) |w|H1(Q)

for all u ∈ H1,1
0;0, (Q), w ∈ H1,1

0; ,0(Q).

Proof. The assertion follows immediately from the Cauchy-Schwarz inequality.

The variational formulation of the wave equation (4.11) is to find u ∈ H1,1
0;0, (Q) such that

a(u,w) = 〈 f ,w〉L2(Q) (4.41)

for all w ∈ H1,1
0; ,0(Q), where f ∈ L2(Q) is given. Note that the initial condition u(·,0) = 0

is considered in the strong sense, whereas the initial condition ∂tu(·,0) = 0 is incorporated
in a weak sense.
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For the analysis of (4.41), the adjoint problem to find w ∈ H1,1
0; ,0(Q) such that

a(u,w) = 〈g,u〉L2(Q) (4.42)

for all u ∈ H1,1
0;0, (Q), where g ∈ L2(Q) is a given right-hand side, occurs.

Next, an existence and uniqueness result for the variational formulation (4.41) is given.
Such a result is contained in [97, Chapter IV], see also [145]. To summarise and to examine
also the adjoint problem (4.42), the following theorem is stated.

Theorem 4.2.23. Let f , g ∈ L2(Q) be given. There are unique solutions u ∈ H1,1
0;0, (Q) of

(4.41) and w ∈ H1,1
0; ,0(Q) of (4.42), satisfying

|u|H1(Q) ≤
1√
2

T‖ f‖L2(Q) and |w|H1(Q) ≤
1√
2

T‖g‖L2(Q).

Proof. For the variational formulation (4.41), there exists a unique solution u ∈ H1,1
0;0, (Q),

see [97, Chapter IV, Theorem 3.1, page 157, and Theorem 3.2, page 160]. The estimate
follows by a Fourier series ansatz as in [97, Section 7, Chapter IV], see [145]. When using
the representation (3.66), any u ∈ H1,1

0;0,(Q) admits the representation

u(x, t) =
∞

∑
i=1

∞

∑
k=0

ui,kVk(t)φi(x) =
∞

∑
i=1

Ui(t)φi(x), (x, t) ∈ Q, (4.43)

where Vk(t) are the temporal eigenfunctions given in (3.26), and φi(x) are the spatial L2(Ω)
orthonormal eigenfunctions of the Laplacian with homogeneous Dirichlet boundary con-
ditions, see (2.4). For the solution of the variational formulation (4.41), consider the ansatz
(4.43), where the unknown functions Ui ∈ H1

0,(0,T ) are to be determined. When choosing,
for a fixed j ∈ N, v(x, t) = V (t)φ j(x) with V ∈ H1

,0(0,T ) as test function, the variational
formulation (4.41) results in finding U j ∈ H1

0,(0,T ) such that

−
T∫

0

∂tU j(t)∂tV (t)dt +µ j

T∫

0

U j(t)V (t)dt =

T∫

0

Fj(t)V (t)dt

for all V ∈ H1
,0(0,T ), where the functions Fj ∈ L2(0,T ),

Fj(t) =
∫

Ω

f (x, t)φ j(x)dx, t ∈ (0,T ),

are the coefficients of the Fourier expansion

f (x, t) =
∞

∑
j=1

∞

∑
k=0

f j,kVk(t)φ j(x) =
∞

∑
j=1

Fj(t)φ j(x), (x, t) ∈ Q,
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see again (3.66). From this, one concludes

‖ f‖2
L2(Q) =

T∫

0

∫

Ω

| f (x, t)|2 dxdt =
∞

∑
i=1

∞

∑
j=1

T∫

0

Fi(t)Fj(t)dt
∫

Ω

φi(x)φ j(x)dx

=
∞

∑
j=1

T∫

0

∣∣Fj(t)
∣∣2 dt =

∞

∑
j=1

‖Fj‖2
L2(0,T ).

Theorem 4.2.5 yields the uniqueness and the existence of the functions U j ∈ H1
0,(0,T ).

Hence, one obtains

|u|2H1(Q) = ‖u‖2
H1,1

0;0,(Q)
=

T∫

0

∫

Ω

[
|∂tu(x, t)|2 + |∇xu(x, t)|2

]
dxdt

=
∞

∑
i=1

∞

∑
j=1




T∫

0

∂tUi(t)∂tU j(t)dt
∫

Ω

φi(x)φ j(x)dx

+

T∫

0

Ui(t)U j(t)dt
∫

Ω

∇xφi(x) ·∇xφ j(x)dx




and by using Lemma 4.2.7,

|u|2H1(Q) =
∞

∑
i=1




T∫

0

|∂tUi(t)|2dt +µi

T∫

0

|Ui(t)|2dt


=

∞

∑
i=1

[
|Ui|2H1(0,T )+µi‖Ui‖2

L2(0,T )

]

≤ 1
2

T 2
∞

∑
i=1

‖Fi‖2
L2(0,T ) =

1
2

T 2 ‖ f‖2
L2(Q).

Analogous results hold true for the adjoint problem (4.42).

The variational formulation (4.41) is equivalent to find u ∈ H1,1
0;0, (Q) such that

a(u,HT v) = 〈 f ,HT v〉L2(Q) (4.44)

for all v ∈ H1,1
0;0, (Q), where the transformation operator HT , given in (4.15), acts only on

the time variable t, i.e.

(HT v̂)(x, t) = v̂(x,T )− v̂(x, t), (x, t) ∈ Q, (4.45)
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for v̂ ∈ H1,1
0;0, (Q). Note that in (4.44) the ansatz and test spaces are equal and so, discretisa-

tion schemes of Galerkin-Bubnov type are possible.

The solution operators from Theorem 4.2.23 are not isomorphisms and hence, to derive
from Theorem 4.2.23 an inf-sup condition, like

∀u ∈ H1,1
0;0, (Q) : sup

06=w∈H1,1
0; ,0(Q)

|a(u,w)|
|w|H1(Q)

≥CS |u|H1(Q) (4.46)

with a constant CS > 0, is not possible.

Theorem 4.2.24. There does not exist a constant C > 0 such that each right-hand side
f ∈ L2(Q) and the corresponding solution u ∈ H1,1

0;0, (Q) of (4.41) satisfy

|u|H1(Q) ≤C‖ f‖
[H1,1

0; ,0(Q)]′ . (4.47)

In particular, the inf-sup condition (4.46) does not hold true.

Proof. Consider the eigenfunctions φk ∈ H1
0 (Ω) and eigenvalues µk > 0 of the Dirichlet

eigenvalue problem of the Laplacian, see (2.4). For k ∈◆, take the eigenpair (φk, µk) and
for (x, t) ∈ Q, set

uk(x, t) := φk(x)

t∫

0

ssin(
√

µks)ds,

fk(x, t) := ∂ttuk(x, t)−∆xuk(x, t) = 2φk(x)sin(
√

µkt).

The initial and boundary conditions uk(·,0) = ∂tuk(·,0) = 0, uk|Σ = 0 and uk ∈ H1,1
0;0, (Q)

are fulfilled. One computes as in Theorem 4.2.6 that

|uk|H1(Q) →
√

T 3

3
and ‖ fk‖[H1,1

0; ,0(Q)]′ → 0 as k → ∞.

So, the first assertion is proven.

To show that the inf-sup condition (4.46) does not hold true, the bilinear form

a(·, ·) : H1,1
0;0, (Q)×H1,1

0; ,0(Q)→❘

is investigated. Because of Lemma 4.2.22, the bilinear form a(·, ·) is bounded. In addi-
tion, for 0 6= w ∈ H1,1

0; ,0(Q), there exists, according to Theorem 4.2.23, a unique solution

ũ ∈ H1,1
0;0, (Q) of (4.41) for g = w ∈ L2(Q), satisfying

∀z ∈ H1,1
0; ,0(Q) : a(ũ,z) = 〈w,z〉L2(Q).

Hence, for z = w, it follows that a(ũ,w) = 〈w,w〉L2(Q) > 0, i.e. the condition (N2) holds
true. If the inf-sup condition (4.46) would be true, the bilinear form a(·, ·) would fulfil all
assumptions of the Nečas Theorem 2.9.1, which gives the estimate (4.47). But this would
be contradictory to the first part of this proof.
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To overcome this problem with the inf-sup condition (4.46), two different approaches are
introduced in Section 4.3 and in Section 4.4. However, in the remainder of this section,
conforming finite element discretisations for the variational formulation (4.41), resulting
in Galerkin-Petrov schemes, are introduced and examined. Alternatively, the variational
formulation (4.44) is discretised, which leads to a Galerkin-Bubnov scheme. In any case,
for the bounded Lipschitz domain Ω ⊂❘d , it is assumed that Ω = (0,L) is an interval for
d = 1, or Ω is polygonal for d = 2, or Ω is polyhedral for d = 3. In this thesis, only the
tensor-product space-time finite element space

Q1
h(Q) =Vhx,0(Ω)⊗S1

ht
(0,T ),

given in (2.42), is investigated for (4.41). Therefore, the Galerkin-Petrov finite element
discretisation of the variational formulation (4.41) is to find

uh ∈ Q1
h(Q)∩H1,1

0;0,(Q) =Vhx,0(Ω)⊗S1
ht ,0,(0,T )

such that
a(uh,wh) = 〈 f ,wh〉L2(Q) (4.48)

for all wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q) = Vhx,0(Ω)⊗ S1
ht , ,0

(0,T ). The approximate function uh ad-
mits the representation

uh(x, t) =
Nt

∑
ℓ=1

Mx

∑
j=1

uℓjψ j(x)ϕℓ(t) =
Mx

∑
j=1

Uht , j(t)ψ j(x), Uht , j(t) =
Nt

∑
ℓ=1

uℓjϕℓ(t) (4.49)

for (x, t) ∈ Q, see (2.43). After an appropriate ordering of the degrees of freedom, the
discrete variational formulation (4.48) is equivalent to the global linear system

Khu = F

with the system matrix

Kh =−Aht ⊗Mhx +Mht ⊗Ahx ∈❘Nt ·Mx×Nt ·Mx ,

where Mhx ∈❘Mx×Mx and Ahx ∈❘Mx×Mx denote spatial mass and stiffness matrices given
in (2.37) and (2.38), Mht ∈ ❘Nt×Nt and Aht ∈ ❘Nt×Nt denote temporal mass and stiffness
matrices given in (4.25) and (4.24), and with the corresponding vector F ∈ ❘Nt ·Mx of the
right-hand side.

Remark 4.2.25. Note that the Galerkin-Petrov finite element discretisation (4.48) can be
realised as a two-step method.

Using a conforming semi-discretisation approach for the variational formulation (4.41)
leads to find ũhx ∈Vhx,0(Ω)⊗H1

0,(0,T )⊂ H1,1
0;0,(Q) such that

a(ũhx ,whx) = 〈 f ,whx〉L2(Q) (4.50)
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for all whx ∈ Vhx,0(Ω)⊗H1
,0(0,T ) ⊂ H1,1

0; ,0(Q). The semi-discrete function ũhx admits the
representation

ũhx(x, t) =
Mx

∑
j=1

Ũ j(t)ψ j(x), (x, t) ∈ Q,

with the unknown temporal functions Ũ j ∈ H1
0,(0,T ) to be determined. With this represen-

tation, the semi-discrete variational formulation (4.50) is equivalent to the Mx equations to
find

Ũ =
(

Ũ1, . . . ,ŨMx

)⊤
∈ [H1

0,(0,T )]Mx

such that

−
T∫

0

Mhx∂tŨ(t)∂tW (t)dt +

T∫

0

AhxŨ(t)W (t)dt =

T∫

0

f (t)W (t)dt (4.51)

for all W ∈ H1
,0(0,T ), where Mhx ∈❘Mx×Mx and Ahx ∈❘Mx×Mx denote mass and stiffness

matrices given in (2.37) and (2.38) together with the right-hand side

f = ( f1, . . . , fMx)
⊤ ∈ [L2(0,T )]Mx ,

defined by

f j(t) :=
∫

Ω

f (x, t)ψ j(x)dx, t ∈ (0,T ),

for j = 1, . . . ,Mx.

By using the Cholesky decomposition

Mhx = LhxL
⊤
hx

and for the symmetric, positive-definite matrix Âhx := L−1
hx

AhxL
−⊤
hx

, the decomposition

Âhx =VhxDhxV
⊤
hx

, Dhx = diag
(

µ̂k(Âhx)
)

, Vhx =
(

v1, . . . ,vMx

)
, Âhxv

j = µ̂k(Âhx)v j,

the variational formulation (4.51) is equivalent to find

V⊤
hx

L⊤
hx

Ũ = Z = (Z1, . . . ,ZMx)
⊤ ∈ [H1

0,(0,T )]Mx

such that

−
T∫

0

∂tZ(t)∂tW (t)dt +

T∫

0

DhxZ(t)W (t)dt =

T∫

0

V⊤
hx

L−1
hx

f (t)W (t)dt

for all W ∈ H1
,0(0,T ). The related approximation

Zht
= (Zht ,1, . . . ,Zht ,Mx)

⊤
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is defined by finding, for j = 1, . . . ,Mx, the functions

Zht , j ∈ S1
ht ,0,(0,T ) = S1

ht
(0,T )∩H1

0,(0,T )

such that

−〈∂tZht , j,∂twht 〉L2(0,T )+ µ̂ j(Âhx) · 〈Zht , j,wht 〉L2(0,T ) = 〈g j,wht 〉L2(0,T )

for all wht ∈ S1
ht , ,0

(0,T ) = S1
ht
(0,T )∩H1

,0(0,T ), where

g = (g1, . . . ,gMx)
⊤ =V⊤

hx
L−1

hx
f

is the transformed right-hand side. By construction, it holds true that

Zht
=V⊤

hx
L⊤

hx
Uht

,

where
Uht

= (Uht ,1, . . . ,Uht ,Mx)
⊤

is the vector of coefficients of the representation (4.49).

