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Zusammenfassung

Eine große Herausforderung für die numerische Simulation von turbulenten Strömungen
stellen die mitunter stark unterschiedlichen Dicken der laminaren Unterschicht der Ge-
schwindigkeit und Enthalpie dar. Die Annahme der Reynolds-Analogie zwischen Ge-
schwindigkeit und Enthalpie, welche für die meisten thermischen Randbedingungen in
Reynolds Averaged Navier-Stokes (RANS) Simulationen getroffen wird, muss daher mit
zunehmender molekularer Prandtl Zahl immer mehr in Frage gestellt werden.

Diese Problematik wird in der vorliegenden Arbeit mittels Direct Numerical Simulation
(DNS) von Strömungen mit relativ hohen Prandtl Zahlen, bis zu Pr = 50 und unter Be-
rücksichtigung von temperaturabhängigen Stoffwerten untersucht. Um auch die kleinsten
thermalen Strukturen, welche nahe der Wand auftreten, numerisch auflösen zu können,
muss das numerische Rechengitter nahe der Wand stark verfeinert werden. Der Einfluss
der Variation der Stoffwerte auf die Strömungsgrößen wird durch Vergleiche mit Simu-
lationen basierend auf konstanten Stoffwerten verdeutlicht. Weiters ermöglicht die DNS
einen sehr detailreichen Einblick in den turbulenten Wärme- und Impulstransport nahe
der Wand. Es konnte gezeigt werden, dass trotz des Anstieges der mittleren molekularen
Prandtl Zahl im Fall veränderlichen Stoffwerte, die effektive Dicke der diffusiven thermi-
schen Unterschicht beträchtlich zunimmt. Eine Analyse der turbulenten Budgets bewies,
dass dieses Aufdicken der Untersicht der Reduktion des turbulenten radialen Impulsaus-
tausches zugeschrieben werden kann.

Alle Ergebnisse werden mit Messungen verglichen, welche auf einem speziell für diese
Problemstellung entwickelten und gebauten Prüfstand durchgeführt wurden. Die ausge-
zeichnete Übereinstimmung der Simulationswerte für den Strömungs-Widerstandsbeiwert
und die Nusselt Zahl mit den Messungen, unterstreicht die hohe Zuverlässigkeit der DNS
Ergebnisse.

Weiters wurden, aufbauend auf den generierten Daten, zwei weithin etablierten thermi-
schen Randbedingungen, basierend auf der P-Funktion bzw. einem einfachen Zwei- Schich-
tes Modell, validiert und weiterentwickelt. Außerdem werden, basierend auf den DNS-
Erkenntnissen, Modifikationen vorgeschlagen, welche geeignete Untermodelle für die tur-
bulente Prandtl Zahl, die turbulente Viskosität, sowie eine verbesserte Beschreibung des
Verhältnisses zwischen totaler Schubspannung und Wärmestromdichte liefern. Die resul-
tierende adaptierte Modellformulierung stellt einen Ansatz dar, welcher den Enthalpiever-
lauf über den gesamten radialen Bereich beschreiben kann. Dieser spannt sich von der
diffusiven Unterschicht, bis zur "inertial subrange". Darüber hinaus, wird der Einfluss der
temperatur abhängigen Stoffwerte mit guter Genauigkeit berücksichtigt. Der Vergleich
der Modellvorhersagen für den Reibungskoeffizient und die Nusselt Zahl zeigt eine gute
Übereinstimmung mit den DNS-Ergebnissen, sowie auch mit Messungen weit außerhalb
des mittels DNS simulierbaren Betriebsbereich, wodurch die sehr umfassende Anwend-
barkeit dieses Modells bestätigt wird.



Abstract

The numerical simulation of turbulent heat transfer at high molecular Prandtl numbers is
still strongly challenged by disparate thicknesses of the viscous sublayer for velocity and
enthalpy. The widely used standard model assumptions for the prescription of the ther-
mal boundary conditions in Reynolds Averaged Navier-Stokes (RANS) type simulations
become increasingly questionable for high molecular Prandtl numbers, as the Reynolds
analogy between the momentum and the heat transfer breaks down.

The present work addresses this issue by performing Direct Numerical Simulation (DNS)
for relatively high molecular Prandtl number, up to Pr = 50, including temperature- depen-
dent fluid properties. In order to capture numerically the small thermal structures occurring
in the near wall layer, the numerical resolution requires a strongly refined computational
mesh. The alteration of all flow quantities, due to varying fluid properties is extensively
examined by a comparison against results from DNS with constant fluid properties. The
DNS further gives an very detailed insight into turbulent heat and momentum transfer near
the wall. It turned out that, although the variable fluid property cases are associated with
a higher bulk molecular Prandtl number due to the increasing viscosity towards the colder
center, the effective thickness of diffusive sublayer still thickens. The turbulent budgets,
demonstrated that the observed thickening of the diffusive sublayer could be mainly at-
tributed to a reduced radial turbulent transport of momentum.

All DNS results are further validated against measurements, obtained on a test facility,
specially designed and constructed for the considered problem. The agreement of the
simulated skin-friction coefficients and Nusselt numbers with the experiments is excellent,
indicating the high reliability of the present DNS results.

This DNS database was utilized for the evaluation and further development of two popular
modeling approaches for RANS-type thermal boundary condition, the so-called P-function
and a simple two-layer model. Based on the DNS results, various modifications for either
approach are proposed, providing in particular appropriate submodels for the turbulent
Prandtl number, the eddy viscosity, and incorporating an analytical solution for the flux ra-
tio of the total shear stress and the total heat flux. The resulting modified formulations were
shown to be, capable of describing the enthalpy variation over the whole radial domain,
spanning from the diffusive sublayer to the inertial subrange. Additionally, the model also
accounts reasonably well for the effect of temperature-dependent material properties. The
comparison of the model predictions for the skin-friction coefficient and the Nusselt num-
ber shows good agreement with the DNS results as well as the experimental data, which
covers also Reynolds numbers not amenable to DNS, indicating the wide applicability of
the proposed model.
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Nomenclature

Latin symbols

Symbol Description Dimension
a thermal diffusivity m2 s−1

aT eddy diffusivity m2 s−1

Aρ ,Bρ constant for density-temperature equation kgm−3,kgm−3 K−1

Ac,Bc constant for specific heat-temperature
equation

Jkg−1 K−1,Jkg−1 K−2

Aλ ,Bλ constant for thermal conductivity-
temperature equation

Wm−1 K−1,Wm−1 K−2

Aµ ,Bµ ,Cµ constant for dynamic viscosity-
temperature equation

Pas,K,K

A,b,B,C,km,kh constant −
cp specific heat capacity Jkg−1 K−1

c f skin-friction coefficient −
D diameter m
h enthalpy Jkg−1

H discretized term in non-dimensional en-
ergy equation

−

k turbulent kinetic energy Jkg−1

L length m
lm mixing length m
ṁ mass flow rate kgs−1

M discretized term in non-dimensional mo-
mentum equation exluding pressure

−

v



Symbol Description Dimension
p pressure Pa
P P-function −
Q̇ heat flux W
p j heat flux vector Wm−2

ṗQ heat source Wm−3

ru radius at cell face m
rp radius at cell center m
t time s
T temperature K
Tτ friction temperature K
ui,u,v,w velocity component ms−1

wτ friction velocity ms−1

V volume m3

y+c,m momenum boundary distance between viscous and turbulent
layer

−

y+c,th thermal boundary distance between viscous and turbulent layer −
xi,r,ϕ,z radial, azimuthal and axial direction m

vi



Greek symbols

Symbol Description Dimension
α heat transfer coefficient Wm−2 K−1

αc,βc,γc,δc,εc model coefficient −
β ,βθ ,βχ constant −
γ model parameter −
Γ blending function for velocity −
Γχ blending function for enthalpy −
δi j Kronecker delta −
δm momentum boundary layer thickness m
δth thermal boundary layer thickness m
δth momentum thickness m
∆ grid spacing −
χ relative enthalpy Jkg−1

ε dissipation of turbulent kinetic energy m2 s−3

η Kolmogorov micro length scale m
ηth Batchelor micro length scale m
κ von Kármán constant −
λ thermal conductivity Wm−1 K−1

µ dynamic viscosity Pas
µT eddy viscosity Pas
ν kinematic viscosity m2 s−1

θ relative temperature K
ρ density kgm−3

π relative pressure Pa
Φ

n−1
h discretized source term in non-dimensional energy equa-

tion
−

Φn−1
u discretized source term in non-dimensional momentum

equation
−

Ψµ viscous dissipation Wm−3

τi j stress tensor Nm−2

vii



Subscripts

Symbol Description
()i vector
()i j tensor
b bulk mean value
BW bandwidth
D based on bulk values
δ based on momentum thickness
crit critical
lam laminar
in quantity at inflow position
m momentum
µ based on local viscosity
0 reference
th thermal
tot total
turb turbulent
w wall
∞ at y→ ∞

Superscripts

Symbol Description
()∗ non-dimensionalized
()+ representation in wall-coordinates
n,n+1 iteration in time
() Reynolds average
(̂) Favre average
()′ fluctuation component of Reynolds average
()′′ fluctuation component of Favre average

viii



Non-dimensional parameters

Symbol Description Definition

Nu Nusselt number
α D
λ

Pr molecular Prandtl number
ν ρ cp

λ

PrT turbulent Prandtl number
µT ρ

aT

PeT tubulent Peclet number
νT

ν
Pr

Re bulk Reynolds number
Dρ w

µ

Reδ2 momentum thickness Reynolds number
δ2 w∞

νb

Reτ friction Reynolds number
Dρ wτ

µ

Abbreviations

DNS Direct numerical simulation
FFT Fast Fourier Transformation
iFFT inverse Fast Fourier Transformation
LES Large eddy simulation
CFD Computational fluid dynamics
RANS Reynolds Averaged Navier-Stokes equations
MPI Message Passing Interface
CFL Courant–Friedrichs–Lewy condition
rms Root mean square
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1 INTRODUCTION

Turbulent heat transport in pipe flows is a major topic in many industrial engineering ap-
plications. The majority of the employed fluids are of high molecular Prandtl number like
organic cooling liquids, or oils. Although much computational and experimental research
work has been devoted to this highly relevant subject, it is still a very challenging task
to model the turbulent convective heat transport of such liquids. An additional problem
arises, as the operation point is often located in the intermediate range between the lami-
nar and the fully turbulent flow regime, where it is generally very hard to develop universal
model descriptions. The principle aim of this thesis is to provide a comprehensive and de-
tailed insight into the forced convective heat transfer and the underlying mechanisms for
particularly these fluids and flow conditions.

In wall bounded flow, the near wall region essentially determines the exchange of mo-
mentum and heat between the fluid and the wall. Inside this region the flow is highly
affected by the viscous forces, so that the flow structures differ significantly from those in
the turbulent core region. Figure 1.1 shows typical hydraulically and thermally fully de-
veloped velocity and temperature profiles of a pipe flow, heated with a constant wall heat
flux for several molecular Prandtl numbers. With increasing molecular Prandtl number,
the thermal resistance near the wall increases, implying a decreasing boundary layer thick-
ness δth << δm, and therefore a shift of the essential convective and conductive transport
mechanisms closer to the wall.

wb

Tb

Pr = 1

Pr = 10

Pr = 20

qw

w

T

δm

δth

Figure 1.1: Velocity and temperature profiles

In order to capture numerically the small thermal structures occurring in the near wall
layer, the numerical resolution requires a strongly refined computational mesh. This makes
the computational costs unacceptably high, especially for the complex geometries often

1



2 1 Introduction

considered in industrial applications. For such applications the typically followed Com-
putational Fluid Dynamics (CFD) approach is to apply Reynolds-averaged Navier-Stokes
(RANS) simulations using wall function models. According to this concept only the fully
turbulent core region of the flow is simulated, while the near wall region is described using
analytic wall functions. Various state-of-the-art wall functions are reviewed in this thesis,
pointing out their capabilities and deficits. These standard approaches mostly introduce the
turbulent Prandtl number to relate the thermal eddy diffusivity to the eddy viscosity. The
setting of this parameter significantly determines the thermal boundary conditions. There-
fore, the turbulent Prandtl number plays a prominent role in the literature review given
below. Any further advancement of the modelling towards a better prediction of the real
fluid behavior requires good insight into the relevant physical effects down to the smallest
dynamic and thermal length scales. The hereby required high level of description suggests
the method of Direct Numerical Simulation (DNS) as most powerful approach.