Stability and related error estimates for the finite element solutions Zht , j ∈ S1
ht ,0,(0,T ) fol-

low for sufficiently small time mesh sizes ht , see (4.21). However, as in Remark 4.2.8,
for a uniform time mesh size ht , the stability of the corresponding finite difference scheme
holds true for

µ̂ j(Âhx) =
[u j]⊤Ahxu

j

[u j]⊤Mhxu
j
=

‖∇xu j
hx
‖2

L2(Ω)

‖u j
hx
‖2

L2(Ω)

<
12

h2
t

for j = 1, . . . ,Mx,

where u j = L−⊤
hx

v j ∈ ❘Mx are the transformed eigenvectors and u j
hx

∈ Vhx,0(Ω) are the
related functions. With the inverse inequality

∀vhx ∈Vhx,0(Ω) : ‖∇xvhx‖2
L2(Ω) ≤ cI h−2

x ‖vhx‖2
L2(Ω),

see [141, (9.19), page 217], with a constant cI > 0, this condition is satisfied for

ht <

√
12
cI

hx, (4.52)

i.e. a CFL condition is needed for stability. In the particular case d = 1, it holds true that
cI = 12, see the derivation of [141, (9.19), page 217] and therefore, stability follows for

ht < hx.

When Vhx,0(Ω)⊂ H1
0 (Ω) is also of tensor-product structure, i.e.

Vhx,0(Ω) =
(

S1
hx1

(0,L1)⊗ . . .⊗S1
hxd

(0,Ld)
)
∩H1

0 (Ω),
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for example, when considering Ω = (0,L1)× . . .× (0,Ld) ⊂❘d with uniform mesh sizes
hx1 , . . . ,hxd , one concludes cI = 12d, and therefore, the stability condition

ht <
hx,min√

d
,

where hx,min = min{hx1 , . . . ,hxd}.

As a numerical example, consider for d = 2 the spatial domain Ω = (0,1)2 with uniform
discretisations with mesh sizes hx = hx1 = hx2 and the exact solution

u(x1,x2, t) = t2 sin(πx1)sin(πx2) for (x1,x2, t) ∈ Q = Ω× (0,T )

with different terminal times T ∈
{

7
10 , 1√

2
, 3

4 ,1,2
}
. Then stability follows when choos-

ing
ht

hx
<

1√
2
≈ 0.7071068. (4.53)

In Table 4.7, Table 4.8, Table 4.9, Table 4.10 and Table 4.11, the L2(Q) error, the H1(Q)
error and the maximal and minimal singular values of the related system matrix Kh of the
Galerkin-Petrov formulation (4.48) are given, where the observed convergence rates are
as expected, provided the CFL condition (4.53) is satisfied, i.e. the CFL condition (4.53)
seems to be sharp. Here, the number of the degrees of freedom is denoted by

dof = dimQ1
h(Q)∩H1,1

0;0, (Q) = dimQ1
h(Q)∩H1,1

0; ,0(Q).

dof hx ht ‖u−uh‖L2(Q) eoc |u−uh|H1(Q) eoc σmax(Kh) σmin(Kh)

2 0.500 0.3500 2.034e-02 - 4.204e-01 - 4.8e-01 4.7e-01
36 0.250 0.1750 4.737e-03 2.1 2.089e-01 1.0 9.4e-01 5.4e-02

392 0.125 0.0875 1.161e-03 2.0 1.040e-01 1.0 6.5e-01 7.0e-03
3600 0.062 0.0438 2.887e-04 2.0 5.193e-02 1.0 3.5e-01 1.2e-03

30752 0.031 0.0219 7.207e-05 2.0 2.595e-02 1.0 1.8e-01 2.3e-04
254016 0.016 0.0109 1.801e-05 2.0 1.298e-02 1.0 8.9e-02 3.6e-05

Table 4.7: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 × (0, 7

10), satisfying the CFL condition (4.53).

From (4.52), one only expects conditional stability of (4.48). To stabilise the numerical
scheme in (4.48), Zlotnik’s idea [164], as in (4.29), is used again, and the following repre-
sentation is proven.
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dof hx ht ‖u−uh‖L2(Q) eoc |u−uh|H1(Q) eoc σmax(Kh) σmin(Kh)

2 0.500 0.3536 2.094e-02 - 4.303e-01 - 4.7e-01 4.7e-01
36 0.250 0.1768 4.888e-03 2.1 2.141e-01 1.0 9.3e-01 5.2e-02

392 0.125 0.0884 1.198e-03 2.0 1.066e-01 1.0 6.4e-01 6.1e-03
3600 0.062 0.0442 2.981e-04 2.0 5.323e-02 1.0 3.4e-01 7.6e-04

30752 0.031 0.0221 7.444e-05 2.0 2.661e-02 1.0 1.8e-01 9.6e-05
254016 0.016 0.0110 1.860e-05 2.0 1.330e-02 1.0 8.8e-02 1.2e-05

Table 4.8: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 × (0, 1√

2
) for the limit case of the CFL condition (4.53).

dof hx ht ‖u−uh‖L2(Q) eoc |u−uh|H1(Q) eoc σmax(Kh) σmin(Kh)

2 0.500 0.3750 2.476e-02 - 4.937e-01 - 5.0e-01 4.3e-01
36 0.250 0.1875 5.862e-03 2.1 2.469e-01 1.0 8.7e-01 4.1e-02

392 0.125 0.0938 1.443e-03 2.0 1.231e-01 1.0 6.0e-01 2.7e-03
3600 0.062 0.0469 3.594e-04 2.0 6.153e-02 1.0 3.2e-01 4.5e-05

30752 0.031 0.0234 8.977e-05 2.0 3.076e-02 1.0 1.7e-01 3.5e-08
254016 0.016 0.0117 2.244e-05 2.0 1.538e-02 1.0 8.3e-02 5.7e-14

Table 4.9: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 × (0, 3

4), violating the CFL condition (4.53).

dof hx ht ‖u−uh‖L2(Q) eoc |u−uh|H1(Q) eoc σmax(Kh) σmin(Kh)

2 0.500 0.5000 5.418e-02 - 9.782e-01 - 7.2e-01 2.7e-01
36 0.250 0.2500 1.353e-02 2.0 4.986e-01 1.0 7.2e-01 1.5e-02

392 0.125 0.1250 3.381e-03 2.0 2.502e-01 1.0 4.6e-01 1.7e-04
3600 0.062 0.0625 8.453e-04 2.0 1.252e-01 1.0 2.4e-01 6.6e-08

30752 0.031 0.0312 2.113e-04 2.0 6.263e-02 1.0 1.2e-01 2.8e-14
254016 0.016 0.0156 8.621e+08 -41.9 4.635e+11 -42.8 6.2e-02 ≈ 0

Table 4.10: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 × (0,1), violating the CFL condition (4.53).
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dof hx ht ‖u−uh‖L2(Q) eoc |u−uh|H1(Q) eoc σmax(Kh) σmin(Kh)

2 0.500 1.0000 2.777e-01 - 5.638e+00 - 1.7e+00 1.8e-01
36 0.250 0.5000 7.355e-02 1.9 2.798e+00 1.0 1.5e+00 6.9e-03

392 0.125 0.2500 1.863e-02 2.0 1.404e+00 1.0 9.3e-01 2.4e-05
3600 0.062 0.1250 4.732e-03 2.0 7.028e-01 1.0 4.9e-01 7.0e-10

30752 0.031 0.0625 7.852e-01 -7.4 1.796e+02 -8.0 2.5e-01 ≈ 0
254016 0.016 0.0312 1.710e+21 -70.9 7.642e+23 -71.8 1.2e-01 ≈ 0

Table 4.11: Numerical results for the Galerkin-Petrov formulation (4.48) with uniform
meshes for Q = (0,1)2 × (0,2), violating the CFL condition (4.53).

Lemma 4.2.26. For all uh ∈ Q1
h(Q)∩H1,1

0;0, (Q) and wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q), the bilinear
form in (4.48) has the representation

a(uh,wh) =−〈∂tuh,∂twh〉L2(Q)+
d

∑
m=1

〈∂xmuh,Q0
ht

∂xmwh〉L2(Q)

+
d

∑
m=1

Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∂xmuh,∂t∂xmwh〉L2(Ω×τℓ)

, (4.54)

where Q0
ht

: L2(Q) → L2(Ω)⊗ S0
ht
(0,T ) denotes the extended L2 projection (2.60) on the

space L2(Ω)⊗S0
ht
(0,T ) of piecewise constant functions with respect to time.

Proof. Let uh ∈ Q1
h(Q)∩H1,1

0;0, (Q) and wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q) be given. With the repre-
sentation (2.43), it follows for (x, t) ∈ Q that

uh(x, t) =
Nt

∑
ℓ=1

Mx

∑
j=1

uℓjψ j(x)ϕℓ(t) =
Mx

∑
j=1

Uht , j(t)ψ j(x), Uht , j(t) =
Nt

∑
ℓ=1

uℓjϕℓ(t)

and

wh(x, t) =
Nt−1

∑
ℓ=0

Mx

∑
j=1

wℓ
jψ j(x)ϕℓ(t) =

Mx

∑
j=1

Wht , j(t)ψ j(x), Wht , j(t) =
Nt−1

∑
ℓ=0

wℓ
jϕℓ(t).

Hence, for m = 1, . . . ,d and by using (4.28), it holds true that

〈∂xmuh,∂xmwh〉L2(Q) =
Mx

∑
i=1

Mx

∑
j=1

T∫

0

Uht ,i(t)Wht , j(t)dt
∫

Ω

∂xmψi(x)∂xmψ j(x)dx

=
Mx

∑
i=1

Mx

∑
j=1

[
1
12

Nt

∑
ℓ=1

h2
t,ℓ〈∂tUht ,i,∂tWht , j〉L2(τℓ)

+ 〈Uht ,i,Q
0
ht

Wht , j〉L2(0,T )

]

·
∫

Ω

∂xmψi(x)∂xmψ j(x)dx
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and thus,

〈∂xmuh,∂xmwh〉L2(Q) = 〈∂xmuh,Q0
ht

∂xmwh〉L2(Q)+
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∂xmuh,∂t∂xmwh〉L2(Ω×τℓ)

,

where the relation (2.61) is used. So, the assertion is proven.

Due to the representation (4.54), one defines for the functions uh ∈ Q1
h(Q)∩H1,1

0;0, (Q) and

wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q) the perturbed bilinear form

ah(uh,wh) :=−〈∂tuh,∂twh〉L2(Q)+
d

∑
m=1

〈∂xmuh,Q0
ht

∂xmwh〉L2(Q)

=−〈∂tuh,∂twh〉L2(Q)+
d

∑
m=1

〈Q0
ht

∂xmuh,∂xmwh〉L2(Q). (4.55)

So, the perturbed variational problem is to find ũh ∈ Q1
h(Q)∩H1,1

0;0, (Q) such that

ah(ũh,wh) = 〈 f ,wh〉L2(Q) (4.56)

for all wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q). After an appropriate ordering of the degrees of freedom,
the discrete variational formulation (4.56) is equivalent to the global linear system

K̃hu = F

with the system matrix

K̃h =−Aht ⊗Mhx + M̃ht ⊗Ahx ∈❘Nt ·Mx×Nt ·Mx ,

where Mhx ∈❘Mx×Mx and Ahx ∈❘Mx×Mx denote spatial mass and stiffness matrices given
in (2.37) and (2.38), M̃ht ∈ ❘Nt×Nt is the temporal perturbed mass matrix (4.33), and
Aht ∈ ❘Nt×Nt is the temporal stiffness matrix (4.24), and with the corresponding vector
F ∈❘Nt ·Mx of the right-hand side.

Remark 4.2.27. Note that the Galerkin-Petrov finite element discretisation (4.56) can be
realised as a two-step method, which differs from the Newmark Galerkin method (4.6),
(4.7) of Section 4.1 only in the treatment of the input data.

To prove the existence and uniqueness of a solution ũh of (4.56), the following lemma,
which is analogous to Lemma 4.2.14, is shown.
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Lemma 4.2.28. For a given vh ∈ Q1
h(Q)∩H1,1

0;0, (Q), represented by

vh(x, t) =
Nt

∑
ℓ=0

Vhx,ℓ(x)ϕℓ(t), Vhx,ℓ(x) =
Mx

∑
j=1

vℓjψ j(x) for (x, t) ∈ Q

with Vhx,0(x) = 0 for x ∈ Ω and Vhx,ℓ ∈ Vhx,0(Ω), and for a fixed index j ∈ {1, . . . ,Nt}, a
function

z j
h ∈ Q1

h(Q)∩H1,1
0; ,0(Q)

exists with the following properties:

1. For (x, t) ∈ Ω× [t j,T ], it holds true that z j
h(x, t) = 0.

2. For ℓ= 1, . . . , j and for x ∈ Ω, the equalities

〈∂tz
j
h(x, ·),∂tvh(x, ·)〉L2(τℓ)

=
1
2

(
[Vhx,ℓ−1(x)]

2 − [Vhx,ℓ(x)]
2
)

and

〈∂xmz j
h(x, ·),Q0

ht
∂xmvh(x, ·)〉L2(τℓ)

=
1
2




t j∫

tℓ−1

∂xmvh(x,s)ds




2

− 1
2




t j∫

tℓ

∂xmvh(x,s)ds




2

are valid for m = 1, . . . ,d.