1.1 Literature survey

The majority of previous DNS studies considered heated channel flows at fairly low Prandtl
numbers near unity and constant thermophysical properties. One of the first attempts was
made by Kim and Moin (1987), who considered a flow with a friction Reynolds number
Reτ = 180 (based on the wall shear stress velocity and the channel half-width) and molec-
ular Prandtl numbers less than two. Although the near wall resolution provided by their
numerical mesh was fairly coarse (the distance of the first grid point near the wall in wall-
units was y+ > 1), a moderate increase of the turbulent Prandtl number towards the wall
could be still observed for the case Pr = 2. Based on the near-wall variation of turbulence
quantities obtained from these DNS results, Antonia and Kim (1991) approximated the
near-wall variation of the turbulent Prandtl number using Taylor series expansions. Their
actually derived expansions, however, implied no dependence of the eddy diffusivity on
the molecular Prandtl number near the wall. The inferred independence of the turbulent
Prandtl number of the molecular Prandtl near the wall was clearly contradicted by various
later DNS studies. Kawamura et al. (1998) did similar DNS simulations of a turbulent
heated channel flow on refined meshes and for slightly higher molecular Prandtl number,
up to Pr = 5. The near wall resolution of these DNS was similar to that of Kim and Moin
(1987), first grid point near the wall at y+ > 1, and the obtained results also indicated an
increase of the turbulent Prandtl number towards the wall for molecular Prandtl numbers
above unity. A further investigation on the passive scalar transport in the vicinity of the
wall, for high Prandtl number between Pr= 1 up to Pr= 10, was published by Na and Han-
ratty (2000) considering fully developed turbulent flow in a channel at Reτ = 150 (based
on the channel half-width). These simulations were carried out on different numerical
meshes to verify the independence of the results of the resolution. As an important output,
this study showed the limits of the frequently assumed analogy between momentum and
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scalar transport close to the wall. The effect of the thermal wall boundary condition was
studied by Tiselj et al. (2001b). This study compared the isoflux and isothermal boundary
condition for a turbulent channel flow with Reτ = 170 (based on the channel half-width)
assuming alternatively Prandtl numbers Pr = 1 and Pr = 5.4. For the case with isoflux
boundary condition, associated with invariant wall heat flux qw = const., the temperature
fluctuations at the wall do not vanish as it is in the case for the isothermal boundary condi-
tion, associated with invariant wall temperature Tw = const. In the isoflux case the persis-
tent temperature fluctuations throughout to the wall cause the turbulent Prandtl number to
vanish for y+→ 0. In a further publication, Tiselj et al. (2001a) presented DNS results for
the same geometry, yet for a Prandtl number variation from Pr = 0.71 up to Pr = 7, and
a friction Reynolds number Reτ = 150. Following the mesh resolution requirements pro-
posed by Na and Hanratty (2000), these simulations were done on a coarser mesh than in
the precursor study. Additionally, for further investigating the heat transfer in close prox-
imity to the wall, the flow field simulation was coupled with an unsteady simulation of the
conduction inside the heated solid wall structure. It was demonstrated, how the magnitude
of the temperature fluctuations in the wall structure depend on two particular parameters,
the thermal effusivity and the wall thickness. One of the first attempts of DNS of turbulent
heated pipe flow was made by Piller (2005). The flow conditions assumed a Reynolds num-
ber Reτ = 360 (based on the pipe diameter) and Prandtl number of 0.71. Three different
thermal wall boundary conditions were considered, isoflux, isothermal, and a mixed type
boundary condition. The results confirmed the vanishing turbulent Prandtl number at the
wall for the isoflux case and an considerable increase of PrT towards unity at the wall for
the isothermal case. Furthermore, comparing the against corresponding data for channel
flow revealed that the thermal fluctuations are slightly more intense for the pipe geome-
try. For little higher Prandtl numbers, up to Pr = 1, Redjem-Saad et al. (2007) published
DNS results on the same geometry and Reynolds number. The case with unity molecular
Prandtl number did not reveal any increase of the turbulent Prandtl number towards the
wall similar to previous DNS of channel flow at this Prandtl number. Aside from the heat
transfer simulations for high Prandtl number, Schwertfirm and Manhart (2007) presented
DNS simulations of a passive scalar transport in a turbulent channel for very high Schmidt
numbers up to Sc = 49. A very fine computational mesh had to be employed in order
to resolve all scales of the scalar field. In order to reduce the computational effort, a hi-
erarchical mesh algorithm was employed which solves the Navier-Stokes equations on a
twice as coarse mesh as that used for the passive scalar transport. Regarding the turbulent
Schmidt number, the increase towards the wall is clearly visible. Wu and Moin (2008) did
extensive DNS on a turbulent pipe flow on a very fine mesh. This study, however, does
not take the transport of thermal energy into account. The results of this well resolved
simulations are still applied in this thesis for the validation of the velocity field predicted
by the DNS of the present work. DNS simulations with higher molecular Prandtl number
where presented by Kozuka et al. (2009) for a turbulent channel flow with high spatial res-
olution. The highest considered Prandtl number was Pr = 10 and two Reynolds numbers
were assumed Reτ = 180 and Reτ = 395 (based on the channel half-width). The DNS re-
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sults for the radial variations of the mean temperature obtained for the different Reynolds
and Prandtl were analyzed, showing decreasing non-dimensional bulk temperatures for in-
creasing Reynolds numbers. By comparing the temperature variation against the empirical
correlation of Kader (1981) a rather good agreement was shown for the cases with the
higher Reynolds number, yet the differences increased with increasing Pr. The analysis of
the higher-order showed once more the near wall increase of the turbulent Prandtl number
for a molecular Prandtl number above unity. Due to the very fine mesh resolution near the
wall, it is even possible to predict fairly accurately the asymptotic wall value of PrT . It was
shown, that, except for the asymptotically approached near-wall value, the profiles for the
different considered Prandtl number cases can be merged by scaling the wall distance with
the conductive sublayer thickness as obtained from a formulation proposed by Shaw and
Hanratty (1977) dependent on the viscous sublayer thickness and the molecular Prandtl
number. Moreover, the comparison of the near wall asymptotic of PrT for the the different
Reynolds number cases indicated only a minor Reynolds number dependency.

An important focus of this thesis is on the impact of temperature depending material prop-
erties on the flow conditions and heat transfer. Due to its relevance in various technical
applications the effect of the variation of the material properties has also been investigated
in various previous studies in literature.
Lee et al. (2013) performed DNS of turbulent boundary layers with temperature-depending
viscosity in order to investigate the influence of wall heating on the skin-friction coeffi-
cient. The considered fluid was water with a reference Prandtl number Pr = 5.4 and a
momentum thickness Reynolds number Reδ2 = 1240. It was shown that the skin-friction
coefficient can be considerably decreased by the heating. In addition, the decreasing vis-
cosity towards the wall caused the production term in the turbulent kinetic energy budget
to decrease due to a reduction of the Reynolds shear stress while the near wall dissipa-
tion was increased. Zonta et al. (2012) investigated the effect of a temperature-dependent
viscosity on forced convection in a channel flow with a heated and a cooled wall. The ref-
erence Prandtl number for this study was set to Pr = 3 and based on the mean temperature
between the heated and the cooled wall. It is clearly shown, that on the hot side of the
channel, corresponding to low viscosity, the turbulence is damped while the velocity gra-
dient is increased. The damped turbulence is also reflected by reduction in the production
and dissipation terms in the turbulent energy budgets.
The more recent study of Patel et al. (2015) conducted a DNS based investigation of the
effect of temperature-dependent density and viscosity on turbulence in channels in low
Mach number approximation. It was shown that the Van-Driest transformed velocity and
the second order statistics are strong functions of the semi-local wall coordinate, defined
with the local values of the density and viscosity. A similar scaling approach was intro-
duced for the temperature in Patel et al. (2017), who showed that the results with different
Reynolds number can be collapsed, for unity Prandtl number. For non-unity Prandtl num-
ber the scaling had to be extended dependent on the Prandtl number.
Nemati et al. (2016) carried out DNS of heat transfer in forced convection in a turbulent
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pipe flow at super-critical pressure, accounting for the very strong variation of all relevant
thermophysical fluid properties. They considered a thermally developing pipe flow, heated
with constant wall heat flux. The reference conditions were set at the inlet with Reτ = 360
and Pr = 3. As a major effect of the strong variation of the temperature-dependent ma-
terial properties the author observed a reduction in kinetic energy, which further caused a
deterioration in heat transfer.