3. For x ∈ Ω, the estimate

‖∂tz
j
h(x, ·)‖L2(0,T ) ≤ ‖vh(x, ·)‖L2(0,T )

holds true.

Proof. For vh ∈ Q1
h(Q)∩H1,1

0;0, (Q), one defines for (x, t) ∈ Q

u j
h(x, t) :=

Nt

∑
i=0

U j
hx,i(x)ϕi(t), U j

hx,i(x) :=

{
Vhx,i(x) for i = 0, . . . , j,

(−1) j−iVhx, j(x) for i = j+1, . . . ,Nt ,

and further,

z j
h(x, t) :=−

Nt

∑
k=0




tk∫

T

u j
h(x,s)ds


ϕk(t) =−


Iht

(·)∫

T

u j
h(x,s)ds


(t),

where
Iht : C([0,T ];L2(Ω))→ L2(Ω)⊗S1

ht
(0,T )
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is the extended time interpolation operator, see (2.44). Note that z j
h ∈ Q1

h(Q)∩H1,1
0; ,0(Q).

For x ∈ Ω, it follows from relation (4.27) that

∂tz
j
h(x, ·) =−Q0

ht
u j

h(x, ·).

In particular, for j < Nt , x ∈ Ω, and for t ∈ τℓ for ℓ= j+1, . . . ,Nt , it holds true that

−∂tz
j
h(x, t) = Q0

ht
u j

h(x, t) =
1

ht,ℓ

tℓ∫

tℓ−1

u j
h(x,s)ds =

1
2

(
U j

hx,ℓ−1(x)+U j
hx,ℓ(x)

)
= 0,

and due to z j
h(x,T ) = 0, one concludes z j

h(x, t) = 0 for t ∈ [t j,T ], i.e. the first assertion.

To prove the second assertion, one computes for x ∈ Ω and for ℓ= 1, . . . , j

〈∂tz
j
h(x, ·),∂tvh(x, ·)〉L2(τℓ)

=

tℓ∫

tℓ−1

∂tz
j
h(x, t)∂tvh(x, t)dt

=−1
2

(
U j

hx,ℓ−1(x)+U j
hx,ℓ(x)

) tℓ∫

tℓ−1

∂tvh(x, t)dt

=−1
2

(
U j

hx,ℓ−1(x)+U j
hx,ℓ(x)

)(
Vhx,ℓ(x)−Vhx,ℓ−1(x)

)

=
1
2
(Vhx,ℓ−1(x)+Vhx,ℓ(x))

(
Vhx,ℓ−1(x)−Vhx,ℓ(x)

)

=
1
2

(
[Vhx,ℓ−1(x)]

2 − [Vhx,ℓ(x)]
2
)
.

Moreover, for m = 1, . . . ,d, it follows for x ∈ Ω and for ℓ= 1, . . . , j that

〈∂xmz j
h(x, ·),Q0

ht
∂xmvh(x, ·)〉L2(τℓ)

= Q0
ht

∂xmvh(x, ·)|τℓ
tℓ∫

tℓ−1

∂xmz j
h(x, t)dt

= −Q0
ht

∂xmvh(x, ·)|τℓ
tℓ∫

tℓ−1

∂xm




tℓ−1∫

T

u j
h(x,s)dsϕℓ−1(t)+

tℓ∫

T

u j
h(x,s)dsϕℓ(t)


 dt

= − 1
ht,ℓ

tℓ∫

tℓ−1

∂xmvh(x, t)dt
1
2

ht,ℓ




tℓ−1∫

T

∂xmu j
h(x,s)ds+

tℓ∫

T

∂xmu j
h(x,s)ds



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and further,

〈∂xmz j
h(x, ·),Q0

ht
∂xmvh(x, ·)〉L2(τℓ)

=−1
2




tℓ∫

t j

∂xmvh(x, t)dt −
tℓ−1∫

t j

∂xmvh(x, t)dt




·




tℓ−1∫

t j

∂xmv j
h(x,s)ds+

tℓ∫

t j

∂xmv j
h(x,s)ds




=
1
2




tℓ−1∫

t j

∂xmv j
h(x,s)ds




2

− 1
2




tℓ∫

t j

∂xmv j
h(x,s)ds




2

.

The L2 stability of Q0
ht

and using

‖∂tz
j
h(x, ·)‖L2(0,T ) = ‖∂tz

j
h(x, ·)‖L2(0, t j)

= ‖Q0
ht

u j
h(x, ·)‖L2(0, t j)

= ‖Q0
ht

vh(x, ·)‖L2(0, t j)
≤ ‖Q0

ht
vh(x, ·)‖L2(0,T ) ≤ ‖vh(x, ·)‖L2(0,T )

for x ∈ Ω yield the third property.

With the last lemma, the existence, uniqueness, and stability of a solution ũh of (4.56) are
proven with the help of the next lemma.

Lemma 4.2.29. Let f0 ∈ [H1
,0(0,T ;L2(Ω))]′ and f1, f2 ∈ L2(Q) be given. The variational

formulation to find wh ∈ Q1
h(Q)∩H1,1

0;0,(Q) such that

ah(wh,vh) = 〈 f0,vh〉Q + 〈 f1,∂tvh〉L2(Q)+
Nt

∑
ℓ=1

h2
t,ℓ〈 f2,∂tvh〉L2(Ω×τℓ)

(4.57)

for all vh ∈ Q1
h(Q)∩H1,1

0;,0(Q) is uniquely solvable, and the stability estimate

‖wh‖L2(Q) ≤ 2T
{
‖ f0‖[H1

,0(0,T ;L2(Ω))]′ +‖ f1‖L2(Q)+h2
t ‖ f2‖L2(Q)

}
(4.58)

holds true.

Proof. Let w0
h ∈ Q1

h(Q)∩H1,1
0;0,(Q) be any solution of the homogeneous variational formu-

lation (4.57) with fi ≡ 0, and with the representation (2.43), i.e.

w0
h(x, t) =

Nt

∑
ℓ=0

W 0
hx,ℓ(x)ϕℓ(t) for (x, t) ∈ Q, W 0

hx,ℓ ∈Vhx,0(Ω), W 0
hx,0(x) = 0.
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For each index j ∈ {1, . . . ,Nt}, consider an element z j
h ∈ Q1

h(Q)∩H1,1
0;,0(Q) as given in

Lemma 4.2.28. Plugging vh = z j
h into (4.57), it holds true that

0 = ah(w
0
h,z j

h) =−〈∂tw
0
h,∂tz

j
h〉L2(Q)+

d

∑
m=1

〈Q0
ht

∂xmw0
h,∂xmz j

h〉L2(Q)

=−
j

∑
ℓ=1

〈∂tw
0
h,∂tz

j
h〉L2(Ω×τℓ)

+
d

∑
m=1

j

∑
ℓ=1

〈Q0
ht

∂xmw0
h,∂xmz j

h〉L2(Ω×τℓ)

and by using the properties of Lemma 4.2.28,

0 = ah(w
0
h,z j

h) =−
∫

Ω

j

∑
ℓ=1

(
1
2
[W 0

hx,ℓ−1(x)]
2 − 1

2
[W 0

hx,ℓ(x)]
2
)

dx

+
d

∑
m=1

∫

Ω

j

∑
ℓ=1




1
2




t j∫

tℓ−1

∂xmw0
h(x,s)ds




2

− 1
2




t j∫

tℓ

∂xmw0
h(x,s)ds




2

 dx

=
1
2

∫

Ω

[W 0
hx, j(x)]

2 dx+
1
2

d

∑
m=1

∫

Ω




t j∫

0

∂xmw0
h(x,s)ds




2

dx.

This result yields, with the Cauchy-Schwarz inequality and the use of the properties of
Lemma 4.2.28,

‖w0
h‖2

L2(Q) =
Nt

∑
ℓ=1

‖w0
h‖2

L2(Ω×τℓ)

=
∫

Ω

Nt

∑
ℓ=1

ht,ℓ

3

(
[W 0

hx,ℓ(x)]
2 +W 0

hx,ℓ(x)W
0
hx,ℓ−1(x)+ [W 0

hx,ℓ−1(x)]
2
)

dx

≤
∫

Ω

Nt

∑
j=1

ht, j

2
[W 0

hx, j(x)]
2 dx+

∫

Ω

Nt−1

∑
j=1

ht, j+1

2
[W 0

hx, j(x)]
2 dx ≤ 0,

which implies w0
h ≡ 0. Therefore, by using

dimQ1
h(Q)∩H1,1

0;0, (Q) = dimQ1
h(Q)∩H1,1

0; ,0(Q),

one concludes unique solvability of the variational formulation (4.57) for any right-hand
sides f0 ∈ [H1

,0(0,T ;L2(Ω))]′ and f1, f2 ∈ L2(Q). Following the approach as above, it holds
true that

〈 f0,z j
h〉Q + 〈 f1,∂tz

j
h〉L2(Q)+

Nt

∑
ℓ=1

h2
t,ℓ〈 f2,∂tz

j
h〉L2(Ω×τℓ)

= ah(wh,z j
h)≥

1
2

∫

Ω

[Whx, j(x)]
2 dx
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and

‖wh‖2
L2(Q) ≤

∫

Ω

Nt

∑
j=1

ht, j

2
[Whx, j(x)]

2 dx+
∫

Ω

Nt−1

∑
j=1

ht, j+1

2
[Whx, j(x)]

2 dx

≤
Nt

∑
j=1

ht, j

{
〈 f0,z j

h〉Q + 〈 f1,∂tz
j
h〉L2(Q)+

Nt

∑
ℓ=1

h2
t,ℓ〈 f2,∂tz

j
h〉L2(Ω×τℓ)

}

+
Nt−1

∑
j=1

ht, j+1

{
〈 f0,z j

h〉Q + 〈 f1,∂tz
j
h〉L2(Q)+

Nt

∑
ℓ=1

h2
t,ℓ〈 f2,∂tz

j
h〉L2(Ω×τℓ)

}

≤
Nt

∑
j=1

ht, j

{
‖ f0‖[H1

,0(0,T ;L2(Ω))]′ +‖ f1‖L2(Q)+h2
t ‖ f2‖L2(Q)

}
‖∂tz

j
h‖L2(Q)

+
Nt−1

∑
j=1

ht, j+1

{
‖ f0‖[H1

,0(0,T ;L2(Ω))]′ +‖ f1‖L2(Q)+h2
t ‖ f2‖L2(Q)

}
‖∂tz

j
h‖L2(Q)

≤ 2T
{
‖ f0‖[H1

,0(0,T ;L2(Ω))]′ +‖ f1‖L2(Q)+h2
t ‖ f2‖L2(Q)

}
‖wh‖L2(Q),

and hence, the stability estimate is proven.

Theorem 4.2.30. For f ∈ L2(Q), there exists a unique solution ũh ∈ Q1
h(Q)∩H1,1

0;0, (Q) of
the Galerkin-Petrov finite element discretisation (4.56), satisfying the stability estimate

‖ũh‖L2(Q) ≤ 2T‖ f‖[H1
,0(0,T ;L2(Ω))]′ ≤

4
π

T 2‖ f‖L2(Q).

Proof. Setting f0 = f ∈ L2(Q), f1 = f2 = 0 in (4.57) and the Poincaré inequality with
respect to time, see Lemma 3.4.5, give the assertion.

Remark 4.2.31. Note that there exists a unique solution of the Galerkin-Petrov finite el-
ement discretisation (4.56) in the situation of Lemma 4.2.29, i.e. for a right-hand side f
weaker than L2(Q).

To derive an estimate for the L2(Q) error ‖u− ũh‖L2(Q), the space-time projection

Q1
ht

Q1
hx

v ∈ Q1
h(Q)∩H1,1

0;0, (Q),

is used, which is well-defined for a sufficiently smooth function v ∈ H1,1
0;0, (Q), for details

see Lemma 2.8.2.

Theorem 4.2.32. Let u ∈ H1,1
0;0,(Q) be the unique solution of the variational formulation

(4.41), satisfying ∂tu ∈ L2(0,T ;H1
0 (Ω)) and ∂xmu ∈ H1

0,(0,T ;L2(Ω)), m = 1, . . . ,d, and
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∆xu ∈ H1
0,(0,T ;L2(Ω)). Then, the unique solution ũh ∈ Q1

h(Q)∩H1,1
0;0, (Q) of the Galerkin-

Petrov finite element discretisation (4.56) satisfies the error estimate

‖u− ũh‖L2(Q) ≤ ‖u−Q1
ht

u‖L2(Q)+‖u−Q1
hx

u‖L2(Q)+ chx ht‖∂t∇xu‖L2(Q)

+2T
{
‖∆x(u−Q1

ht
u)‖[H1

,0(0,T ;L2(Ω))]′ +‖∂t(Q
1
hx

u−u)‖L2(Q)+
h2

t

12
‖∂t∆xu‖L2(Q)

}

with a constant c > 0.