Due to the excessively high computational costs of DNS simulations, they are generally not
applicable to technically relevant flows involving mostly too high Reynolds numbers. For
such flows, it is common to carry out RANS-type simulations instead, using the well estab-
lished standard wall-function models for prescribing dynamic and thermal wall boundary
conditions. In this thesis two different popular thermal wall modelling approaches will
be investigated and further advanced using DNS data. On the one hand, it investigates
the rather simple two-layer approach, which essentially splits the boundary layer into two
separate sublayers, a diffusive near wall layer and the fully turbulent inertial sublayer.
Kader (1981) further proposed a blending between these two sub-layers yielding a smooth
transition from one to the other. Most commercial CFD codes prescribe the dynamic and
thermal wall boundary conditions, which are essentially based on this idea. The other
approach is the so-called P-function approach for describing the logarithmic temperature
profile inside the inertial subrange. This concept essentially relates the total shear stress to
the total heat flux and integrates the temperature over the axial velocity. This yields a tem-
perature formulation depending on the axial velocity, the bulk turbulent Prandtl number
and the P-function. The P-function basically represents the thermal resistance of the diffu-
sive sublayer dependent on the molecular Prandtl number. In literature many formulations
for the P-function or equivalent expressions can be found, e.g., in the work of Kármán
(1939), Hofmann (1940), Spalding (1967), Jayatilleke (1969), Kader and Yaglom (1972),
Malin (1987). The most popular representation among these are the analytically based for-
mulation of Spalding (1967), and its empirical extension of Jayatilleke (1969). Spalding
(1967) applied several simplifying assumptions to finally obtain an analytical solution for
the P-function. These simplifications essentially consist in approximating the near wall
variation of the eddy viscosity with a Taylor series expansion, and in using an invariant
turbulent Prandtl number set to its bulk value PrT = PrT,∞. Their actual setting signifi-
cantly determines the resulting description of the thermal wall boundary conditions. Much
research work has been therefore devoted to the modelling of these two key parameters.
Regarding the eddy viscosity, it is commonly known that the most popular approach, the
mixing-length ansatz of Van Driest (1956), yields incorrect near wall asymptotics, predict-
ing a dependence νT ∼ y+4. Therefore, Grifoll and Giralt (2000) proposed a modification
to the damping coefficient as used in the original mixing length formulation, essentially
enforcing the analytically as well as DNS proven y+3-dependency of νT in close proximity
to the wall.
It has become rather common, to assume the turbulent Prandtl number as constant, setting
it to the value of the bulk turbulent Prandtl number PrT,∞ approached in the limit of high
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y+� 1. This simplifying assumption is certainly contradicted by many of the DNS stud-
ies cited above. Especially for molecular Prandtl numbers well above unity, the near-wall
variation of the turbulent Prandtl number needs to be suitably modelled to obtain an accu-
rate description of the thermal boundary conditions. In literature, basically three different
modeling approaches for the turbulent Prandtl number can be found, a purely empirical,
a purely analytical and experimentally adapted analytical (semi-empirical) models. For
the purely empirical turbulent Prandtl number models, the approach of Graeber (1970)
can be considered as a typical representative. This model is exclusively dependent on the
molecular Prandtl number and is based on various heat transfer measurements on different
geometries for a variety or Reτ and Pr. Due to the full independence of the wall distance,
this approach is not capable of prescribing an increase of the turbulent Prandtl number
towards the wall, as indicated by the DNS studies cited above. Among the semi-empirical
models, the formulation of Cebeci (1973) produces a similar near wall variation of the tur-
bulent Prandtl number as the DNS results indicate. The underlying idea of this model is to
model the eddy diffusivity in a similar manner as the eddy viscosity based on Van Driest
(1956) mixing length formulation. In a following study, Na and Habib (1973) extended
this approach with an additional molecular Prandtl number dependency of the model co-
efficients. Although the model prescribes qualitatively correct an increase of the turbulent
Prandtl number towards the wall, this increase is quantitatively underpredicted. A very
promising turbulent Prandtl number model was proposed by Kays and Crawford (1980).
This experimentally adapted analytical model is based on the analytical consideration of
conductive heat transfer in thermal eddies, relying on an idea proposed by Jenkins (1951).
The model is further tuned using experimental data of Hollingsworth et al. (1989), who
performed measurements for a fully turbulent boundary layer in a free-surface channel
flow with zero pressure gradient and Pr = 5.9. The resulting model imposes, on the one
hand, a constant bulk turbulent Prandtl number PrT,∞, approached remote from the wall
and, on the other hand, prescribes the increase of PrT near the wall as indicated by the
DNS.
Basically, none of the above mentioned wall-function model include a variation of temperature-
dependent material properties. Petukhov (1970) derived correlations for the skin-friction
coefficient and the Nusselt number based on analytical considerations, including thermo-
physical fluid properties. It was concluded, that in order to improve the prescription of
either coefficients, the ratio of the wall and the bulk Prandtl number raised to some power
needs to be included to account for the material property variation.

The considerable restrictions, which arise from the high computational costs of DNS on
the one hand, and, from the simplifying assumptions typically required by analytical ap-
proaches on the other hand, suggest heated channel flow experiments as a feasible alter-
native. This is especially the case, when considering very high Prandtl number fluids with
temperature-dependent material properties. Certain typical restrictions apply to the ex-
perimental approach as well, in that it hardly ever delivers a detailed spatially resolved
description of the heated near wall region. The available experimental techniques rather
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measure only global mean quantities like the bulk temperature, the heat transfer coeffi-
cients and Nusselt numbers delivered therefrom. Providing these characteristic parameters
of the heat transfer over a wide range of Reynolds and Prandtl numbers, experiments still
represent a very useful tool, not only for verifying computational predictions but also for
validating and calibrating empirical model correlations. Well established representations
of the latter, such as the Nusselt number correlations of Sleicher and Rouse (1975) or
Gnielinski (1995), are often used themselves for evaluating CFD data. This may also in-
clude DNS results obtained at Reynolds numbers close to or inside the transition regime
between laminar and fully turbulent flow, even though both of the popular Nusselt num-
ber correlations mentioned above are exclusively valid for the fully turbulent regime. In
order to reduce the well-known deficits of the original Gnielinski correlation in the tran-
sition regime, Gnielinski (2002) himself proposed a linear superposition of a laminar and
a fully turbulent Nusselt number contribution for predicting better the corresponding low
Reynolds number range. However, when comparing against measurements especially at
high Prandtl numbers, see e.g., Morris and Whitman (1928), Sherwood (1932), the ex-
tended correlation still tends to under-predict the experimental values. This may be also
due to the fact, that the data employed by Gnielinski (1995) for deriving and calibrating
his Nusselt number correlation is rather old, especially the experimental data considering
high molecular Prandtl numbers and Reynolds number in the intermediate regime between
laminar and fully turbulent flow. One of the more recent attempts to measure the Nusselt
number for these conditions was made by Ghajar and Tam (1994), whose concept for heat-
ing the test section was also used in the experimental facility designed in the present work.
The temperature-dependent variation of the thermophysical fluid properties is mostly in-
cluded into the empirical correlation in terms of a correction factor. Gnielinski (2002), fol-
lows here a well established approach including the ratio of the wall and the bulk Prandtl
number raised to some power.

1.2 Objectives and thesis outline

The present thesis essentially targets four major goals.

The first goal is a detailed DNS based analysis of the near wall heat and momentum transfer
of a turbulent heated pipe flow with a special focus on high molecular Prandtl number
effects, considering molecular Prandtl number well above unity.

The second goal is to investigate the effect of temperature-depending real fluid properties
on the transport of momentum and heat. For this purpose temperature-dependent material
properties, typically met with heat transfer oils were considered in the DNS.

The detailed insight into the near wall momentum and heat transfer provided by the DNS
is the basis for the third goal, which attempts to assess the scope of state-of-the-art bound-
ary conditions. Two of the most popular approaches are considered, a simple two-layer
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model and the P-function approach originally proposed by Spalding (1967). All assump-
tions and simplifications are reviewed and assessed against the available DNS data-base.
Possible improvements for both, alternative thermal boundary conditions shall be derived
and validated against the DNS data.

The fourth goal of this thesis is the validation of all computational results, predicted by the
DNS and the RANS boundary condition models, with experimental data. Due to the lack
of adequate literature data for the here considered high molecular Prandtl number flow,
appropriate validation data shall be acquired in own dedicated experiments. For this pur-
pose, a test bench capable of producing equivalent boundary conditions as considered in
the DNS was designed. Various measurements series with varying Reynolds and Prandtl
number were carried out. Since these measurements cover a very wide range of Reynolds
and Prandtl numbers, the scope of the further developed models for the thermal bound-
ary conditions can be also assessed for operating conditions, which are not accessible to
DNS.

This thesis is divided into seven main chapters:

• Chapter 1: Introduction
Motivation for the present study and comprehensive literature survey.

• Chapter 2: Mathematical description
The governing differential conservation equations are shown, and a short overview
of the derivation of the standard wall-models is presented as well.

• Chapter 3: Direct numerical simulation
Gives an overview of the numerical approach used for the DNS, consisting of the
meshing strategy, the temporal- and spatial-integration as well as the prescribed
boundary conditions for the constant and the real fluid property cases.

• Chapter 4: Experiments
This chapter starts with the description of the utilized fluid. It follows a description
of the experimental setup and measuring procedure. Finally, in the end the measure-
ment results are discussed and compared to the Gnielinski (2002) correlation.

• Chapter 5: DNS analysis
The obtained DNS results for all considered cases are presented and analyzed as
well as validated against the experimental data.

• Chapter 6: Near wall model
The classical two-layer approach and the P-function approach Spalding (1967) are
reviewed and compared against the DNS results. Possible weaknesses are iden-
tified and DNS based improvements and extensions are proposed. The modified
approaches are validated against the DNS results in order to evaluate the improve-
ments.
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• Chapter 7: Summary and Conclusions
Summary of all experimental and computational findings as well as an overview of
the possible model improvements.





2 MATHEMATICAL DESCRIPTION

For investigating computationally the problem of heated or cooled flows the conservation
equations of mass, momentum and energy have to be solved. The conservation equations
of mass and momentum are the so-called Navier-Stokes equations, which can be written
in a conservative formulation as

∂ρ

∂ t
+

∂ρui

∂xi
= 0 (2.1)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=− ∂ p

∂xi
+

∂τi j

∂x j
. (2.2)

The conservation equation of thermal energy, written in terms of enthalpy h = e+ p/ρ ,
reads

∂ρh
∂ t

+
∂ρu jh

∂x j
=−∂qi

∂xi
+

∂ p
∂ t

+u j
∂ p
∂x j

+Ψµ + q̇Q. (2.3)

The viscous stress tensor (τi j) is written as

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
−µ

2
3

δi j
∂uk

∂xk
, (2.4)

and the viscous dissipation (Ψµ ) reads,

Ψµ = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
∂ui

∂x j
− 2

3
µ

(
∂uk

∂xk

)2

. (2.5)

Assuming a Newtonian fluid, the dynamic viscosity µ is a pure material property indepen-
dent of the flow-induced deformation. Furthermore, applying Fourier’s law, the heat flux
vector (qi) can be rewritten as

qi =−λ
∂T
∂xi

. (2.6)

The flow is assumed as incompressible in the limit of low Mach numbers. This implies
that the density can only vary with the temperature due to thermal expansion, but not with
pressure. In the cases with variable material properties the thermo-physical properties of
the fluid are assumed as dependent on the temperature according to the experimentally
measured data of the considered liquid. Therefore, the material derivative of the pressure
and viscous dissipation are neglected in the energy equation.

11
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2.1 Turbulent flow

A turbulent flow is characterized by irregular and chaotic fluctuations of all flow quantities.
Turbulent flow occurs at Reynolds numbers which exceed a certain critical limit, the so-
called critical Reynolds number Recrit . Beyond this critical limit, which depends on the
considered flow configuration, the inertial forces dominate over the viscous forces resulting
in highly unstable flow conditions. The inertial forces are represented in the momentum
equation (2.2) by the nonlinear advective terms on the left-hand side. In the turbulent
flow regime the viscous forces represented in equations (2.2) by the diffusive terms on the
right-hand side are too weak to dampen the fluctuating turbulent motion.

2.1.1 Laminar-turbulent transition

As mentioned above the laminar-turbulent transition depends on the Reynolds number
written in case of a pipe flow as

ReD =
wbD

ν
, (2.7)

where wb denotes the volumetric flow rate equivalent mean bulk velocity.

D

wb
w

Re < Recrit

D

wb
w

Re > Recrit

Figure 2.1: Laminar and turbulent pipe flow.
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If the Reynolds number exceeds the critical Reynolds number, the flow becomes unsta-
ble. This means that any arbitrarily small perturbation is increased so that the flow finally
changes from a laminar into a turbulent state. For example, the critical Reynolds number
is around 2300 in the case of cylindrical pipe flow.

In the upper part of figure 2.1, a laminar pipe flow can be seen, where the particle tra-
jectories are parallel to the wall. The lower sub-figure shows a typical turbulent state,
where the instantaneous velocity components are strongly fluctuating, so that the particles
move in a chaotic way. Due to this irregular motion, the pressure drop increases and is
roughly proportional to the second power of the bulk velocity in comparison to the laminar
flow, where the pressure drop varies linearly with the bulk velocity.

2.2 Computation of turbulent flow

The majority of technical flow applications are in the turbulent regime. Since turbulent
flow is characterized by a random, unsteady, three-dimensional motion, all variables vary
in all three spatial dimensions and in time. Such a flow can be described using statistical
methods, which is generally based on ensemble averages.

Ensemble averages

An ensemble represents the number of realizations of a flow variable in a turbulent flow.
In the theoretical limit of an infinite number of realizations, the ensemble average becomes
the real statistical average, generally termed Reynolds averaged mean value. Assuming N
as number of realizations, the Reynolds averaged mean value of an arbitrary flow quantity
ψ is defined as

〈ψ〉= lim
N→∞

1
N

N

∑
n=1

ψ
(n)

Based on this statistical average, Reynolds (1895) proposed to decompose each flow vari-
able into a mean 〈ψ〉 and a fluctuation ψ ′ written as

ψ = 〈ψ〉+ψ
′. (2.8)

Assuming statistically stationary flow the ensemble average obtained in the limit of an
infinite number of ensembles does not depend on the time, so that

〈ψ〉 6= f (t). (2.9)
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It follows that the statistical mean value can be also obtained as temporal average defined
as

〈ψ〉= ψ = lim
ϑ→∞

1
ϑ

ϑ∫
0

ψ(t)dt,

2.2.1 Length scales and energy cascade

By visualizing a statistically stationary turbulent flow, coherent structures, so-called tur-
bulent eddies of different sizes can be identified. These eddies can be characterized by
determining the auto- and cross-correlation as

Ri j(~x,ζ , t) = 〈ui(~x, t)u j(~x+ζ , t)〉= ui(~x, t)u j(~x+ζ , t), (2.10)

Ri j can be non-dimensionalised with corresponding standard deviation std(ui), reading

ρi j(~x,ζ , t) =
ui(~x, t)u j(~x+ζ , t)

std(ui(~x, t))std(u j(~x+ζ , t))
, (2.11)

which basically quantifies the statistical relationship between the fluctuations at different
locations. Furthermore, the correlation coefficient ρi j can be used to measure the average
size of turbulent coherent structures in terms of an integral length scale, defined as

L~xi j =

∞∫
0

ρi j(~x,ζ , t)dζ . (2.12)

In case of isotropic turbulence, the integral length scale of equation (2.12) becomesL~xi j =L
and the diagonal elements of Ri j, representing the velocity fluctuations magnitudes are
essentially the same for all directions. Therefore, these fluctuations can be characterized
by a single scalar, namely the turbulent kinetic energy

k =
1
2

u′iu
′
i. (2.13)

The largest turbulent eddies are typically characterized by the characteristic geometrical
length scale of the flow configuration. Their size is comparable to the integral length L,
and they contain the major part of the turbulent kinetic energy k of the flow, yet tend to
break up, where their kinetic energy is transferred to smaller eddies. This energy cascade
successively transfers kinetic energy to smaller eddies, until the eddy size reaches the dissi-
pative range, where they are dissipated by viscous forces. Figure 2.2 shows this cascading
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log(E)

log(K)

inertial range dissipative
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Energy-containing

Ke = O[L] Kd = O[η−1]

K−5/3

Figure 2.2: Turbulent energy spectrum E(K, t)

process in terms of the turbulent energy spectrum dependent on to the wave-number K,
where

k =
∞∫

0

E(K, t)dK. (2.14)

This spectrum basically distinguishes the "Energy-containing range" with the upper limit
of Ke where the turbulent kinetic energy is produced by the large scale motion dependent
on the actually considered flow configuration, the independent "Inertial range", where the
energy is transferred to smaller ans smaller eddies with negligible viscous losses, and
the "Dissipative range", where the viscous effects become dominant. According to Kol-
mogorov, the energy transfer rate remains constant in the inertial range. Consequently, the
transport change of kinetic energy at large scale, which is estimated as

εL =
u2
L

L/uL
(2.15)

has to be equal to the energy finally dissipated at the Kolmogorov length scale

εL ≈ •=
u2

η

η/uη

. (2.16)



16 2 Mathematical description

Thus, the dissipation rate ε determines the energy transfer in the inertial range. Based on
dimensional arguments the turbulent energy spectrum can be shown to depend on the wave
number in the inertial range as E(K, t) ∝K−5/3, as indicated in figure 2.2. The lower limit
of the dissipative range is Kd is associated with the Kolmogorov length-scale η , defined
as

η =

(
ν3

ε

)1/4

, (2.17)

which represents the size of the smallest eddies. Eddies smaller than the Kolmogorov
length scale dissipate to thermal energy. Batchelor (1959) correlated the Kolmogorov mi-
cro length to smallest thermal coherent structures, dependent on the molecular Prandtl
number as

ηth =

(
a2ν

ε

)1/4

=
η√
Pr
, (2.18)

with a being the thermal diffusivity.

2.2.2 Direct numerical simulation

DNS represents the most accurate approach for solving numerically the conservation equa-
tions (2.1) - (2.3). It solves the discretized equations directly without any modelling.
Therefore, no averaging, or modelling assumptions (aside from the spacial and temporal
discretization) are applied, this method basically attempts to capture numerically all phys-
ically relevant length scales, down to the Kolmogorov length scale (η). As a consequence,
the computational mesh has to satisfy stringent resolution requirements to describe appro-
priately the smallest turbulent structures. For isotropic turbulence, this requires a grid with
a minimum number of mesh cells based on the bulk Reynolds number, estimated as

Nmin ≥ Re9/4
D .

This inherently limits the applicability of DNS to rather low Reynolds numbers and mainly
simple geometries. Therefore, DNS is unfeasible particularly for most technically relevant
problems which are often associated with high Reynolds numbers and complex geome-
try. These flows are in general rather computed with Reynolds-averaged Navier-Stokes
equations (RANS) approach. Nevertheless, the major benefits of DNS are the unsurpassed
accuracy of the obtained results and the delivered detailed insight into the underlying prin-
ciples of all flow relevant mechanism, making it a powerful tool for model development
and validation.

2.2.3 Reynolds-averaged Navier-Stokes equations

In RANS, a statistical ensemble averaging procedure is applied to the conservation equa-
tions (2.1) - (2.3). The flow quantities are considered statistical random variables is time
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and space, whose statistics is characterized by ensemble averages accordingly to Reynolds
and Favre decomposition. In the case of varying density, the velocity components, the
enthalpy, and the temperature are Favre-averaged, whereas the fluid-properties, pressure,
viscous stresses, and heat fluxes are Reynolds averaged. When applying Reynolds averag-
ing to an arbitrary quantity, its instantaneous value can be decomposed into a mean ψ and
a fluctuating ψ ′ part, as

ψ(t;r,ϕ,z) = ψ(r,ϕ,z)+ψ
′(t;r,ϕ,z),

with ψ ′ = 0. Applying the density-weighted Favre averaging instead, the decomposition
reads

ψ(t;r,ϕ,z) = ψ̂(r,ϕ,z)+ψ
′′(t;r,ϕ,z),

where the mean part ψ̂ is defined as ψ̂ = ρψ/ρ , resulting in ρψ ′′ = 0.

Introducing this decomposition into the conservation equation for mass, momentum and
energy, the so-called RANS-type transport equations are obtained. Assuming low Mach
number flow, they read

∂ρ

∂ t
+

∂ρ ûi

∂xi
= 0 (2.19)

∂ρ ûi

∂ t
+

∂ρ ûiû j

∂x j
=− ∂ p

∂xi
+

∂τi j

∂x j
−

∂ρu′′i u′′j
∂x j

(2.20)

∂ρ ĥ
∂ t

+
∂ρ û jĥ

∂x j
=−∂q j

∂x j
−

∂ρu′′j h′′

∂x j
(2.21)

with the averaged viscous shear stress and averaged heat flux defined as

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
+µ ′

(
∂u′i
∂x j

+
∂u′j
∂xi

)
−µ

2
3

δi j
∂uk

∂xk
−µ ′

2
3

δi j
∂u′k
∂xk

(2.22)

and

q j =−λ
∂T
∂x j
−λ ′

∂T ′

∂x j
. (2.23)

respectively.

The two additional term on the right-hand-side of equation (2.20) and (2.21) are a turbulent
stress tensor and a turbulent heat flux vector, respectively. It is further possible to derive
a conservation equation for these turbulent stresses and fluxes. The resulting stress tensor
equation, or "Reynolds stress" equation then reads



18 2 Mathematical description

∂ρu′′i u′′j
∂ t

=Ci j +Pi j +Ti j +Πi j +Ψi j +Di j + εi j +Ei j (2.24)

with

Ci j =−
∂ ûkρu′′i u′′j

∂xk
(2.25)

Pi j =−ρu′′j u
′′
k

∂ ûi

∂xk
−ρu′′i u′′k

∂ û j

∂xk
(2.26)

Ti j =−
∂ρu′′i u′′j u

′′
k

∂xk
(2.27)

Di j =

[
∂τ ′iku′′j

∂xk
+

∂τ ′jku′′i
∂xk

]
(2.28)

Πi j =−
∂ p′u′′j

∂xi
− ∂ p′u′′i

∂x j
(2.29)

Ψi j = p′
[

∂u′′j
∂xi

+
∂u′′i
∂x j

]
(2.30)

εi j =−
[

τ ′ik
∂u′′j
∂xk

+ τ ′jk
∂u′′i
∂xk

]
(2.31)

Ei j =

[
u′′j

∂τik

∂xk
+u′′i

∂τ jk

∂xk

]
−u′′j

∂ p
∂xi
−u′′i

∂ p
∂x j

(2.32)

where, Ci j is the mean convection, Pi j the production, Ti j the turbulent diffusion, Πi j the
pressure diffusion, Ψi j the pressure dilatation, Di j the viscous diffusion, εi j the dissipation
and Ei j is an additional term due to the varying fluid properties. The stress fluctuation
appearing in equations (2.28), (2.31) and (2.32) is computed as

τ
′
i j = τi j− τi j, (2.33)

following from the Reynolds decomposition, where τi j is the instantaneous shear stress.
Substituting the individual components of the mean averaged shear stress τi j shown in
equation (2.22) into equation (2.33) yields

τ
′
i j =µ

(
∂ui

∂x j
− ∂u j

∂xi

)
−

µ

(
∂ui

∂x j
+

∂u j

∂xi

)
+µ ′

(
∂u′i
∂x j

+
∂u′j
∂xi

) (2.34)

− 2
3

δi j

[
µ

∂uk

∂xk
−
(

µ
∂uk

∂xk
+µ ′

∂u′k
∂xk

)]
.

The conservation equation for enthalpy variance reads

1
2

∂ρh′′2

∂ t
=−Ch +Ph +Th +Dh + εh +Eh (2.35)
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Ch =
∂ û jρh′′2

∂x j
(2.36)

Ph =−ρu′′j h′′
∂ ĥ
∂x j

(2.37)

Th =−
∂ρu′′j h′′2

∂x j
(2.38)

Dh =

[
∂q′jh′′

∂x j

]
(2.39)

εh =−
[

q′j
∂h′′

∂x j

]
(2.40)

Eh =

[
h′′

∂q j

∂x j

]
(2.41)

where, Ch is the mean convection, Ph the production, Th the turbulent diffusion, Dh the
molecular diffusion, εh the dissipation and Eh additional contribution due to the fluid prop-
erty fluctuations. The heat flux fluctuation appearing in equations (2.39) and (2.40) reads

q′j = q j−q j. (2.42)

For the turbulent contribution of the heat flux ρu′′j h′′, present in the production term of
equation (2.35), the conservation equation reads

∂ρu′′i h′′

∂ t
=Cqi +Pqi +Tqi +Πqi +Dqi + εqi +Eqi (2.43)

with

Cqi =
∂ û jρu′′i h′′

∂x j
(2.44)

Pqi =−ρu′′j h′′
∂ ûi

∂x j
−ρu′′i u′′j

∂ ĥ
∂x j

(2.45)

Tqi =−
∂ρu′′i u′′j h′′

∂x j
(2.46)

Dqi =

[
∂τ ′i jh′′

∂x j
−

∂q′ju
′′
i

∂x j

]
(2.47)

Πqi =−h′′
∂ p′

∂xi
(2.48)

εqi =−
[

τ ′i j
∂h′′

∂x j
−q′j

∂u′′i
∂x j

]
(2.49)

Eqi =

[
h′′

∂τi j

∂x j
−u′′j

∂q j

∂x j

]
−h′′

∂ p
∂xi

(2.50)

where, Cqi is the mean convection, Pqi the production, Tqi the turbulent diffusion, Πqi the
enthalpy pressure diffusion, Dqi the molecular diffusion, εqi the dissipation and Eqi is an
additional term due to the varying fluid properties.