Proof. Since the solution u ∈ H1,1
0;0,(Q) fulfils the assumptions of Lemma 2.8.2, the space-

time projection
Q1

ht
Q1

hx
u ∈ Q1

h(Q)∩H1,1
0;0, (Q)

is well-defined. When using the representation (4.54), the properties of Q1
ht

Q1
hx

as given in

Lemma 2.8.2, and applying integration by parts, it follows for all wh ∈ Q1
h(Q)∩H1,1

0; ,0(Q)
that

ah(ũh −Q1
ht

Q1
hx

u,wh) = ah(ũh,wh)−ah(Q
1
ht

Q1
hx

u,wh)

= a(u,wh)−ah(Q
1
ht

Q1
hx

u,wh)

= a(u,wh)−a(Q1
ht

Q1
hx

u,wh)+
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∇xQ1

ht
Q1

hx
u,∂t∇xwh〉L2(Ω×τℓ)

=−〈∂tu,∂twh〉L2(Q)+ 〈∇xu,∇xwh〉L2(Q)+ 〈∂tQ
1
ht

Q1
hx

u,∂twh〉L2(Q)

−〈∇xQ1
ht

Q1
hx

u,∇xwh〉L2(Q)+
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∇xQ1

ht
Q1

hx
u,∂t∇xwh〉L2(Ω×τℓ)

and further,

ah(ũh −Q1
ht

Q1
hx

u,wh) =−〈∂tu,∂twh〉L2(Q)+ 〈∇xu,∇xwh〉L2(Q)+ 〈∂tQ
1
hx

u,∂twh〉L2(Q)

−〈∇xQ1
ht

u,∇xwh〉L2(Q)+
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∇xQ1

ht
u,∂t∇xwh〉L2(Ω×τℓ)

= 〈∂t(Q
1
hx

u−u),∂twh〉L2(Q)+ 〈∇x(u−Q1
ht

u),∇xwh〉L2(Q)

+
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∇xQ1

ht
u,∂t∇xwh〉L2(Ω×τℓ)

= 〈∂t(Q
1
hx

u−u),∂twh〉L2(Q)+ 〈−∆x(u−Q1
ht

u),wh〉L2(Q)

−
Nt

∑
ℓ=1

h2
t,ℓ

12
〈∂t∆xQ1

ht
u,∂twh〉L2(Ω×τℓ)

.
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In particular, one observes that ũh −Q1
ht

Q1
hx

u is the unique solution of (4.57) in the case

f0 =−∆x(u−Q1
ht

u), f1 = ∂t(Q
1
hx

u−u), f2 =− 1
12

∂t∆xQ1
ht

u.

Therefore, the stability estimate (4.58) and the stability of Q1
ht

in H1
0,(0,T ) give

‖ũh −Q1
ht

Q1
hx

u‖L2(Q)

≤ 2T
{
‖∆x(u−Q1

ht
u)‖[H1

,0(0,T ;L2(Ω))]′ +‖∂t(Q
1
hx

u−u)‖L2(Q)+
h2

t

12
‖∂t∆xQ1

ht
u‖L2(Q)

}

≤ 2T
{
‖∆x(u−Q1

ht
u)‖[H1

,0(0,T ;L2(Ω))]′ +‖∂t(Q
1
hx

u−u)‖L2(Q)+
h2

t

12
‖∂t∆xu‖L2(Q)

}
.

With the last estimate, the triangle inequality, and the error estimate of Lemma 2.8.2, it
holds true that

‖u− ũh‖L2(Q) ≤ ‖u−Q1
ht

Q1
hx

u‖L2(Q)+‖ũh −Q1
ht

Q1
hx

u‖L2(Q)

≤ ‖u−Q1
ht

u‖L2(Q)+‖u−Q1
hx

u‖L2(Q)+ chx ht‖∂t∇xu‖L2(Q)

+2T
{
‖∆x(u−Q1

ht
u)‖[H1

,0(0,T ;L2(Ω))]′ +‖∂t(Q
1
hx

u−u)‖L2(Q)+
h2

t

12
‖∂t∆xu‖L2(Q)

}

with a constant c > 0 and so, the assertion.

Corollary 4.2.33. Let the assumptions of Theorem 4.2.32 be satisfied. If, in addition, the
unique solution u of (4.41) is sufficiently smooth and the spatial H1

0 projection Q1
hx

fulfils

the standard L2 error estimate

‖u−Q1
hx

u‖L2(Q) ≤C h2
x‖u‖L2(0,T ;H2(Ω))

with a constant C > 0, see (2.48), then, for the unique solution ũh ∈ Q1
h(Q)∩H1,1

0;0, (Q) of
the Galerkin-Petrov finite element discretisation (4.56), the error estimate

‖u− ũh‖L2(Q) ≤ ch2
x

(
‖u‖L2(0,T ;H2(Ω))+‖∂tu‖L2(0,T ;H2(Ω))

)

+ chx ht‖∂t∇xu‖L2(Q)+ ch2
t

(
‖∂ttu‖L2(Q)+‖∂tt∆xu‖L2(Q)+‖∂t∆xu‖L2(Q)

)
(4.59)

holds true with a constant c > 0.

Proof. By using the error estimates (2.50) for the H1
0, projection Q1

ht
and (2.48) for the H1

0

projection Q1
hx

, it follows from Theorem 4.2.32 the asserted error estimate.
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Corollary 4.2.34. Let the assumption of Theorem 4.2.32 be satisfied. Furthermore, let
u ∈ H1+s(Q)∩H1,1

0;0, (Q) for some s ∈ [0,1] and let the H1,1
0;0, (Q) projection Q1

h, given in
(2.45), fulfil the standard error estimate

‖u−Q1
hu‖L2(Q) ≤ ch1+s‖u‖H1+s(Q)

with a constant c > 0, see (2.46). Moreover, assume for Q1
h(Q)∩H1,1

0;0, (Q) the inverse
inequality

∀vh ∈ Q1
h(Q)∩H1,1

0;0, (Q) : |vh|H1(Q) ≤ cinv h−1‖vh‖L2(Q)

with a constant cinv > 0 and h = max{ht ,hx}. Then, the estimate

|u− ũh|H1(Q) ≤C cinv hs‖u‖Hs+1(Q)+ cinv h−1‖ũh −u‖L2(Q)

is valid with a constant C > 0 independent of h. If, in addition, the assumption of Corol-
lary 4.2.33 is fulfilled, then, the error estimate

|u− ũh|H1(Q) ≤ C̃ h (4.60)

holds true with a constant C̃ > 0.

Proof. It follows with the triangle inequality, standard error estimates for Q1
h and the in-

verse inequality in Q1
h(Q)∩H1,1

0;0, (Q) that

|u− ũh|H1(Q) ≤
∣∣u−Q1

hu
∣∣
H1(Q)

+
∣∣Q1

hu− ũh

∣∣
H1(Q)

≤ C̃ hs‖u‖Hs+1(Q)+ cinv h−1
∥∥Q1

hu− ũh

∥∥
L2(Q)

≤ C̃ hs‖u‖Hs+1(Q)+ cinv h−1
∥∥Q1

hu−u
∥∥

L2(Q)
+ cinv h−1‖ũh −u‖L2(Q)

≤C cinv hs‖u‖Hs+1(Q)+ cinv h−1‖ũh −u‖L2(Q)

with a constant C > 0 and hence, the assertion.

Remark 4.2.35. The assumptions on the spatial H1
0 projection Q1

hx
and on the H1,1

0;0, (Q)

projection Q1
h in Corollary 4.2.33 and Corollary 4.2.34 are fulfilled, if Ω is sufficiently

regular. Thus, for less regular Ω, one expects reduced orders for the error estimates given
in Corollary 4.2.33 and Corollary 4.2.34.

As a numerical example for the Galerkin-Petrov finite element method (4.56), consider
the one-dimensional spatial domain Ω = (0,1) and T = 10, i.e. the rectangular space-time
domain

Q = Ω× (0,T ) = (0,1)× (0,10).
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The discretisation is done with respect to nonuniform meshes as shown in Figure 4.1 of
Section 4.1, where a uniform refinement strategy is applied. Note that these meshes do not
fulfil the CFL condition (4.52). As exact solutions, the functions

u1(x, t) = sin(πx)sin2
(

5
4

πt

)
, (x, t) ∈ Q,

u2(x, t) = sin(πx)t2(10− t)3/4, (x, t) ∈ Q,

are chosen. The appearing integrals to compute the related right-hand side in (4.56) are
calculated by using high-order quadrature rules and the number of the degrees of freedom
is denoted by

dof = dimQ1
h(Q)∩H1,1

0;0, (Q) = dimQ1
h(Q)∩H1,1

0; ,0(Q).

The numerical results for the smooth solution u1 are given in Table 4.12, where uncondi-
tional stability and quadratic convergence in ‖ · ‖L2(Q), as predicted by the error estimate
(4.59), are observed. Moreover, linear convergence is seen, when measuring the error in
| · |H1(Q), which confirms the error estimate (4.60).

For the singular solution u2, the related results are given in Table 4.13, where reduced
orders of convergence in ‖ · ‖L2(Q) and in | · |H1(Q) are observed. These convergence rates
correspond to the reduced Sobolev regularity

u2 ∈ H5/4−ε(Q), ε > 0.

dof hx,max hx,min ht,max ht,min ‖u1 − ũ1,h‖L2(Q) eoc |u1 − ũ1,h|H1(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 3.579e+00 - 1.289e+01 -

132 0.18750 0.03125 1.87500 0.31250 1.975e+00 0.86 9.849e+00 0.39
552 0.09375 0.01562 0.93750 0.15625 9.213e-01 1.10 6.534e+00 0.59

2256 0.04688 0.00781 0.46875 0.07812 6.829e-01 0.43 5.210e+00 0.33
9120 0.02344 0.00391 0.23438 0.03906 2.466e-01 1.47 2.848e+00 0.87

36672 0.01172 0.00195 0.11719 0.01953 7.029e-02 1.81 1.435e+00 0.99
147072 0.00586 0.00098 0.05859 0.00977 1.819e-02 1.95 7.159e-01 1.00
589056 0.00293 0.00049 0.02930 0.00488 4.588e-03 1.99 3.576e-01 1.00

2357760 0.00146 0.00024 0.01465 0.00244 1.149e-03 2.00 1.788e-01 1.00
9434112 0.00073 0.00012 0.00732 0.00122 2.875e-04 2.00 8.938e-02 1.00

37742592 0.00037 0.00006 0.00366 0.00061 7.189e-05 2.00 4.469e-02 1.00

Table 4.12: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0,1)× (0,10) and for the function u1.

Remark 4.2.36. The Galerkin-Petrov finite element method (4.56) fulfils a kind of conser-
vation of the total energy

E(t) :=
1
2
‖∂tu(·, t)‖2

L2(Ω)+
1
2
‖∇xu(·, t)‖2

L2(Ω), t ∈ [0,T ],
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dof hx,max hx,min ht,max ht,min ‖u2 − ũ2,h‖L2(Q) eoc |u2 − ũ2,h|H1(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 7.836e+01 - 3.173e+02 -

132 0.18750 0.03125 1.87500 0.31250 2.166e+01 1.86 1.191e+02 1.41
552 0.09375 0.01562 0.93750 0.15625 5.487e+00 1.98 5.225e+01 1.19

2256 0.04688 0.00781 0.46875 0.07812 1.777e+00 1.63 2.696e+01 0.95
9120 0.02344 0.00391 0.23438 0.03906 6.476e-01 1.46 1.593e+01 0.76

36672 0.01172 0.00195 0.11719 0.01953 3.001e-01 1.11 1.076e+01 0.57
147072 0.00586 0.00098 0.05859 0.00977 1.393e-01 1.11 8.077e+00 0.41
589056 0.00293 0.00049 0.02930 0.00488 6.156e-02 1.18 6.452e+00 0.32

2357760 0.00146 0.00024 0.01465 0.00244 2.650e-02 1.22 5.308e+00 0.28
9434112 0.00073 0.00012 0.00732 0.00122 1.126e-02 1.23 4.423e+00 0.26

37742592 0.00037 0.00006 0.00366 0.00061 4.758e-03 1.24 3.704e+00 0.26

Table 4.13: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0,1)× (0,10) and for the function u2.

since the Galerkin-Petrov finite element method (4.56) is related to the Newmark Galerkin
method (4.6), (4.7), see Remark 4.2.27. As illustration, consider a solution of the homoge-
neous wave equation, i.e.

u3(x, t) = (cos(πt)+ sin(πt))sin(πx) for (x, t) ∈ Q

with the total energy

E(t) =
π2

2
for t ∈ [0,10],

where the space-time cylinder is given by

Q = (0,1)× (0,10).

Here, the initial condition

u3(x,0) = u0(x) = sin(πx), x ∈ Ω,

is treated via homogenisation, while the initial condition

∂tu3(x,0) = v0(x) = π sin(πx), x ∈ Ω,

is incorporated in a weak sense. For the solution u3, the discrete total energy

Eh(t) :=
1
2
‖∂t ũh(·, t)‖2

L2(Ω)+
1
2
‖∇xũh(·, t)‖2

L2(Ω), t ∈ [0,T ],

is computed. In Figure 4.3 the difference

Eh(t)−E(t) = Eh(t)−
π2

2
for t ∈ [0,10]
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is plotted pointwise for the refinement level with uniform mesh sizes

ht =
10

6 ·210 ≈ 0.00162760

and

hx =
1

6 ·210 ≈ 0.00016276.

Note that ∂t ũh is piecewise constant in time. Probably due to the used space-time approx-
imation, some oscillations within the finite element accuracy are observed, but no energy
loss occurs, see also Figure 4.2.

For a comparison with the Newmark Galerkin method (4.6), (4.7) of Section 4.1, the errors
in the space-time norms ‖·‖L2(Q) and |·|H1(Q) are given in Table 4.14, where the conver-
gence rates are as expected, when the nonuniform meshes as in Figure 4.1 are used.

t

0 2 4 6 8 10

E
h
(t

) 
- 

E
(t

)

-0.1

-0.05

0
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0.1

Figure 4.3: Difference of the total energy E(t) = π2

2 and Eh(t) of the Galerkin-Petrov finite
element discretisation (4.56) with a uniform mesh for Q = (0,1)× (0,10) and
for the function u3.

Remark 4.2.37. A comparison of Table 4.12 with Table 4.1 and Table 4.14 with Ta-
ble 4.2 shows that the Newmark Galerkin method (4.6), (4.7) of Section 4.1 and the
Galerkin-Petrov finite element discretisation give similar results, provided the right-hand
side f ∈ L2(Q) has no singularity with respect to time. Note that the Newmark Galerkin
method (4.6), (4.7) is not applicable to the solution u2.

Remark 4.2.38. The to (4.56) related inf-sup constant

inf
06=uh∈Q1

h(Q)∩H1,1
0;0, (Q)

sup
06=wh∈Q1

h(Q)∩H1,1
0; ,0(Q)

ah(uh,wh)

|uh|H1(Q) |wh|H1(Q)

=: cS(h) (4.61)
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dof hx,max hx,min ht,max ht,min ‖u3 − ũ3,h‖L2(Q) eoc |u3 − ũ3,h|H1(Q) eoc
30 0.37500 0.06250 3.75000 0.62500 2.503e+00 - 1.051e+01 -

132 0.18750 0.03125 1.87500 0.31250 2.496e+00 0.00 9.798e+00 0.09
552 0.09375 0.01562 0.93750 0.15625 2.241e+00 0.15 9.774e+00 0.00

2256 0.04688 0.00781 0.46875 0.07812 2.580e+00 -0.20 1.152e+01 -0.23
9120 0.02344 0.00391 0.23438 0.03906 1.082e+00 1.24 4.846e+00 1.24

36672 0.01172 0.00195 0.11719 0.01953 3.013e-01 1.84 1.445e+00 1.74
147072 0.00586 0.00098 0.05859 0.00977 7.697e-02 1.97 4.606e-01 1.65
589056 0.00293 0.00049 0.02930 0.00488 1.934e-02 1.99 1.804e-01 1.35

2357760 0.00146 0.00024 0.01465 0.00244 4.841e-03 2.00 8.268e-02 1.12
9434112 0.00073 0.00012 0.00732 0.00122 1.211e-03 2.00 4.034e-02 1.03

37742592 0.00037 0.00006 0.00366 0.00061 3.027e-04 2.00 2.005e-02 1.01

Table 4.14: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
with nonuniform meshes for Q = (0,1)× (0,10) and for the function u3.

seems to depend linearly on the mesh size h = max{ht ,hx}. The inf-sup constant cS(h) is
given as

cS(h) =
√

λmin,

where λmin is the minimal eigenvalue of the generalised eigenvalue problem [84, Subsec-
tion 3.6.6, page 124]

K̃⊤
h A−1

h, ,0K̃hu = λAh,0, u

with the matrices
K̃h[k, i] = ah(χi,ηk),

Ah,0,[k, i] = 〈∂t χi,∂t χk〉L2(Q)+ 〈∇xχi,∇xχk〉L2(Q)

and
Ah, ,0[k, i] = 〈∂tηi,∂tηk〉L2(Q)+ 〈∇xηi,∇xηk〉L2(Q)

for i,k = 1, . . . ,dof, where χi are the nodal basis functions of Q1
h(Q)∩H1,1

0;0, (Q) and ηk are

the nodal basis functions of Q1
h(Q)∩H1,1

0; ,0(Q), i.e.

Q1
h(Q)∩H1,1

0;0, (Q) = span{χi}dof
i=1

and
Q1

h(Q)∩H1,1
0; ,0(Q) = span{ηk}dof

k=1.

As illustration, consider the rectangular space-time domain

Q = Ω× (0,T ) = (0,1)× (0,2)

with uniform discretisations with mesh sizes hx = hx,max = hx,min and ht = ht,max = ht,min,
where a uniform refinement strategy is applied. The inf-sup constant cS(h) of (4.61) is
given in Table 4.15, where a linear dependency on the mesh size h is observed.
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dof hx,max hx,min ht,max ht,min cS(h)
30 0.16667 0.16667 0.33333 0.33333 0.13867820

132 0.08333 0.08333 0.16667 0.16667 0.07504415
552 0.04167 0.04167 0.08333 0.08333 0.03971295

2256 0.02083 0.02083 0.04167 0.04167 0.02028705
9120 0.01042 0.01042 0.02083 0.02083 0.01012171

36672 0.00521 0.00521 0.01042 0.01042 0.00510211

Table 4.15: Optimal discrete inf-sup constant cS(h) of (4.61) for the perturbed bilinear
form (4.55) with a uniform temporal mesh size ht and a uniform spatial mesh
size hx for the space-time cylinder Q = (0,1)× (0,2).

In the remainder of this section, the two-dimensional spatial L-shaped domain

Ω := (−1,1)2 \ ([0,1]× [−1,0])⊂❘2 (4.62)

and the terminal time T = 1
4 are considered for the solutions

u4(x1,x2, t) = sin(πx1)sin(πx2)sin2
(

5
4

πt

)
, (x1,x2, t) ∈ Q,

u5(x1,x2, t) = r(x1,x2)
2/3 · sin

(
2
3

arg(x1,x2)

)
· sin(πt), (x1,x2, t) ∈ Q,

where
(r(x1,x2), arg(x1,x2))⊂ [0,∞)× [0,2π)

are polar coordinates located in 0 ∈ ❘2 with the radial coordinate r(x1,x2) and the an-
gular coordinate arg(x1,x2). For the solution u5, the inhomogeneous Dirichlet boundary
condition

u5(x1,x2, t) = g(x1,x2, t), (x1,x2, t) ∈ Σ,

is treated via homogenisation, and the second initial condition

∂tu5(x1,x2,0) = v0(x1,x2), (x1,x2) ∈ Ω,

is incorporated in a weak sense. The spatial domain Ω is decomposed into uniform trian-
gles with uniform mesh size hx = hx,max = hx,min as given in Figure 4.4 for level 0. The
temporal domain

(0,1/4) = (0,T )

is decomposed into nonuniform elements with the nodes

t0 = 0.0, t1 = 0.125, t2 = 0.1875, t3 = 0.25 = T.
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The appearing integrals to compute the related right-hand side in (4.56) and the vector,
related to the second initial condition

∂tu5(·, ·,0) = v0,

are calculated by using high-order quadrature rules. The numerical results for the smooth
solution u4, when a uniform refinement strategy is applied as in Figure 4.4, are given
in Table 4.16, where unconditional stability and quadratic convergence in ‖ · ‖L2(Q), as
predicted by the error estimate (4.59), are observed. Moreover, linear convergence is seen,
when measuring the error in | · |H1(Q), which confirms the error estimate (4.60). For the
singular solution u5, the related results are given in Table 4.17, where a reduced order of
convergence in ‖ · ‖L2(Q) and in | · |H1(Q) are observed. However, for a fixed uniform time
mesh with

ht =
1

4000
,

an adaptive meshing for the spatial domain Ω is considered with respect to the time element
τℓ̂ = (tℓ̂−1, tℓ̂) with

ℓ̂= min

(
argmax
ℓ=1,...,Nt

‖u5 − ũ5,h‖L2(Ω×τℓ)

)
,

i.e. the spatial decomposition

Ω =
Nx⋃

i=1

ω i ⊂❘2

is adaptively refined with respect to the local error indicator

‖u5 − ũ5,h‖L2(ωi×τℓ̂)
, i = 1, . . . ,Nx,

where Dörfler marking [41] with parameter θ = 0.2 is used.

This adaptive scheme seems to lead to optimal convergence rates in ‖·‖L2(Q) and |·|H1(Q)
with respect to the spatial variable, see Figure 4.5, Figure 4.6, and see Figure 4.7 for the
meshes produced by the adaptive scheme. Since the stabilised method (4.56) is uncondi-
tionally stable, the usage of spatially adaptive refinement strategies is possible, which is
confirmed by this example. Note that without the stabilisation such spatial refinement, as
in Figure 4.7, is only possible for a sufficiently small temporal mesh size ht due to the CFL
condition (4.52). However, adaptive refinement strategies are left for future work. See
also [115], for the approach of spatially graded meshes.
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Figure 4.4: Uniform refinement strategy: Starting mesh, the meshes after one and two
uniform refinement steps.

dof hx,max hx,min ht,max ht,min ‖u4 − ũ4,h‖L2(Q) eoc |u4 − ũ4,h|H1(Q) eoc
15 0.35355 0.35355 0.12500 0.06250 5.400e-02 - 7.381e-01 -

198 0.17678 0.17678 0.06250 0.03125 1.160e-02 1.79 3.280e-01 0.94
1932 0.08839 0.08839 0.03125 0.01562 2.627e-03 1.96 1.565e-01 0.97

16920 0.04419 0.04419 0.01562 0.00781 6.379e-04 1.96 7.719e-02 0.98
141360 0.02210 0.02210 0.00781 0.00391 1.582e-04 1.97 3.846e-02 0.98

1155168 0.01105 0.01105 0.00391 0.00195 3.948e-05 1.98 1.921e-02 0.99
9339072 0.00552 0.00552 0.00195 0.00098 9.865e-06 1.99 9.604e-03 1.00

75104640 0.00276 0.00276 0.00098 0.00049 2.466e-06 2.00 4.802e-03 1.00
602407680 0.00138 0.00138 0.00049 0.00024 6.165e-07 2.00 2.401e-03 1.00

Table 4.16: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
for the L-shape (4.62) and T = 1

4 for the function u4 for a uniform refinement
strategy.

dof hx,max hx,min ht,max ht,min ‖u5 − ũ5,h‖L2(Q) eoc |u5 − ũ5,h|H1(Q) eoc
15 0.35355 0.35355 0.12500 0.06250 4.897e-03 - 8.597e-02 -

198 0.17678 0.17678 0.06250 0.03125 1.729e-03 1.21 5.026e-02 0.62
1932 0.08839 0.08839 0.03125 0.01562 6.675e-04 1.25 3.016e-02 0.67

16920 0.04419 0.04419 0.01562 0.00781 2.737e-04 1.23 1.844e-02 0.68
141360 0.02210 0.02210 0.00781 0.00391 1.159e-04 1.21 1.140e-02 0.68

1155168 0.01105 0.01105 0.00391 0.00195 4.888e-05 1.23 7.106e-03 0.68
9339072 0.00552 0.00552 0.00195 0.00098 2.034e-05 1.26 4.448e-03 0.67

75104640 0.00276 0.00276 0.00098 0.00049 8.352e-06 1.28 2.792e-03 0.67
602407680 0.00138 0.00138 0.00049 0.00024 3.395e-06 1.30 1.755e-03 0.67

Table 4.17: Numerical results of the Galerkin-Petrov finite element discretisation (4.56)
for the L-shape (4.62) and T = 1

4 for the function u5 for a uniform refinement
strategy.
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Figure 4.5: L2(Q) error of u5 for (4.56) for the L-shape (4.62) and T = 1
4 for ht =

1
4000 and

for a spatially adaptive refinement strategy with the meshes of Figure 4.7.
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Figure 4.6: H1(Q) error of u5 for (4.56) for the L-shape (4.62) and T = 1
4 for ht =

1
4000 and

for a spatially adaptive refinement strategy with the meshes of Figure 4.7.
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Figure 4.7: Spatially adaptive refinement strategy for the function u5.

Outlook for Possible Extensions of Section 4.2

Since the constructions of the methods and the proofs in this section mainly rely on the
treatment of the second-order temporal differential operator ∂tt +µ with a parameter µ > 0,
the results of this section for the model problem (4.11) can be transferred to hyperbolic
equations for vector fields, e.g., the Maxwell’s equations, as well as to a more general
hyperbolic equation (4.2) for scalar functions with inhomogeneous initial and boundary
conditions under certain assumptions of the involved functions and function spaces, where
details are left for future considerations.
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4.3 Space-Time Variational Formulation in a Strong Sense

In this section, the wave equation (4.11) is considered in L2(Q). Therefore, with the nota-
tions of Section 2.1, define

H1(Q;�) := {v ∈ H1(Q) : �Qv ∈ L2(Q)}

with the inner product

〈u,v〉H1(Q;�) := 〈u,v〉L2(Q)+ 〈∂tu,∂tv〉L2(Q)+ 〈∇xu,∇xv〉L2(Q)+ 〈�Qu,�Qv〉L2(Q)

and the induced norm

‖u‖H1(Q;�) :=
√

〈u,u〉H1(Q;�) =
√
‖u‖2

H1(Q)+‖�Qu‖2
L2(Q).

For a function v ∈ H1(Q;�), the condition �Qv ∈ L2(Q) involves that there exists a func-
tion fv ∈ L2(Q) with

�QTv(ϕ) =
∫

Q

fv(x, t)ϕ(x, t)dxdt for all ϕ ∈ D(Q),

where

Tv : D(Q)→❘, Tv(ϕ) =
∫

Q

v(x, t)ϕ(x, t)dxdt for ϕ ∈ D(Q),

is the distribution related to v∈ L2(Q). Note that the function fv ∈ L2(Q) is unique, because
C∞

0 (Q) is dense in L2(Q).

Clearly, (H1(Q;�),〈·, ·〉H1(Q;�)) is an inner product space.

Lemma 4.3.1. The inner product space (H1(Q;�),〈·, ·〉H1(Q;�)) is a Hilbert space.