Closure problem

If a three-dimensional problem is considered, there are 14 unknown variables (three mean
velocity components, the mean pressure, the mean temperature, and nine turbulent stresses
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Figure 2.3: The structure of the turbulent velocity boundary layer.

and heat fluxes represented by the non-linear fluctuation terms), but only five equations
(continuity (eq. (2.19)), three momentum (eq. (2.20)) and the thermal energy equation
(eq. (2.21))) available to solve the problem. This lack of equations is called "closure
problem". It is noted that including the transport equations for the turbulent stresses and
fluxes, as given above by equations (2.24) and (2.43), respectively, would not solve this
problem, because these equations introduce further unclosed higher-order terms on their
rhs. Therefore, turbulence models are needed to provide closure for the equations by
relating the non-linear turbulent momentum and heat flux terms to the mean values. In
channel flows a reliable modelling of these fluxes requires some insight into their behavior
near the wall. The main focus of this thesis is on the near wall behavior of the most
relevant turbulent stresses and heat fluxes. The influence of these turbulent fluxes on the
momentum and heat transfer inside a turbulent boundary layer will be discussed in the
following subsections.

2.3 Turbulent boundary layer

A turbulent flow is generally characterized by very intense advective transport of momen-
tum and energy. However, in the proximity of non-moving walls, the flow decelerates
due to the non-slip condition and a velocity boundary layer is formed. Consequently, in-
side the boundary layer, the local Reynolds number is reduced, implying a decrease in the
turbulent stresses and an increase in the viscous stresses. Several sub-layers can be dis-
tinguished based on the dominating stress. Figure 2.3 shows a typical development of a
velocity boundary layer, starting at the entrance, where the flow is laminar, followed by
the transition and the fully turbulent flow. Beside the boundary layer thickness, Tennekes
and Lumley (1972) introduced a characteristic viscous scale ν

w′ , which characterizes the
boundary layer. Consequently, with this two length scales the before mentioned sub-layers
can be further distinguished, see figure 2.4.
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• Inner layer:
Located closest to the wall and dominated by viscous forces. It consists of the vis-
cous sub-layer and the buffer layer.

• Inertial sub-layer:
This represents an intermediate layer far enough from the solid wall that the viscous
forces can be neglected and the flow is controlled by the turbulent contribution.

• Outer layer:
This layer is essentially determined by the outer flow conditions, affecting the bound-
ary layer thickness δ .
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Figure 2.4: Regions of a turbulent boundary layer.

The same applies for the temperature, where the heat fluxes are in analogy to the shear
stresses. The characteristic length scales of the momentum boundary layer are related
to the characteristic length scales of the thermal boundary through the molecular Prandtl
number Pr and the turbulent Prandtl number PrT . In the framework of Prandtl’s mixing
length theory, the turbulent Prandtl number basically represents the ratio of the turbu-
lent mixing length of momentum `m to the turbulent mixing length of heat, both mixing
lengths are mostly assumed as roughly equal, which implies a setting for the turbulent
Prandtl number near unity PrT ≈ 1. The molecular Prandtl number is basically a material
constant defined as the ratio of diffusivity of momentum to the thermal diffusivity, relating
the molecular diffusive transport of momentum to the molecular conductive transport of
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heat.
Pr =

cµ

λ
=

ν

a
=

diffusivity of momentum
thermal diffusivity

(2.51)

Applying an order-of-magnitude analysis to the non-dimensionalized boundary layer equa-
tions for a convective laminar flow along a heated (or cooled) wall it can be shown that the
molecular Prandtl number measures the relative thickness of the thermal boundary layer to
the velocity boundary layer according to

δ 2
T

δ 2 = O
(

1
Pr

)
. (2.52)

The stream-wise development of the boundary layer thickness along a flat plate is exem-
plary shown for different Prandtl numbers in figure 2.5.
The relation (2.52) is, strictly speaking, only valid in laminar flow. It can be, however,
extended to the turbulent flow as well, where it applies to the relative thicknesses of the
viscous and diffusive sub-layers.

δT (z)

δ(z)

Pr < 1

δ(z) = δT (z)

Pr = 1

δ(z)

δT (z)

Pr > 1

Figure 2.5: Velocity and thermal boundary layers with different molecular Prandtl num-
bers.

2.4 Fully developed heated turbulent pipe flow

The computational investigation of this thesis considers the particular case of fully de-
veloped turbulent circular pipe flow. Such an axisymmetric wall-bounded flow is most
conveniently described by the Navier-Stokes and the energy equations, generally given in
equations (2.1) - (2.3), rewritten in cylindrical coordinates, as:

• continuity equation

∂ρ

∂ t
+

1
r

∂ (rρu)
∂ r

+
1
r

∂ (ρv)
∂ϕ

+
∂ (ρw)

∂ z
= 0 (2.53)
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• momentum equation into the radial direction

∂ρu
∂ t

+
1
r

∂ (rρuu)
∂ r

+
1
r

∂ (ρuv)
∂ϕ

− ρv2

r
+

∂ (ρuw)
∂ z

=

−∂ p
∂ r

+

[
1
r

∂ (rτrr)

∂ r
+

1
r

∂τrϕ

∂ϕ
− τϕϕ

r
+

∂τrz

∂ z

] (2.54)

• momentum equation into the azimuthal direction

∂ρv
∂ t

+
1
r

∂ (rρvu)
∂ r

+
1
r

∂ (ρvv)
∂ϕ

+
ρvu

r
+

∂ (ρvw)
∂ z

=

−1
r

∂ p
∂ϕ

+

[
1
r

∂ (rτϕr)

∂ r
+

τϕr

r
+

1
r

∂τϕϕ

∂ϕ
+

∂τϕz

∂ z

] (2.55)

• momentum equation into the axial direction

∂ρw
∂ t

+
1
r

∂ (rρwu)
∂ r

+
1
r

∂ (ρwv)
∂ϕ

+
∂ (ρww)

∂ z
=

−∂ p
∂ z

+

[
1
r

∂ (rτzr)

∂ r
+

1
r

∂τzϕ

∂ϕ
+

∂τzz

∂ z

] (2.56)

The energy equation:

∂ρh
∂ t

+
1
r

∂ (rρhu)
∂ r

+
1
r

∂ (ρhv)
∂ϕ

+
∂ (ρhw)

∂ z
=

−
[

1
r

∂ (rqr)

∂ r
+

1
r

∂
(
qϕ

)
∂ϕ

+
∂ (qz)

∂ z

] (2.57)

The viscous stresses are written as

τrr = µ

[
2

∂u
∂ r
− 2

3
{∇ · v}

]
(2.58)

τϕϕ = µ

[
2
(

1
r

∂v
∂ϕ

+
u
r

)
− 2

3
{∇ · v}

]
(2.59)

τzz = µ

[
2

∂w
∂ z
− 2

3
{∇ · v}

]
(2.60)

τrϕ = τϕr = µ

[
r

∂

∂ r

(v
r

)
+

1
r

∂u
∂ϕ

]
(2.61)

τϕz = τzϕ = µ

[
∂v
∂ z

+
1
r

∂w
∂ϕ

]
(2.62)

τzr = τrz = µ

[
∂w
∂ r

+
∂u
∂ z

]
. (2.63)
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and the heat fluxes read

qr =−λ
∂T
∂ r

(2.64)

qϕ =−λ

r
∂T
∂ϕ

(2.65)

qz =−λ
∂T
∂ z

(2.66)

In the DNS the discretized representations of these equations need to be solved directly.
Assuming hydraulically and thermally fully developed flow allows for comparatively short
axial extensions of the computational domain. This computationally less expensive shorter
domain is applicable due to the axial periodicity, which can be assumed in a fully devel-
oped case for the velocity components as well as the fluctuations of the dynamic pressure
and the thermodynamic state variables around suitably defined reference values. The in-
troduction of these relative fluctuations produces two source terms of axial momentum and
energy in the respective conservation equations, as will be shown below.

2.4.1 Dynamically fully developed flow

Assuming dynamically fully developed flow conditions the ensemble averaged conserva-
tion equation of the axial momentum equation (2.56) is reduced to

0 =−∂ p
∂ z

+
1
r

∂

∂ r
(r τtot) . (2.67)

with
τtot = τrz +ρuw. (2.68)

Since the mean pressure gradient does not depend on the radial coordinate, the integration
of equation (2.67) yields

0 =− r
2

∂ p
∂ z

+ τ tot , (2.69)

Equation (2.69) can be evaluated at the wall with τtot |D/2 =−τw (see figure 2.6), resulting
in

∂ p
∂ z

=−4 τw

D
. (2.70)

Integrating this equation results in

p(z) = pin−
4 τw

D
z, (2.71)
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Figure 2.6: Shear stress and axial pressure gradient in a cylindrical pipe flow

which basically represents the axial variation of the mean pressure, reflecting the constant
axial drop of mean pressure due to the drag, as schematically shown in figure 2.6.

A suitable decomposition for the pressure is introduced as

p(t;r,ϕ,z) = p(z)+π(t;r,ϕ,z). (2.72)

where the component π is periodic in the axial direction. Incorporating this decomposition
into the conservation equation of momentum (2.54)-(2.56) finally yields

• momentum equation into the radial direction

∂ρu
∂ t

+
1
r

∂ (rρuu)
∂ r

+
1
r

∂ (ρuv)
∂ϕ

− ρv2

r
+

∂ (ρuw)
∂ z

=

−∂π

∂ r
+

[
1
r

∂ (rτrr)

∂ r
+

1
r

∂τrϕ

∂ϕ
− τϕϕ

r
+

∂τrz

∂ z

] (2.73)

• momentum equation into the azimuthal direction

∂ρv
∂ t

+
1
r

∂ (rρvu)
∂ r

+
1
r

∂ (ρvv)
∂ϕ

+
ρvu

r
+

∂ (ρvw)
∂ z

=

−1
r

∂π

∂ϕ
+

[
1
r

∂ (rτϕr)

∂ r
+

τϕr

r
+

1
r

∂τϕϕ

∂ϕ
+

∂τϕz

∂ z

] (2.74)

• momentum equation into the axial direction

∂ρw
∂ t

+
1
r

∂ (rρwu)
∂ r

+
1
r

∂ (ρwv)
∂ϕ

+
∂ (ρww)

∂ z
=

−∂π

∂ z
+

4 τw

D
+

[
1
r

∂ (rτzr)

∂ r
+

1
r

∂τzϕ

∂ϕ
+

∂τzz

∂ z

] (2.75)
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These equations describe a dynamically fully developed turbulent flow, allowing for the
prescription of periodic boundary conditions for the velocities u, v and w, and the pressure
fluctuation π .

2.4.2 Thermally fully developed flow

The thermal boundary condition considered in this thesis prescribes an uniform wall heat
flux, causing the fluid temperature to increase along the axial direction. This continuous
heat-up would, on the first sight, exclude the assumption of axial periodicity for the thermal
state variables. However, axial periodicity can be still provided by relating the thermal
variables to appropriate reference values. Figure (2.7) shows the variation of the bulk and
wall enthalpy in the thermal entrance length and in the fully developed region. The axial
distance, until a flow reaches a fully developed state, is generally termed "entrance length",
and basically depends on the Reynolds and the molecular Prandtl number.