Proof. Consider a Cauchy sequence (vn)n∈◆ ⊂ H1(Q;�). Hence, (vn)n∈◆ ⊂ H1(Q) is
also a Cauchy sequence in H1(Q) and (�Qvn)n∈◆ ⊂ L2(Q) is also a Cauchy sequence in
L2(Q). So, there exist v ∈ H1(Q) with ‖vn − v‖H1(Q) → 0 as n → ∞ and f ∈ L2(Q) with
‖�Qvn − f‖L2(Q) → 0 as n → ∞. Let Tv : D(Q)→❘, Tvn : D(Q)→❘, with

∀ϕ ∈ D(Q) : Tv(ϕ) =
∫

Q

v(x, t)ϕ(x, t)dxdt, Tvn(ϕ) =
∫

Q

vn(x, t)ϕ(x, t)dxdt,



4.3 Space-Time Variational Formulation in a Strong Sense 181

be the distributions related to the limit v ∈ H1(Q) and to vn ∈ H1(Q;�) for every n ∈◆.
It follows for all ϕ ∈ D(Q) that

�QTv(ϕ) = Tv(�ϕ) =
∫

Q

v(x, t)�ϕ(x, t)dxdt = lim
n→∞

∫

Q

vn(x, t)�ϕ(x, t)dxdt

= lim
n→∞

Tvn(�ϕ) = lim
n→∞

�QTvn(ϕ) = lim
n→∞

∫

Q

�Qvn(x, t)ϕ(x, t)dxdt

=
∫

Q

f (x, t)ϕ(x, t)dxdt

and so, it holds true that �Qv = f ∈ L2(Q). Hence, v ∈ H1(Q;�).

Set

H2
0, (0,T ;L2(Ω)) := {v ∈ H2(0,T ;L2(Ω)) : v(·,0) = ∂tv(·,0) = 0 in L2(Ω)}

and
H1

0 (Ω;∆) := {w ∈ H1
0 (Ω) : ∆xw ∈ L2(Ω)},

where ∆x is the distributional Laplace operator for distributions D′(Ω). Furthermore, de-
fine the subspace

H̃2
0,(Q;�) := L2(0,T ;H1

0 (Ω;∆))∩H1
0, (0,T ;H1

0 (Ω))∩H2
0, (0,T ;L2(Ω))⊂ H1(Q;�)

and by completion the Hilbert space

H̃1
0,(Q;�) := H̃2

0,(Q;�)
‖·‖H1(Q;�) ⊂ H1(Q;�)

endowed with the inner product 〈·, ·〉H1(Q;�). That means,

H̃1
0,(Q;�) = {v ∈ H1(Q;�) : ∃(vn)n∈◆ ⊂ H̃2

0,(Q;�) with ‖vn − v‖H1(Q;�) → 0}.

Lemma 4.3.2. It holds true that

H1
0,(Q;�)⊂ H1,1

0;0, (Q),

i.e. for u ∈ H̃1
0,(Q;�), it follows that

∥∥∥γ int
0,xu
∥∥∥

L2(Σ)
= ‖u(·,0)‖L2(Ω) = 0,

where γ int
0,x : L2(0,T ;H1(Ω))→ L2(Σ) is the extended trace operator (2.15).
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Proof. Let u ∈ H̃1
0,(Q;�) be fixed. Because of the completion, there exists an approximat-

ing sequence (un)n∈◆ ⊂ H̃2
0,(Q;�) with ‖u−un‖H1(Q;�) → 0 as n → ∞. With the constant

CTr > 0 from the extended trace operator, see (2.15), it holds true that
∥∥∥γ int

0,x(u−un)
∥∥∥

L2(Σ)
≤CTr‖u−un‖L2(0,T ;H1(Ω)) ≤CTr‖u−un‖H1(Q;�) → 0 as n → ∞

and hence, ∥∥∥γ int
0,xu
∥∥∥

L2(Σ)
= lim

n→∞

∥∥∥γ int
0,xun

∥∥∥
L2(Σ)︸ ︷︷ ︸

=0

= 0.

With the continuous embedding (2.12), it follows that

‖u(·,0)−un(·,0)‖L2(Ω) ≤C‖u−un‖H1(Q) ≤C‖u−un‖H1(Q;�) → 0 as n → ∞

and so,
‖u(·,0)‖L2(Ω) = lim

n→∞
‖un(·,0)‖L2(Ω)︸ ︷︷ ︸

=0

= 0.

Hence, the assertion is proven.

Lemma 4.3.3. For u ∈ H̃1
0,(Q;�), the estimate

‖u‖H1(Q) ≤
√

1+
4T 2

π2 |u|H1(Q)

holds true.

Proof. Let u ∈ H̃1
0,(Q;�) be fixed. Because of the completion, there exists an approximat-

ing sequence (un)n∈◆ ⊂ H̃2
0,(Q;�) with ‖u−un‖H1(Q;�) → 0 as n → ∞. Hence, it holds

true that un(x, ·) ∈ H1
0,(0,T ) for almost all x ∈ Ω. By using the Poincaré inequality with

respect to time, see Lemma 3.4.5, it follows that

‖un‖2
L2(Q) =

∫

Ω

T∫

0

un(x, t)2dtdx ≤ 4T 2

π2

∫

Ω

T∫

0

∂tun(x, t)2dtdx =
4T 2

π2 ‖∂tun‖2
L2(Q)

and with

‖un‖2
H1(Q) = ‖un‖2

L2(Q)+‖∂tun‖2
L2(Q)+‖∇xun‖2

L2(Q)

≤
(

1+
4T 2

π2

)
‖∂tun‖2

L2(Q)+‖∇xun‖2
L2(Q),

the assertion by completion.
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Lemma 4.3.4. For u ∈ H̃1
0,(Q;�), it holds true that

|u|2H1(Q) = 2

T∫

0

t∫

0

〈∂tu(·,s),�Qu(·,s)〉L2(Ω)dsdt (4.63)

and hence,

|u|H1(Q) ≤ 2T‖�Qu‖L2(Q).

Proof. Let u ∈ H̃1
0,(Q;�) be fixed. Because of the completion, there exists an approximat-

ing sequence (un)n∈◆ ⊂ H̃2
0,(Q;�) with ‖u−un‖H1(Q;�) → 0 as n → ∞. With integration

by parts for almost all s ∈ (0,T ), it holds true that

〈(
∇xun(·,s)
∂tun(·,s)

)
,

(
∇x∂tun(·,s)
∆xun(·,s)

)〉

L2(Ω)

= 〈∇xun(·,s),∇x∂tun(·,s)〉L2(Ω)

+ 〈∂tun(·,s),∆xun(·,s)〉L2(Ω)

= 〈∇xun(·,s),∇x∂tun(·,s)〉L2(Ω)

−〈∇x∂tun(·,s),∇xun(·,s)〉L2(Ω)

+ 〈γ int
0 ∂tun(·,s)︸ ︷︷ ︸

=0

,∂nun(·,s)〉L2(∂Ω)

= 0,

where γ int
0 is the trace operator and ∂n is the normal derivative, see Section 2.5.

The function un satisfies ∂tun(·,0) = 0 in L2(Ω) and ∇xun(·,0) = 0 in [L2(Ω)]d and so, it
follows that

|un|2H1(Q) = ‖∂tun‖2
L2(Q)+‖∇xun‖2

L2(Q)

=

T∫

0

t∫

0

∂s

[
〈∂tun(·,s),∂tun(·,s)〉L2(Ω)+

d

∑
i=1

〈∂xiun(·,s),∂xiun(·,s)〉L2(Ω)

]
dsdt

= 2

T∫

0

t∫

0

[
〈∂tun(·,s),∂ttun(·,s)〉L2(Ω)+

d

∑
i=1

〈∂xiun(·,s),∂xitun(·,s)〉L2(Ω)

]
dsdt
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and together with the help of the last relation,

|un|2H1(Q) = 2

T∫

0

t∫

0

〈(
∇xun(·,s)
∂tun(·,s)

)
,

(
∇x∂tun(·,s)
∂ttun(·,s)

)〉

L2(Ω)

dsdt

−2

T∫

0

t∫

0

〈(
∇xun(·,s)
∂tun(·,s)

)
,

(
∇x∂tun(·,s)
∆xun(·,s)

)〉

L2(Ω)︸ ︷︷ ︸
=0

dsdt

= 2

T∫

0

t∫

0

〈(
∇xun(·,s)
∂tun(·,s)

)
,

(
0

∂ttun(·,s)−∆xun(·,s)

)〉

L2(Ω)

dsdt

= 2

T∫

0

t∫

0

〈∂tun(·,s),∂ttun(·,s)−∆xun(·,s)〉L2(Ω)dsdt.

The completion procedure gives the equality (4.63). The Cauchy-Schwarz inequality
yields the asserted estimate.

Corollary 4.3.5. The inner product space (H̃1
0,(Q;�),〈�Q(·),�Q(·)〉L2(Q)) is a Hilbert

space.

Proof. The assertion follows immediately from Lemma 4.3.3 and Lemma 4.3.4.

In the following, H̃1
0,(Q;�) is endowed with the inner product 〈�Q(·),�Q(·)〉L2(Q) and

hence, with the norm ‖�Q(·)‖L2(Q). The strong variational formulation of the wave equa-

tion (4.11) for given f ∈ L2(Q) is as follows:

Find u ∈ H̃1
0,(Q;�) such that

aS(u,v) = 〈 f ,v〉L2(Q) (4.64)

for all v ∈ L2(Q), where the bilinear form

aS(·, ·) : H̃1
0,(Q;�)×L2(Q)→❘

is defined by
aS(u,v) := 〈�Qu,v〉L2(Q)

for u ∈ H̃1
0,(Q;�), v ∈ L2(Q).

Next, properties of the bilinear form aS(·, ·) : H̃1
0,(Q;�)×L2(Q) → ❘ are shown and fi-

nally, unique solvability of the strong variational formulation (4.64) is proven.
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Lemma 4.3.6. The bilinear form aS(·, ·) : H̃1
0,(Q;�)×L2(Q)→❘ is bounded, i.e.

|aS(u,v)| ≤ ‖�Qu‖L2(Q)‖v‖L2(Q)

for all u ∈ H̃1
0,(Q;�), v ∈ L2(Q).

Proof. The assertion follows immediately from the Cauchy-Schwarz inequality.

Lemma 4.3.7. The bilinear form aS(·, ·) : H̃1
0,(Q;�)× L2(Q) → ❘ fulfils the condition

(N1), i.e. the inf-sup condition

sup
06=v∈L2(Q)

|aS(u,v)|
‖v‖L2(Q)

= ‖�Qu‖L2(Q)

for all u ∈ H̃1
0,(Q;�).

Proof. The inf-sup condition follows by the representation of the norm ‖·‖L2(Q).

Lemma 4.3.8. The bilinear form aS(·, ·) : H̃1
0,(Q;�)× L2(Q) → ❘ fulfils the condition

(N2):

For each function 0 6= v ∈ L2(Q), an element u ∈ H̃1
0,(Q;�) with aS(u,v) 6= 0 exists.

Proof. Let v ∈ L2(Q) be fixed. There exists an approximating sequence (v̂n)n∈◆ ⊂C∞
0 (Q)

such that ‖v̂n − v‖L2(Q) → 0 as n → ∞. Consider the eigenfunctions φi ∈ H1
0 (Ω) and eigen-

values µi > 0 of the Dirichlet eigenvalue problem of the Laplacian, see (2.4). Write v and
v̂n for n ∈◆ as Fourier series

v(x, t) =
∞

∑
i=1

vi(t)φi(x)

and

v̂n(x, t) =
∞

∑
i=1

v̂n,i(t)φi(x)

for (x, t) ∈ Q with coefficients vi ∈ L2(0,T ), v̂n,i ∈ L2(0,T ), see (3.66). It holds true that

∞ > ‖v‖2
L2(Q) =

∞

∑
i=1

‖vi‖2
L2(0,T )

and for n ∈◆

∞ > ‖v̂n‖2
L2(Q) =

∞

∑
i=1

‖v̂n,i‖2
L2(0,T ), ∞ > ‖∇xv̂n‖2

L2(Q) =
∞

∑
i=1

µi‖v̂n,i‖2
L2(0,T ).
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Fix an index n ∈◆. Define for M ∈◆

un,M(x, t) =
M

∑
i=1

1√
µi

t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds ·φi(x), (x, t) ∈ Q,

and

un(x, t) =
∞

∑
i=1

1√
µi

t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds ·φi(x), (x, t) ∈ Q.

Since

‖un‖2
L2(Q) =

∞

∑
i=1

1
µi

T∫

0




t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds




2

dt

≤
∞

∑
i=1

1
µi

T∫

0

t∫

0

v̂n,i(s)
2ds

t∫

0

sin2 (
√

µi(t − s))dsdt

≤ T 2

2

∞

∑
i=1

1
µi
‖v̂n,i‖2

L2(0,T ) ≤
1
µ1

T 2

2
‖v̂n‖2

L2(Q) < ∞,

it holds true that un ∈ L2(Q) and un,M → un in L2(Q) as M → ∞.