The bulk enthalpy represents a cross-sectional average, defined as

hb =
1
ṁ

∫
A

ρ(r)w(r)h(r)dA, (2.76)

with the mass flow rate ṁ defined as

ṁ =
∫
A

ρ(r)w(r)dA. (2.77)

qw = const

hw

z

h

thermal entrance region fully developed

ṁ

D

r

z

hb

Figure 2.7: Enthalpy variation in the thermal entrance region and in the fully turbulent
region
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The fully developed region is evidently characterized by a constant difference between the
enthalpy at the wall and the bulk enthalpy,

hw−hb = const.. (2.78)

This implies that the enthalpy fluctuations relative to hw(z), or hb(z), are statistically ho-
mogeneous in the axial direction. Thus, introducing the decomposition

h(t;r,ϕ,z) = hw(z)−χ(t;r,ϕ,z), (2.79)

and
T (t;r,ϕ,z) = T w(z)−θ(t;r,ϕ,z) (2.80)

into the conservation equation of energy, equation (2.57), yields a transport equation for
the relative enthalpy χ , which is written as

ρ
∂ χ

∂ t
+ρ

1
r

∂ (rχu)
∂ r

+ρ
1
r

∂ (χv)
∂ϕ

+ρ
∂ (χw)

∂ z
=[

1
r

∂

∂ r

(
rλ

∂θ

∂ r

)
+

1
r

∂

∂ϕ

(
λ

r
∂θ

∂ϕ

)
+

∂

∂ z

(
λ

∂θ

∂ z

)]
+ρw

dhw

dz
.

(2.81)

In consistence with the statistical homogeneity of χ in the axial direction, axial periodicity
is imposed as respective boundary condition,

χ(r,ϕ,z) = χ(r,ϕ,z+L),
θ(r,ϕ,z) = θ(r,ϕ,z+L),

(2.82)

and Dirichlet boundary conditions are imposed at the wall r = D/2: χ = 0 and θ = 0,
essentially assuming zero fluctuations T ′w = 0 and h′w = 0 at the wall.

The assumption of fully developed flow is associated with a constant relative bulk enthalpy
χb, as already stated above in equation (2.78). This implies for the axial derivatives

dhw

dz
=

dhb

dz
. (2.83)

The axial derivative of the bulk enthalpy can be obtained based on a global energy balance
for a differential cylindrical element of the length dz, written as

ṁ
(

dhb

dz
dz
)
= qwDπdz, (2.84)
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yielding
dhb

dz
=

qwDπ

ṁ
. (2.85)

Introducing (2.83) and (2.85) into the balance equation of energy (2.81) yields

∂ χ

∂ t
+

1
r

∂ (rχu)
∂ r

+
1
r

∂ (χv)
∂ϕ

+
∂ (χw)

∂ z
−χ (∇ · v) =

1
ρ

[
1
r

∂

∂ r

(
rλ

∂θ

∂ r

)
+

1
r

∂

∂ϕ

(
λ

r
∂θ

∂ϕ

)
+

∂

∂ z

(
λ

∂θ

∂ z

)]
+w

qwDπ

ṁ
.

(2.86)

Solving equation (2.86) for χ further provides the local temperature T (t;r,ϕ,z), and the
corresponding relative value θ = Tw−T , using the integral

χ =

Tw(z)∫
T

cp(T̃ )dT̃ . (2.87)

The computation of the wall temperature Tw(z), which is used here as upper boundary,
invokes again the assumption of fully developed flow and the consistently assumed axially
invariance of the material properties. Fully developed flow implies a constant mean heat
transfer coefficient, such that the axial derivative of Newton’s ansatz for the mean wall heat
flux

qw = α (Tw−Tb) (2.88)

yields
dTw

dz
=

dTb

dz
, (2.89)

for the presently considered constant wall heat flux qw = const.. The axial derivative of the
bulk temperature can be related to the bulk enthalpy through

dTb

dz
=

1
〈cp〉

dhb

dz
, (2.90)

introducing a global average for the specific heat capacity. According to its definition

〈cp〉=
1

〈Tw〉−〈Tb〉

〈Tw〉∫
〈Tb〉

cp (T )dT =
χb

〈Tw〉−〈Tb〉
, (2.91)
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this quantity represents a global average over the whole computational domain, and is
computed from the bulk enthalpy difference χb and the axial averages 〈Tb〉 and 〈Tw〉. The
latter is determined from

〈Tw〉= (Tw,out +Tw,in)
1
2
. (2.92)

The integration of (2.89) with (2.90) yields

Tw(z) = Tw|z=L−
qw D π

ṁ 〈cp〉
(L− z) (2.93)

to be substituted into (2.91). The wall temperature at the exit, Tw|z=L, represents the refer-
ence temperature, T0, and is therefore a known input into (2.93).

In consistence with the assumption of axially invariant material properties the tempera-
ture, which is used for computing their radial and azimuthal variations according to the
material laws of the fluid, must not depend on the axial direction either. This is assured by
evaluating the integral in (2.87) using an axially averaged wall temperature 〈Tw〉 as upper
boundary instead of the local value Tw(z).

2.4.3 Total shear stress

Based on the previously shown considerations, it is furthermore possible to find an analyt-
ical expression for the total shear stress. This is done by rearranging equation (2.67) and
replacing the mean pressure gradient with equation (2.70), so that the spatial variation of
the total shear stress reads

τtot =−τw
2 r
D

(2.94)

2.4.4 Total heat flux

The same consideration can be made for the total heat flux. For a dynamically and ther-
mally fully developed pipe flow the, ensemble averaged equation of axial momentum is
written as

0 =−1
r

∂

∂ r
(r qtot)+ρŵ

qwDπ

ṁ
. (2.95)

Integrating equation (2.95) and rearranging yields the radial variation of the total heat
flux

qtot =
1
r

qwDπ

ṁ

r∫
r̃=0

r̃ ρŵ dr̃, (2.96)

with the density and the axial velocity varying depending on the radial position.
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2.4.5 Non-dimensional representation

For the sake of a most universal description of the fluid dynamics, the DNS solves the
conservation equations for mass (eq. (2.53)), momentum (eqs. (2.73)-(2.75)) and enthalpy
(eq. (2.86)) in non-dimensionalized representation. The governing equations are non-
dimensionalized introducing the quantities

r∗ =
r
D

t∗ =
twτ

D

z∗ =
z
D

∇
∗ =

∇

D

u+i =
ui

wτ

θ
+ =

θ

Tτ

χ
+ =

χ

hτ

π
+ =

π

ρwτ
2

τ
+
i j =

τi j

τw

q+i =
qi

qw

ṁ∗ =
ṁ

ρwwτD2π

ρ
∗ =

ρ

ρ0

c∗p =
cp

cp,0

λ
∗ =

λ

λ0

µ
∗ =

µ

µ0

with the friction velocity, friction temperature and friction enthalpy being defined as

wτ =

√
τ0

ρ0
Tτ =

qw

ρ0cp,0wτ
hτ = cp,0 Tτ

and "0" denoting values based on the reference temperature T0. This leads to the following
non-dimensional conservation equations in cylindrical coordinates

• continuity equation

∂ρ∗

∂ t∗
+

1
r∗

∂ r∗ρ∗u+

∂ r∗
+

1
r∗

∂ρ∗v+

∂ϕ
+

∂ρ∗w+

∂ z∗
= 0 (2.97)

• momentum equation into the radial direction

∂ρ∗u+

∂ t∗
+

1
r∗

∂ (r∗ρ∗u+u+)
∂ r∗

+
1
r∗

∂ (ρ∗u+v+)
∂ϕ

− ρ∗v+2

r∗
+

∂ (ρ∗u+w+)

∂ z∗
=

−∂π∗

∂ r∗
+

1
Reτ,0

[
1
r∗

∂ (r∗τ+rr)

∂ r∗
+

1
r∗

∂τ+rϕ

∂ϕ
−

τ+ϕϕ

r∗
+

∂τ+rz

∂ z∗

] (2.98)

• momentum equation into the azimuthal direction

∂ρ∗v+

∂ t∗
+

1
r∗

∂ (r∗ρ∗v+u+)
∂ r∗

+
1
r∗

∂ (ρ∗v+v+)
∂ϕ

+
ρ∗v+u+

r∗
+

∂ (ρ∗v+w+)

∂ z∗
=

− 1
r∗

∂π∗

∂ϕ
+

1
Reτ,0

[
1
r∗

∂ (r∗τϕr)

∂ r∗
+

τ+ϕr

r∗
+

1
r∗

∂τ+ϕϕ

∂ϕ
+

∂τ+ϕz

∂ z∗

] (2.99)
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• momentum equation into the axial direction

∂ρ∗w+

∂ t∗
+

1
r∗

∂ (r∗ρ∗w+u+)
∂ r∗

+
1
r∗

∂ (ρ∗w+v+)
∂ϕ

+
∂ (ρ∗w+w+)

∂ z∗
=

−∂π∗

∂ z∗
+4+

1
Reτ,0

[
1
r∗

∂ (r∗τ+zr )

∂ r∗
+

1
r∗

∂τ+zϕ

∂ϕ
+

∂τ+zz

∂ z∗

] (2.100)

• energy equation:

∂ χ+

∂ t∗
+

1
r∗

∂ (r∗χ+u+)
∂ r∗

+
1
r∗

∂ (χ+v+)
∂ϕ

+
∂ (χ+w+)

∂ z∗
−χ

+
(
∇
∗ · v+

)
=

1
ρ∗ Reτ,0 Pr0

 1
r∗

∂ (r∗q+r )
∂ r∗

+
1
r∗

∂

(
q+ϕ
)

∂ϕ
+

∂
(
q+z
)

∂ z∗

+ w+

ṁ∗

(2.101)

• viscous stresses

τ
+
rr = µ

∗
[

2
∂u+

∂ r∗
− 2

3
{

∇
∗ · v+

}]
(2.102)

τ
+
ϕϕ = µ

∗
[

2
(

1
r∗

∂v+

∂ϕ
+

u+

r∗

)
− 2

3
{

∇
∗ · v+

}]
(2.103)

τ
+
zz = µ

∗
[

2
∂w+

∂ z∗
− 2

3
{

∇
∗ · v+

}]
(2.104)

τ
+
rϕ = τ

+
ϕr = µ

∗
[

r∗
∂

∂ r∗

(
v+

r∗

)
+

1
r∗

∂u+

∂ϕ

]
(2.105)

τ
+
ϕz = τ

+
zϕ = µ

∗
[

∂v+

∂ z∗
+

1
r∗

∂w+

∂ϕ

]
(2.106)

τ
+
zr = τ

+
rz = µ

∗
[

∂w+

∂ r∗
+

∂u+

∂ z∗

]
. (2.107)

• heat fluxes

q+r =−λ
∗∂θ+

∂ r∗
(2.108)

q+ϕ =−λ ∗

r∗
∂θ+

∂ϕ
(2.109)

q+z =−λ
∗∂θ+

∂ z∗
(2.110)
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The non-dimensional parameters appearing in equation (2.97) - (2.101) are the wall friction
Reynolds number and molecular Prandtl number, defined as

Reτ,0 =
D wτ

ν0
, and Pr0 =

ν0 ρ0 cp,0

λ0
, respectively.
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2.5 Material properties

Some restrictions had to be observed in the choice of a suitable working fluid. On the
one hand, the fluid had to provide sufficiently high molecular Prandtl numbers well above
unity, representing the Prandtl number range of oils. On the other hand, the molecular
Prandtl must not exceed the limits imposed by the numerical resolution requirements to
be accessible to DNS. Figure 2.8 gives an overview of the typical Prandtl number range
of various fluids. The molecular Prandtl number range of oils is rather wide due to the
different areas of application. The presently considered oil (Shell Heat Transfer Oil S2)
is a "heat transfer oil" typically employed in heat exchanges, where the lubrication is of
secondary importance, so that the Prandtl number varies within a moderate range, which
is still quite far from unity.