To compute the time derivative ∂t of un, set for M ∈◆

wn,M(x, t) =
M

∑
i=1

t∫

0

v̂n,i(s)cos(
√

µi(t − s))ds ·φi(x), (x, t) ∈ Q,

wn(x, t) =
∞

∑
i=1

t∫

0

v̂n,i(s)cos(
√

µi(t − s))ds ·φi(x), (x, t) ∈ Q,

and compute

‖wn‖2
L2(Q) =

∞

∑
i=1

T∫

0




t∫

0

v̂n,i(s)cos(
√

µi(t − s))ds




2

dt

≤ T 2

2

∞

∑
i=1

‖v̂n,i‖2
L2(0,T ) =

T 2

2
‖v̂n‖2

L2(Q) < ∞,
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i.e. wn ∈ L2(Q) and wn,M → wn in L2(Q) as M → ∞. It follows that

T∫

0

∫

Ω

un(x, t)∂tϕ(x, t)dxdt = lim
M→∞

T∫

0

∫

Ω

un,M(x, t)∂tϕ(x, t)dxdt

=− lim
M→∞

T∫

0

∫

Ω

∂tun,M(x, t)ϕ(x, t)dxdt

=− lim
M→∞

T∫

0

∫

Ω

wn,M(x, t)ϕ(x, t)dxdt

=−
T∫

0

∫

Ω

wn(x, t)ϕ(x, t)dxdt

for all ϕ ∈C∞
0 (Q), i.e. ∂tun = wn ∈ L2(Q). Analogously, the weak derivatives ∂ttun, ∇xun,

∇x∂tun and ∆xun are derived, since one formally computes for (x, t) ∈ Q

∂ttun(x, t) =−
∞

∑
i=1

√
µi

t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds ·φi(x)+
∞

∑
i=1

v̂n,i(t)φi(x),

∇xun(x, t) =
∞

∑
i=1

1√
µi

t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds ·∇xφi(x),

∇x∂tun(x, t) =
∞

∑
i=1

t∫

0

v̂n,i(s)cos(
√

µi(t − s))ds ·∇xφi(x),

∆xun(x, t) =−
∞

∑
i=1

√
µi

t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds ·φi(x),

where the term-by-term differentiation is allowed because of the estimates

‖∂ttun‖2
L2(Q) ≤ 2

∞

∑
i=1

µi

T∫

0




t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds




2

dt +2‖v̂n‖2
L2(Q)

≤ T 2
∞

∑
i=1

µi‖v̂n,i‖2
L2(0,T )+2‖v̂n‖2

L2(Q)

= T 2‖∇xv̂n‖2
L2(Q)+2‖v̂n‖2

L2(Q) < ∞,
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‖∇xun‖2
L2(Q) =

∞

∑
i=1

T∫

0




t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds




2

dt

≤ T 2

2

∞

∑
i=1

‖v̂n,i‖2
L2(0,T ) =

T 2

2
‖v̂n‖2

L2(Q) < ∞,

‖∇x∂tun‖2
L2(Q) =

∞

∑
i=1

µi

T∫

0




t∫

0

v̂n,i(s)cos(
√

µi(t − s))ds




2

dt

≤ T 2

2

∞

∑
i=1

µi‖v̂n,i‖2
L2(0,T ) =

T 2

2
‖∇xv̂n‖2

L2(Q) < ∞

and

‖∆xun‖2
L2(Q) =

∞

∑
i=1

µi

T∫

0




t∫

0

v̂n,i(s)sin(
√

µi(t − s))ds




2

dt

≤ T 2

2

∞

∑
i=1

µi‖v̂n,i‖2
L2(0,T ) =

T 2

2
‖∇xv̂n‖2

L2(Q) < ∞.

Therefore, un ∈ H̃2
0,(Q;�).

Analogously, define for (x, t) ∈ Q

u(x, t) =
∞

∑
i=1

1√
µi

t∫

0

vi(s)sin(
√

µi(t − s))ds ·φi(x)

and partial sums

uM(x, t) =
M

∑
i=1

1√
µi

t∫

0

vi(s)sin(
√

µi(t − s))ds ·φi(x)

for M ∈◆. With the same arguments as above, it holds true that

lim
M→∞

uM = u in L2(Q),

lim
M→∞

∂tuM = ∂tu in L2(Q),

lim
M→∞

∇xuM = ∇xu in [L2(Q)]d.
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For each M ∈◆, one computes for (x, t) ∈ Q

�uM(x, t) =�




M

∑
i=1

1√
µi

t∫

0

vi(s)sin(
√

µi(t − s))ds ·φi(x)


=

M

∑
i=1

vi(t)φi(x)

and hence, it follows that

〈u,�ϕ〉L2(Q) =

T∫

0

∫

Ω

u(x, t)�ϕ(x, t)dxdt = lim
M→∞

T∫

0

∫

Ω

uM(x, t)�ϕ(x, t)dxdt

= lim
M→∞

T∫

0

∫

Ω

�uM(x, t)ϕ(x, t)dxdt = lim
M→∞

T∫

0

∫

Ω

M

∑
i=1

vi(t)φi(x)ϕ(x, t)dxdt

=

T∫

0

∫

Ω

v(x, t)ϕ(x, t)dxdt = 〈v,ϕ〉L2(Q)

for all ϕ ∈C∞
0 (Q), i.e. �Qu = v ∈ L2(Q). The estimates

|un −u|H1(Q) ≤C‖v̂n − v‖L2(Q) and ‖�Q(un −u)‖L2(Q) ≤ ‖v̂n − v‖L2(Q)

yield ‖un −u‖H1(Q;�) → 0 as n → ∞ and hence, u ∈ H1(Q;�).

To summarise, the sequence (un)n∈◆⊂ H̃2
0,(Q;�) converges to u ∈ H1(Q;�) in ‖·‖H1(Q;�)

and hence, u ∈ H̃1
0,(Q;�) by the completion procedure. With �Qu = v ∈ L2(Q) and there-

fore,
aS(u,v)≥ ‖v‖2

L2(Q) > 0,

the assertion follows.

Theorem 4.3.9. For each given f ∈ L2(Q), a unique solution u ∈ H̃1
0,(Q;�) of the varia-

tional formulation (4.64) exists. Furthermore,

LS : L2(Q)→ H̃1
0,(Q;�), LS f := u,

is an isomorphism satisfying

‖�Qu‖L2(Q) = ‖�QLS f‖L2(Q) = ‖ f‖L2(Q).

Proof. With the help of the Nečas Theorem 2.9.1, the results in Lemma 4.3.6, Lemma 4.3.7
and Lemma 4.3.8 yield the existence and uniqueness of a solution u ∈ H̃1

0,(Q;�). In addi-
tion, with the variational formulation (4.64), the equalities

‖ f‖L2(Q) = sup
06=v∈L2(Q)

|〈 f ,v〉L2(Q)|
‖v‖L2(Q)

= sup
06=v∈L2(Q)

|〈�Qu,v〉L2(Q)|
‖v‖L2(Q)

= ‖�Qu‖L2(Q)

hold true and therefore, the assertion.
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Remark 4.3.10. The following functions are given to get a first impression of the solution
space H̃1

0,(Q;�).

1. Functions u ∈ C2(Q) with u|Σ0
= 0, ∂tu|Σ0

= 0 and ∇xu|Ω0
= 0 are contained in

H̃2
0,(Q;�)⊂ H̃1

0,(Q;�).

2. A function u ∈ H1(Q;�) with
∥∥∥γ int

0,xu
∥∥∥

L2(Σ)
= ‖u(·,0)‖L2(Ω) = 0 and �Qu = 0 in Q

is in H̃1
0,(Q;�) if and only if u = 0 in Q. This follows immediately from the represen-

tation (4.63).

3. Consider the smooth function

u(x, t) = sin(πx)sin(πt) for (x, t) ∈ (0,1)× (0,1) = Q,

satisfying
∥∥∥γ int

0,xu
∥∥∥

L2(Σ)
= ‖u(·,0)‖L2(Ω) = 0 and �Qu = 0 in Q.

The representation (4.63) yields that u /∈ H̃1
0,(Q;�).

Outlook for Possible Extensions of Section 4.3

Since the constructions of the spaces and the proofs in this section mainly rely on the treat-
ment of the second-order temporal differential operator ∂tt + µ with a parameter µ > 0,
a generalisation of the results of this section to differential operators ∂tt +Ax, acting on
vector fields or scalar fields, is possible, where the second-order spatial differential oper-
ator Ax has to fulfil certain properties. To transfer existence and uniqueness results, as in
Theorem 4.3.9, to the more general differential operator

∂tt +Ax,

the analysis has to be done with great care, where the proofs are left for future work,
including precise assumptions on Ax and the involved function spaces.
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4.4 Space-Time Variational Formulation in a Weak Sense

In this section, the wave equation (4.11) is considered in a weaker sense than L2(Q). There-
fore, with the notations of Section 2.1 and Section 2.5, define

H(Q) := {v|Q : v ∈ L2(Q−), v|Ω×(−∞,0) = 0, �Q−v ∈ [H1,1
0; ,0(Q)]′}

with the norm

‖v‖H(Q) :=

√
‖v‖2

L2(Q)+
∥∥�Q−v

∥∥2
[H1,1

0; ,0(Q)]′ ,

where
Q− = Ω× (−∞,T )⊂❘d+1

is the unbounded domain with respect to time. For a function v ∈ H(Q), the condition
�Q−v ∈ [H1,1

0; ,0(Q)]′ involves that there exists an element fv ∈ [H1,1
0; ,0(Q)]′ with

�Q−Tv(ϕ) =
〈

fv,ϕ|Q
〉

Q
for all ϕ ∈ D(Q−),

where

Tv : D(Q−)→❘, Tv(ϕ) =
∫

Q−

v(x, t)ϕ(x, t)dxdt =
∫

Q

v(x, t)ϕ(x, t)dxdt for ϕ ∈D(Q−),

is the distribution related to v ∈ L2(Q−) and as in Section 2.5, 〈·, ·〉Q denotes the dual-

ity pairing in [H1,1
0; ,0(Q)]′×H1,1

0; ,0(Q) as extension of the L2(Q) inner product. Note that

ϕ|Q ∈ H1,1
0; ,0(Q) for ϕ ∈ D(Q−) and that C∞

0 (Q−)|Q is dense in H1,1
0; ,0(Q). Hence, the ele-

ment fv ∈ [H1,1
0; ,0(Q)]′ is unique.

Clearly, (H(Q),‖·‖H(Q)) is a normed vector space and it is even a Banach space.

Lemma 4.4.1. The normed vector space (H(Q),‖·‖H(Q)) is a Banach space.

Proof. Consider a Cauchy sequence (vn)n∈◆ ⊂ H(Q). Hence, (vn)n∈◆ ⊂ L2(Q) is also a
Cauchy sequence in L2(Q) and (�Q−vn)n∈◆ ⊂ [H1,1

0; ,0(Q)]′ is also a Cauchy sequence in

[H1,1
0; ,0(Q)]′. So, there exist v ∈ L2(Q) with ‖vn − v‖L2(Q) → 0 as n → ∞ and f ∈ [H1,1

0; ,0(Q)]′

with

∥∥�Q−vn − f
∥∥
[H1,1

0; ,0(Q)]′ = sup
06=w∈H1,1

0; ,0(Q)

∣∣∣
〈
�Q−vn − f ,w

〉
Q

∣∣∣
|w|H1(Q)

→ 0 as n → ∞.

Let Tv : D(Q−)→❘, Tvn : D(Q−)→❘, with

Tv(ϕ) =
∫

Q

v(x, t)ϕ(x, t)dxdt, Tvn(ϕ) =
∫

Q

vn(x, t)ϕ(x, t)dxdt for all ϕ ∈ D(Q−),
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be the distributions related to the limit v ∈ L2(Q) and to vn ∈ L2(Q) for every n ∈ ◆. It
follows for all ϕ ∈ D(Q−) that

�Q−Tv(ϕ) = Tv(�ϕ) =
∫

Q

v(x, t)�ϕ(x, t)dxdt = lim
n→∞

∫

Q

vn(x, t)�ϕ(x, t)dxdt

= lim
n→∞

Tvn(�ϕ) = lim
n→∞

�Q−Tvn(ϕ) = lim
n→∞

〈
�Q−vn,ϕ|Q

〉
Q
=
〈

f ,ϕ|Q
〉

Q

because ϕ|Q ∈ H1,1
0; ,0(Q). So, it holds true that

�Q−v = f ∈ [H1,1
0; ,0(Q)]′.

Hence, v ∈H(Q).

Since the norm ‖·‖H(Q) is a Hilbertian norm, see Section 2.5, H(Q) is even a Hilbert space
with respect to an abstract inner product 〈·, ·〉H(Q), which induces the norm ‖·‖H(Q).

Lemma 4.4.2. It holds true that

H1,1
0;0, (Q)⊂H(Q).

Furthermore, each function u ∈ H1,1
0;0, (Q) fulfils

〈
�Q−u,w

〉
Q = aH1(u,w) :=−〈∂tu,∂tw〉L2(Q)+ 〈∇xu,∇xw〉L2(Q) (4.65)

for all w ∈ H1,1
0; ,0(Q).

Proof. Let u∈H1,1
0;0, (Q) be fixed. Set v := u in Q and v := 0 in Q−\Q. Clearly, it holds true

that v∈ L2(Q−) and v|Ω×(−∞,0) = 0. It remains to prove that �Q−v∈ [H1,1
0; ,0(Q)]′. Therefore,

let Tv : D(Q−)→❘, with

Tv(ϕ) =
∫

Q−

v(x, t)ϕ(x, t)dxdt =
∫

Q

u(x, t)ϕ(x, t)dxdt for all ϕ ∈ D(Q−),

be the distribution related to v ∈ L2(Q−) and define fu ∈ [H1,1
0; ,0(Q)]′ by

〈 fu,w〉Q := aH1(u,w) =−〈∂tu,∂tw〉L2(Q)+ 〈∇xu,∇xw〉L2(Q) for all w ∈ H1,1
0; ,0(Q).