10−2 10−1 100 101 102 103

Liquid metals Gases Light organic liquids

Water Oils

Figure 2.8: Range of Prandtl numbers.

The material properties of the considered oil show a strong temperature dependency. The
oil manufacturer provided information about the temperature dependency of the density
(ρ), thermal conductivity (λ ), specific heat capacity (cp) and dynamic viscosity (µ). Com-
parative measurements were performed as well, and simplified temperature-dependent
functions were fitted to these data. In the following, a short overview of these measure-
ments and the derived functional temperature dependencies are shown.

2.5.1 Density

The density was measured with the so-called "Oscillating U-tube" method, where the fluid
is pumped into a tube which is excited and the resulting oscillation frequency is used to
determine the density. The temperature dependence based on the measurements reads

ρ = Aρ +BρT = 1045−0.616 T [kgm−3] (2.111)

The line is shown together with the underlying data in figure 2.9.
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Figure 2.9: Density vs. temperature

2.5.2 Specific heat capacity

The specific heat capacity was measured with the "Dynamical scanning calorimety", which
basically relates the transient heat-up of the sample to that of a known reference material
to compute the specific heat capacity. Due to some inconsistencies in the repeatability of
the measurements for the present oil (indicated by the large error bars in figure 2.10), the
temperature dependence was rather based on the manufacturer data and reads

cp = Ac +BcT = 0.818+3.664E−3 T [Jkg−1 K−1] (2.112)

2.5.3 Thermal conductivity

The thermal conductivity was obtained based on the measured density, specific heat ca-
pacity and thermal diffusivity. Therefore, due to the already mentioned uncertainties in
the measurements of the specific heat capacity, the temperature dependence of the thermal
conductivity was purely based on the manufacturer data as well. It reads

λ = Aλ +Bλ T = 0.157−7.328E−5 T [Wm−1 K−1] (2.113)

and is shown in Figure 2.11.
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Figure 2.10: Specific heat capacity vs. temperature
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Figure 2.11: Thermal conductivity vs. temperature

2.5.4 Dynamic viscosity

The dynamic viscosity was measured with a "Stabinger viscometer", which basically de-
termines the dynamic viscosity from speed and torque measurements. The obtained tem-
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perature dependence reads

µ = Aµ exp
(

Bµ

T +Cµ

)
= 5.894E−5 exp

(
857.4

T −172.2

)
. [Pas] (2.114)

It reproduces the data points very well, as seen from Figure 2.12.

0.001

0.01

0.1

1

250 300 350 400 450 500

µ
/P

as

T / K

Manufacturer
Measurement

eq. (2.114)

Figure 2.12: Dynamic viscosity vs. temperature

2.5.5 Molecular Prandtl number

The molecular Prandtl number is straight-forwardly computed based on the measured ma-
terial properties as

Pr =
ν

a
=

µcp

λ
. [−] (2.115)

Figure (2.13) plots the molecular Prandtl number over the temperature. Regarding sim-
ulation costs of DNS, the highest computationally affordable Prandtl number is roughly
assumed around Pr≈ 50. This corresponds to an oil temperature around T ∼= 400K as seen
from Figure 2.13. The presently performed DNS with therefore always consider operat-
ing conditions, which cover a temperature range beyond this level, ensuring a maximum
Prandtl number around Pr≈ 50 or less.
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3 DIRECT NUMERICAL SIMULATION

In this chapter the numerical procedure, which is used to solve directly the conservation
equations (2.97) - (2.101) will be discussed in detail. Two versions of an incompress-
ible, flow solver, written in cylindrical coordinates, were used for the simulations. On
the one hand a solver capable of including temperature-dependent fluid properties, and on
the other hand, a solver prescribing constant fluid properties. Both versions are written in
FORTRAN and parallelized with MPI.

3.1 Computational mesh

This thesis investigates a cylindrical pipe flow configuration with an axial length of five
diameters, which is assumed to be sufficient to capture the largest coherent structures in the

r

z

ϕ

uijk

wijk

vijk

ru

rp πijk
θijk

L = 5D

D

χijk

Figure 3.1: Computational grid
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streamwise direction. The considered computational domain is shown in figure 3.1, where
r is the radial, ϕ the azimuthal, and z the streamwise direction, with the corresponding
velocity components u, v, and w, respectively. The velocity components are located on the
cell faces, whereas all scalar quantities are stored in the center of the cell, consistent with
a staggered grid setting.

For a DNS the computational mesh has to be sufficiently fine to capture all relevant pro-
cesses and phenomena. Near the solid wall the flow structures are generally the smallest,
especially, when considering the thermal structures whose size decreases with increasing
molecular Prandtl number, according to equation (2.18). Therefore, the mesh has to be
the finest near the wall, which was achieved by radially clustering the mesh towards the
wall.

Preliminary DNS studies further showed that decreasing the cell size near the center no-
tably improves the predictions at the centerline singularity. For this reason, an additional
radial mesh clustering is applied towards the center. The employed meshing strategy is
based on Vinokur (1983) and will be briefly shown in the following. The first step is to
prescribe the desired radial size of the first cell next to the wall, and the next to center, ∆rw
and ∆rc, respectively. The so-called stretching function, based on the radial index i, where
i = 0 represents the center and i = imax the wall is defined as

ζ (i) =
1
2

[
1+

tanh(δ (i/imax−0.5))
tanh(δ/2)

]
. (3.1)

The stretching factor δ , which is introduced to provide certain prescribed cell sizes at the
radial boundaries, is defined by the following equation

sinh(δ )
δ

=
1

imax
√

∆rw∆rc
. (3.2)

Using the stretching function (3.1) the radius of each cell face can be obtained as

ru(i) =
ζ (i)

2 [A+(1−A)ζ (i)]
(3.3)

with the parameter A defind as

A =

√
∆rw√
∆rc

. (3.4)

Applying such a mesh clustering approach essentially adapts the cell sizes to resolve the
locally varying Kolmogorov micro length scale η (equation (2.17)), and the Batchelor
micro length scale ηth (equation (2.18)) circumventing a costly global reduction of all
cells.
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Figure 3.2: Critical cells sizes

Since the presently considered high molecular Prandtl numbers lead to low values of the
Batchelor micro length scale, the high resolution requirements can only be met with lo-
cal mesh refinement. The very small cell size restricts the maximum allowable time-step
to guarantee a stable computation which can be determined from the so-called Courant-
Friedrichs-Lewy (CFL) condition introduced by Courant et al. (1928). Figure 3.2 schemat-
ically shows a double-sided radially clustered mesh with smallest cells highlighted in red.
The shortest edges of the computational cells are denoted here as "critical" because their
length essentially limits the time-step. At the wall due to the extensive radial clustering,
the radial extension of the cell is the critical restricting length, whereas near the center, the
azimuthal extension is critical. These two particular constraints were the reason for apply-
ing an implicit integration to certain terms of the governing equations in order to ensure a
feasible time-step size.

3.2 Numerical solution procedure

The presently considered flow is incompressible with temperature-dependent fluid prop-
erties according to the variations shown in section 2.5. The corresponding conservative
partial differential equations in non-dimensional form, seen in equation (2.97)-(2.101) are
written in cylindrical coordinates and discretized in space applying a 4th order accurate
finite volume method. In the following, all involved steps in the numerical scheme are pre-
sented and discussed in detail. For convenience, the superscripts introduced in the previous
chapters, indicating non-dimensional quantities, will be skipped.



42 3 Direct numerical simulation

3.2.1 Time integration

There exist various techniques which can be employed to numerically integrate the govern-
ing equations in time. For incompressible low Mach number flow with significant isobaric
density fluctuations, the predictor-corrector projection scheme, as applied in Najm et al.
(1998) and Boersma (1998) has become fairly popular. However, as seen from the vari-
ation of the density with the temperature in figure 2.9, the density of the working liquid
only weakly varies in the considered temperature range. For this reason, a one-step projec-
tion method was chosen, more precisely, a semi-implicit Adams-Bashforth fractional-step
method. Such a scheme is widely used to solve the incompressible Navier-Stokes equa-
tions with constant density, e.g. Kim and Moin (1985). It was originally proposed by
Chorin (1967) and basically splits the time integration of the momentum equation into two
sub-steps. In the first sub-step, the momentum fluxes are predicted neglecting the pressure
force term. In the successive correction step, the pressure gradient is used to correct the
predicted momentum fluxes, such that they satisfy the continuity equation. The required
pressure field is computed from a Poisson equation derived from enforcing the conserva-
tion of mass in the momentum equation.

At the beginning of each integration step, the enthalpy conservation equation (2.101) is
solved. The resulting enthalpy yields the temperature on the new time level, which is fur-
ther used to update the fluid properties when considering their temperature dependency.
The enthalpy is integrated in time combining explicit and implicit schemes. While the
fluxes into the axial direction are always treated explicitly, applying a second order ac-
curate Adams-Bashforth scheme, the radial fluxes and the azimuthal fluxes are mutually
integrated implicitly in the intervals rw < r<D/2, and 0≤ r≤ rw, respectively. The radius
rw, which basically determines the relative length of these intervals, denotes the radial po-
sition with the largest radial grid size ∆rmax, following from the applied radial clustering,
as schematically shown in figure 3.2. Switching the implicitly treated directions depen-
dent on the radial interval allows for a significantly larger time-step than a fully explicit
scheme, while the additional computational costs to be spent in the implicit solution pro-
cedure are still acceptable. The formulation used to obtain the new enthalpy at time-level
n+1 reads
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• 0< r < rw

χn+1−χn
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= (3.5)
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• rw < r < D/2

χn+1−χn
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= (3.6)
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The last term Φ
n−1
h in equation (3.5) and (3.6) corresponds to the source-term, enforcing

axial periodicity for the variable χ , assuming thermally fully developed flow conditions,
corresponding to the last term in equation (2.101). The fluid properties are updated with
the enthalpy-equivalent temperature T n+1 and yield the fluid properties on the new time
level (e.g. ρn+1).

After the integration of the enthalpy difference χ , the momentum equations are integrated
using the fractional-step method. In the first sub-step, the prediction step, the intermediate
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flux field (ρui)
? is predicted using the same combined explicit/implicit scheme used to

obtain the enthalpy. It is written as
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• 0< r < rw
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The last term in equations (3.9) and (3.12) represents the momentum source-term, which
enforces axial periodicity of the momentum fluxes, assuming dynamically developed flow.
The momentum flux field predicted from the projection step does not satisfy the continuity
equation. The conservation of mass is enforced by applying a pressure-correction, defined
as



(ρu)n+1− (ρu)?

∆t
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∂ z
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, (3.13)

The pressure required for the gradient on rhs of equation (3.13) is computed from the
poisson equation

1
∆t

[{
1
r

∂ rρu
∂ r

+
1
r

∂ρv
∂ϕ

+
∂ρw
∂ z

}n+1

−
{

1
r

∂ rρu
∂ r

+
1
r

∂ρv
∂ϕ

+
∂ρw
∂ z

}?]