Note that fu ∈ [H1,1
0; ,0(Q)]′ is bounded by the Cauchy-Schwarz inequality, satisfying the

estimate ‖ fu‖[H1,1
0; ,0(Q)]′ ≤ |u|H1(Q) , see Lemma 4.2.22. It follows for all ϕ ∈ D(Q−) with

integration by parts with respect to time and space that

�Q−Tv(ϕ) = Tv(�ϕ) =
∫

Q

u(x, t)�ϕ(x, t)dxdt =
∫

Q

u(x, t)(∂tt −∆x)ϕ(x, t)dxdt

=−
〈
∂tu,∂tϕ|Q

〉
L2(Q)

+
〈
∇xu,∇xϕ|Q

〉
L2(Q)

=
〈

fu,ϕ|Q
〉

Q
.
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Hence, it holds true that �Q−v = fu ∈ [H1,1
0; ,0(Q)]′ and so, u ∈ H(Q). The equality (4.65)

follows also from the last relation, because C∞
0 (Q−)|Q is dense in H1,1

0; ,0(Q).

Define by completion the Hilbert space

H0,(Q) := H1,1
0;0, (Q)

‖·‖H(Q) ⊂H(Q)

endowed with the Hilbertian norm ‖·‖H(Q). That means,

H0,(Q) = {v ∈H(Q) : ∃(vn)n∈◆ ⊂ H1,1
0;0, (Q) with ‖vn − v‖H(Q) → 0}.

Lemma 4.4.3. For u ∈H0,(Q), it holds true that

∥∥�Q−u
∥∥
[H1,1

0; ,0(Q)]′ ≥
√

2
T

‖u‖L2(Q).

Proof. Let 0 6= u ∈H(Q) be fixed. Because of the completion, there exists an approximat-
ing sequence (un)n∈◆ ⊂ H1,1

0;0, (Q) with ‖u−un‖H(Q) → 0 as n → ∞. Assume without loss
of generality that un 6= 0 for all n ∈◆. Because of Theorem 4.2.23, for each n ∈◆, there
exists a unique solution w̃n ∈ H1,1

0; ,0(Q) of

∀v ∈ H1,1
0;0, (Q) : aH1(v, w̃n) =−〈∂tw̃n,∂tv〉L2(Q)+ 〈∇xw̃n,∇xv〉L2(Q)

!
= 〈un,v〉L2(Q), (4.66)

satisfying |w̃n|H1(Q) ≤ 1√
2
T‖un‖L2(Q). With equality (4.65), with v = un ∈ H1,1

0;0, (Q) in the

variational formulation (4.66) and with the stability estimate |w̃n|H1(Q) ≤ 1√
2
T‖un‖L2(Q), it

follows that

∥∥�Q−un
∥∥
[H1,1

0; ,0(Q)]′ = sup
06=w∈H1,1

0; ,0(Q)

|
〈
�Q−un,w

〉
Q|

|w|H1(Q)

≥
|
〈
�Q−un, w̃n

〉
Q|

|w̃n|H1(Q)

=
|aH1(un, w̃n)|
|w̃n|H1(Q)

≥
√

2‖un‖2
L2(Q)

T‖un‖L2(Q)

=

√
2

T
‖un‖L2(Q)

and hence, the assertion by completion.

Corollary 4.4.4. The inner product space
(
H0,(Q),

〈
�Q−(·),�Q−(·)

〉
[H1,1

0; ,0(Q)]′

)
is com-

plete, i.e. a Hilbert space.

Proof. The assertion follows immediately from Lemma 4.4.3.
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In the following, H0,(Q) is endowed with the Hilbertian norm
∥∥�Q−(·)

∥∥
[H1,1

0; ,0(Q)]′ . The

weak variational formulation for given f ∈ [H1,1
0; ,0(Q)]′ is as follows:

Find u ∈H0,(Q) such that
aW (u,w) = 〈 f ,w〉Q (4.67)

for all w ∈ H1,1
0; ,0(Q), where the bilinear form aW (·, ·) : H0,(Q)×H1,1

0; ,0(Q)→❘ is defined
by

aW (u,w) :=
〈
�Q−u,w

〉
Q for u ∈H0,(Q), w ∈ H1,1

0; ,0(Q).

Next, properties of the bilinear form aW (·, ·) : H0,(Q)× H1,1
0; ,0(Q) → ❘ are shown and

finally, unique solvability of the weak variational formulation (4.67) is proven.

Lemma 4.4.5. The bilinear form aW (·, ·) : H0,(Q)×H1,1
0; ,0(Q)→❘ is bounded, i.e.

|aW (u,w)| ≤
∥∥�Q−u

∥∥
[H1,1

0; ,0(Q)]′ |w|H1(Q) for all u ∈H0,(Q), w ∈ H1,1
0; ,0(Q).

Proof. The assertion follows immediately by the definition of the space H0,(Q).

Lemma 4.4.6. The bilinear form aW (·, ·) : H0,(Q)×H1,1
0; ,0(Q) → ❘ fulfils the condition

(N1), i.e. the inf-sup condition

sup
06=w∈H1,1

0; ,0(Q)

|aW (u,w)|
|w|H1(Q)

=
∥∥�Q−u

∥∥
[H1,1

0; ,0(Q)]′ for all u ∈H0,(Q).

Proof. The inf-sup condition follows by the definition of the norm
∥∥�Q−(·)

∥∥
[H1,1

0; ,0(Q)]′ .

Lemma 4.4.7. The bilinear form aW (·, ·) : H0,(Q)×H1,1
0; ,0(Q) → ❘ fulfils the condition

(N2):

For each 0 6= w ∈ H1,1
0; ,0(Q), an element u ∈H0,(Q) with aW (u,w) 6= 0 exists.

Proof. Let 0 6= w ∈ H1,1
0; ,0(Q) be a given function. Because of Theorem 4.2.23, there exists

a unique solution ũ ∈ H1,1
0;0, (Q) of

∀z ∈ H1,1
0; ,0(Q) : aH1(ũ,z) =−〈∂t ũ,∂tz〉L2(Q)+ 〈∇xũ,∇xz〉L2(Q)

!
= 〈w,z〉L2(Q), (4.68)

satisfying
√

2
T |ũ|H1(Q) ≤ ‖w‖L2(Q). With the help of representation (4.65) and the varia-

tional formulation (4.68) for z = w ∈ H1,1
0; ,0(Q), it follows that

aW (ũ,w) =
〈
�Q− ũ,w

〉
Q

= aH1(ũ,w) =−〈∂t ũ,∂tw〉L2(Q)+ 〈∇xũ,∇xw〉L2(Q) = 〈w,w〉L2(Q) > 0

and hence, the assertion.
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Theorem 4.4.8. For each given f ∈ [H1,1
0; ,0(Q)]′, a unique solution u ∈H0,(Q) of the vari-

ational formulation (4.67) exists. Furthermore,

LW : [H1,1
0; ,0(Q)]′ →H0,(Q), LW f := u,

is an isomorphism satisfying
∥∥�Q−u

∥∥
[H1,1

0; ,0(Q)]′ =
∥∥�Q−LW f

∥∥
[H1,1

0; ,0(Q)]′ = ‖ f‖
[H1,1

0; ,0(Q)]′ .

Proof. With the help of the Nečas Theorem 2.9.1, the results in Lemma 4.4.5, Lemma 4.4.6
and Lemma 4.4.7 yield the existence and uniqueness of a solution u ∈H0,(Q). In addition,
with the variational formulation (4.67), the equalities

‖ f‖
[H1,1

0; ,0(Q)]′ = sup
06=w∈H1,1

0; ,0(Q)

|〈 f ,w〉Q|
|w|H1(Q)

= sup
06=w∈H1,1

0; ,0(Q)

|aW (u,w)|
|w|H1(Q)

=
∥∥�Q−u

∥∥
[H1,1

0; ,0(Q)]′

hold true and therefore, the assertion.

Remark 4.4.9. The following functions are given to get a first impression of the solution
space H0,(Q).

1. Functions u ∈C2(Q) with u|Σ0
= 0 are contained in H1,1

0;0, (Q)⊂H0,(Q).

2. Consider the smooth function

u(x, t) = sin(πx)sin(πt) for (x, t) ∈ (0,1)× (0,1) = Q

satisfying γ int
0 u = 0 in Σ0 and �Qu = 0 in Q. But there is

�Q−u 6= 0

because the related distribution

Tu(ϕ) =
∫

Q

u(x, t)ϕ(x, t)dxdt for all ϕ ∈ D(Q−)

fulfils with integration by parts for all ϕ ∈ D(Q−)

�Q−Tu(ϕ) = Tu(�ϕ) =
∫

Q

u(x, t)�ϕ(x, t)dxdt =
∫

Q

u(x, t)(∂tt −∂xx)ϕ(x, t)dxdt

=−〈∂tu,∂tϕ〉L2(Q)+ 〈∂xu,∂xϕ〉L2(Q) = π

1∫

0

sin(πx)ϕ(x,0)dx.

On the other hand, it holds true that u ∈ H1,1
0;0, (Q) ⊂ H0,(Q). In other words, the

second initial condition
∂tu(·,0) = 0 in Ω

is not incorporated in the ansatz space H0,(Q).
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Outlook for Possible Extensions of Section 4.4

Since the constructions of the spaces and the proofs in this section mainly rely on the
treatment of the second-order temporal differential operator ∂tt +µ with a parameter µ , a
generalisation of the results of this section to differential operators ∂tt +Ax, acting on vec-
tor fields or scalar fields u, is possible, where the second-order spatial differential operator
Ax has to fulfil certain properties, e.g., constant coefficients. In more detail, consider the
more general ansatz and test spaces

X0, := H1
0,(0,T ;

[
L2(Ω)

]d
)∩L2(0,T ;V )⊂

[
L2(Q)

]d
,

X,0 := H1
,0(0,T ;

[
L2(Ω)

]d
)∩L2(0,T ;V )⊂

[
L2(Q)

]d
,

endowed with the usual inner products, where V ⊂ [L2(Ω)]d is a given Hilbert space such
that the set [C∞

0 (Q−)|Q]d is dense in X,0. Assume that the space-time variational formula-
tion to find u ∈ X0, such that

∀w ∈ X,0 : −〈∂tu,∂tw〉L2(Q)+

T∫

0

aAx(u(·, t),w(·, t))dt =
〈

f ,w
〉

L2(Q)

admits a unique solution for each right-hand side f ∈
[
L2(Q)

]d
, satisfying the stability

estimate
‖u‖X0,

≤ c
∥∥ f
∥∥

L2(Q)

with a constant c > 0. Further, assume that the to Ax corresponding spatial bilinear form
aAx(·, ·) : V ×V → ❘ fulfils some properties, e.g., ellipticity and continuity. Then, exis-
tence and uniqueness results, as in Theorem 4.4.8, can be transferred to the more general
differential operator

∂tt +Ax.

Since the proofs have to be done with great care, they are left for future work, including
precise assumptions on Ax and V.



5 CONCLUSIONS AND OUTLOOK

In this work, space-time variational formulations and their discretisations with conforming,
piecewise polynomial functions for the heat and wave equation are considered in a bounded
space-time cylinder Q with a terminal time T.

The main result for the heat equation is an unconditionally stable finite element method
of Galerkin-Bubnov type with piecewise linear, continuous functions, which is based on
a variational formulation in a subspace of the anisotropic Sobolev space H1,1/2(Q). This
space-time variational formulation is analysed with the help of Fourier series, and a kind of
Hilbert transform HT is introduced. This leads to a symmetric and elliptic variational for-
mulation and hence, to a symmetric Galerkin discretisation of the first-order time derivative
∂t . For the heat equation, unconditional stability for unstructured space-time meshes, error

estimates in L2(Q), in H1(Q) and in the anisotropic Sobolev space H1/2
0, (0,T ;L2(Ω)) for a

tensor-product approach are proven. Furthermore, numerical examples, which confirm the
theoretical results, are presented. The main advantage of this formulation is the possibility
of a combination with the standard boundary element method for the heat equation, i.e.
a FEM-BEM coupling, see [39]. An investigation in such directions is a possible future
work. In addition, proving a discrete inf-sup condition and error estimates for unstruc-
tured space-time meshes and a fast realisation of the kind of Hilbert transform HT given
in (3.68) are also of interest in future.

For the wave equation, a space-time variational formulation in a subspace of the Sobolev
space H1(Q), which is not inf-sup stable, is used for a conforming space-time finite el-
ement method, which leads to a conditionally stable method, i.e. a CFL condition is re-
quired. For a tensor-product approach, an unconditionally stable method with piecewise
linear, continuous functions is investigated. An extension to a space-time approximation
with unstructured space-time meshes remains open for the future. A first possibility is the
use of locally refined meshes with hanging nodes, including related constraints to satisfy
the continuity requirements of the ansatz space. A second possibility is to transfer the
stabilisation to unstructured but admissible space-time meshes. In both cases, one con-
stant source of difficulties is the situation of different initial and terminal conditions of the
ansatz and test spaces H1,1

0;0, (Q), H1,1
0; ,0(Q), which may lead to a nonsquare system of linear

equations for discretisations based on unstructured space-time meshes. Using the transfor-
mation HT given in (4.45), i.e. a Galerkin-Bubnov scheme, is a possible way out.

Moreover, existence and uniqueness results for the wave equation as a partial differential
equation in L2(Q) and in a weaker sense than L2(Q) are proven, including isomorphic
solution operators and corresponding inf-sup conditions. These inf-sup stable space-time
variational formulations in the strong or weak sense might be useful not only for other
discretisation methods, e.g., wavelets, but also for the analysis of the related boundary
integral equations.

197
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For both equations, i.e. for the heat equation and for the wave equation, moving bound-
aries, space-time adaptive schemes, space-time parallelisations and especially fast solvers
and preconditioning, which are based on space-time variational formulations given in this
thesis, are left for future considerations. Finally, any extensions to more involved equa-
tions, e.g., Stokes equations or Maxwell’s equations, are of interest in future, see also the
outlooks for possible extensions in each chapter.
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