=−1
r

∂

∂ r

(
r

∂πn+1

∂ r

)
− 1

r2
∂ 2πn+1

∂ϕ2 − ∂ 2πn+1

∂ z2 , (3.14)

which is obtained by applying the divergence to the complementary part of the truncated
momentum equations (3.7) - (3.12) given above.

The first term on the left side of the poisson equation (3.13) represents the divergence of
the mass fluxes at the new time level n+1. Incorporating the mass conservation equation
(2.97), written at time level n+1
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The temporal derivative of the density in equation (3.16) can be determined from the tem-
poral gradient of the temperature, accounting for the thermophysical fluid behavior, as will
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be shown in a following section in detail. The second term is the divergence of the momen-
tum flux field obtained from the projection-step equations (3.7) and (3.12). The poisson
equation is solved using a direct solver. The substitution of the resulting pressure into
equation (3.13), finally yields the new momentum fluxes (ρu)n+1, (ρv)n+1 and (ρw)n+1,
which satisfies the conservation of mass given by (3.15).

The final step computes the new velocity field by dividing the new momentum flux ob-
tained from (3.13) by the new density

un+1 =
(ρu)n+1

ρn+1 (3.17)

vn+1 =
(ρv)n+1

ρn+1 (3.18)

wn+1 =
(ρw)n+1

ρn+1 . (3.19)

3.2.2 Discretisation in space

The governing partial differential equations are discretized in space using the finite volume
method. This method essentially solves the conservation equations integrated over the
finite volumes of the computational cells, where the volume integral over the divergence
terms are transformed into surface integrals, which generally reads∫

V

∂ψk

∂xk
dV =

∮
S

ψknkdS, (3.20)

Figure 3.3 exemplarily shows three adjacent volumes. For the discretized balance of sur-
face fluxes according to rhs of equation (3.20), the face values ψi+1/2 and ψi−1/2 have to
be determined from the known volumetric averages ψ i−1,ψ i,ψ i+1, etc.. In order to achieve
high spatial overall accuracy, a 4th order accurate approach, based on Lemos et al. (2012),
was chosen for this purpose. This approach basically approximates the required values at
the cell faces using Taylor-series expansions, which consistently reproduce the volumetric
averages ψ i− and ψ i+ given in the neighboring volumes. In the following, this 4th order
accurate concept will be exemplary shown for a 1-dimensional disretization, as sketched
in figure 3.3, where the bars indicate cell averaged values ψ i.

The ansatz proposed by Lemos et al. (2012) determines the face volumes as a linear com-
bination of the very next four cell averaged values, written as

ψi+ 1
2
= aψ i−1 +bψ i + cψ i+1 +dψ i+2. (3.21)
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Figure 3.3: 1-dimensional discretisation

The coefficients a,b,c and d are determined by approximating the spatial variation of ψ

with a Taylor series expansion of 4th order accuracy around the position of the cell face,
written as
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(3.22)
Using this expansion for the computation of the cell averaged quantities on rhs of equation
(3.21), i.e.,

ψ i±k =
1

xi+ 2k+1
2
− xi+ 2k−1

2

i+ 2k+1
2∫

i+ 2k−1
2

ψ(x)dx, k =−1,0,1,2 (3.23)

yields, upon equating the terms with the same derivatives, a linear system of equations to
be solved for the coefficients a, b, c and d.

Figure 3.4 exemplarily shows the case for a variation assumed as

ψ(x) = 10−15x−15x2 +5x3 (3.24)

represented by the green line. The step-shaped function denotes the corresponding volume
averages. It is clearly visible that the approach of Lemos et al. (2012) approximates the
face values of xi±1/2 very well. This high level of accuracy is not achievable using a second
or fourth-order Lagrangian polynomial interpolation of the cell averages, generally written
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for the order α +β +1 as

ψ i+ 1
2

∼=
i+β

∑
k=i−α

ψk

i+β

∏
j=i−α

k 6= j

xi+ 1
2
− x j

xk− x j
(3.25)

whose approximations are shown in figure 3.4 as well.

In the two directions with equidistant grid spacing, the azimuthal and axial, the coefficients
used for spatial discretisation, is the same for all cells, while they vary with the radius for
the radial discretization, due to the clustering.

3.2.3 Temporal density gradient

The temporal gradient of the density appearing in equation (3.15) is often approximated
using a backwards second-order accurate Taylor series expansion, written as

∂ρn+1

∂ t
≈ 3ρn+1−4ρn +ρn−1

2∆t
. (3.26)
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The numerical errors of this approach may become considerably high, especially for small
time steps, resulting in an overall low accuracy. For this reason an alternative was used in
the present simulations. Using the functional dependence of the density on the tempera-
ture, shown in equation (2.111), the temporal density gradient can expressed in terms of
the time derivative of the temperature as

∂ρn+1

∂ t
=

∂ρ

∂T︸︷︷︸
Bρ

∂T n+1

∂ t
. (3.27)

This temporal temperature gradient at time (n+1) is obtained as the rhs of equations (3.5)
and (3.6) at time leves (n+1), divided by cp, respectively.

3.2.4 Boundary conditions

The boundary conditions are implemented with the ghost node method, which basically ex-
tends the inner flow field at the boundaries by additional cells. Due to the 4th order accurate
spacial discretisation, two additional ghost cells are needed in order to prescribe the bound-
ary conditions with the same accuracy, when using a central-discretisation scheme. For
the radial direction, only one additional ghost cell was assumeds requiring a backwards-
discretisation scheme.

The actually prescribed boundary conditions (BC) for the different boundaries will be
described and discussed in the following.

Wall BC

At the wall, the no-slip condition is assumed for all velocity components. For the ther-
mal boundary condition, a uniform time averaged wall heat flux 〈qw〉 = const. and zero
enthalpy fluctuations χ ′′ = 0 are prescribed. The prescription of no-slip condition for the
velocities for all time levels, can be incorporated into equation (3.13), resulting in

∂πn+1

∂ r

∣∣∣∣
r=D/2,ϕ,z

= 0, (3.28)

employed as boundary condition of π at the wall.
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Centerline BC

At the centerline, the "center singularity", due to the vanishing radial coordinate r→ 0
poses a mathematical problem. The ϕ and z - momentum transfer are essentially not
affected by the center singularity due to the presently used staggered grid configuration,
so that the area of the radially inner face of the first near-center cell is zero, as seen from
figure 3.5, while the center singularity is an issue for the radial momentum transfer. For all
independent flow-quantities Neumann boundary conditions are prescribed at r = 0, which
is realized by a consistent setting at the ghost nodes. For the radial velocity component,
the value on the opposite side of the center is used for the interpolation of the ghost node
value (denoted by gn), reading

ugn =
ui, j,k−ui, j+π,k

2
, (3.29)

as highlighted in figure 3.5. All other quantities, which are allocated at the center of the
first cell, v, w, π and χ , use a von Neumann zero-gradient formulation for the ghost node,
generally written as

ψgn = ψi, j,k. (3.30)

r

z

ui,j,k

vi,j,k

wi,j,k

ui,j+π,k

ϕ

ui−1,j,k

Figure 3.5: Boundary conditions at the centerline
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Axial BC

As shown in section 2.4, where the relative pressure and the relative enthalpy have been in-
troduced, being defined as difference to the cross-sectional mean and the value at the wall,
respectively, the flow can be considered axially periodic. This implies for all dependent
variables u, v, w, π and χ

ψ(r,ϕ,z = 0) = ψ(r,ϕ,z = L). (3.31)

Azimuthal BC

The considered cylindrical geometry allows to prescribe a periodic boundary condition in
this direction, generally written as

ψ(r,ϕ,z) = ψ(r,ϕ +2π,z), (3.32)

for all dependent variables.

3.2.5 Axial decomposition of computational domain for parallel processing

In order to reduce the total simulation time, the flow field is split into axial pipe parts.
For each subdomain, the conservation equations are solved in parallel according to the
procedure shown in section 3.2.1, always followed by a shifting operation, where the ghost
nodes are updated with the new values of the neighboring subdomains. This procedure is
graphically shown in figure 3.6. The gray arrows indicate the shifting of the data for
updating the ghost nodes. Using MPI each axial subdomain is assigned to a CPU (node).

3.2.6 Fluid properties

The fluid properties have to be updated at each time level after solving the transport equa-
tion of enthalpy, as defined in (3.5) and (3.6). This requires to relate at first the enthalpy
to the temperature, which is then further used as input into the temperature-dependent ma-
terial properties, as described by equations (2.111) to (2.115). The local temperature can
be determined from the local enthalpy differences, as obtained from (3.5) and (3.6), incor-
porating the temperature-dependent specific heat capacity (equation (2.112)) into equation
(2.87), yielding

χ = hw−h =

Tw∫
T

cp(T̃ )dT̃ =

Tw∫
T

Ac +BcT̃ dT̃ . (3.33)
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Figure 3.6: Axial decomposition into 4 axial parts

The integral in equation (3.33) can be analytically solved for the lower boundary T , written
as

T =−Ac

Bc
+

√(
Tw +

Ac

Bc

)2

− 2
Bc

χ. (3.34)

Assuming dynamically and thermally fully developed flow basically requires the neglect
of the axial variation of the averaged material properties due to the continuous heating
of the fluid. Using an axially varying wall temperature would conflict with this require-
ment. Therefore, the axially averaged wall temperature 〈Tw〉 is used as upper boundary
of equation (3.33), and further in (3.34), instead of the local value Tw. This ensures that
the fluid property variation is restricted to the radial and azimuthal direction, so that the
assumed axial periodicity of the flow variables u, v, w, π and χ , can consistently be ap-
plied. For the considered operating conditions, this simplification is only of minor quan-
titative importance. As will be shown in the discussion of the experiments carried out for
validation of the DNS results, the axial increase of the wall temperature over the compu-
tationally considered pipe length is about Tw|z=5D−Tw|z=0 = 0.26K2. This is negligibly
small as compared to the temperature difference between wall and bulk temperature of
Tw−Tm = 25.6K2.

2Corresponding to measurement results of case M20/8, for detail see table 4.4 on page 66
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3.2.7 Reference values

The present DNS solves the governing conservation equations in non-dimensional form as
given in equation (2.97) - (2.101). All the reference values for the material properties are
based on the wall conditions at the exit of the heated pipe, using

T0 = Tw|z=L (3.35)

as reference temperature. This axial position corresponds to the end of the heated test
section in the validation experiments. Figure 4.1 in the following chapter will show the
exact position of this reference point.

3.2.8 Poisson equation

The solution of the Poisson equations (3.16) is responsible for the largest part of the com-
putational expense in this DNS. For the here considered flow, the Poisson equation is
written in cylindrical coordinates, as

1
r

∂

∂ r

(
r

∂πn+1

∂ r

)
+

1
r2

∂ 2πn+1

∂ϕ2 +
∂ 2πn+1

∂ z2 =

1
∆t

[
∂ρn+1

∂ t
−
{

1
r

∂ rρu
∂ r

+
1
r

∂ρv
∂ϕ

+
∂ρw
∂ z

}?]
(3.36)

with the right hand being evaluated after the prediction step. This equation represents an
three-dimensional elliptic problem, constituting a massive linear equation system. For the
considered physical problem and the employed numerical discretisation, the azimutal and
axial direction are homogeneous directions. This allows a "Fast Fourier Transformation"
(FFT) in these directions. Using this method, only a 1-dimensional system, written as

1
r

∂

∂ r

(
r

∂ π̂n+1
m,n

∂ r

)
+(λm,n)π

n+1
m,n = R̂HS, (3.37)

has to be solved for each mode m and n of the Fourier transformed pressure π̂m,n(r). The
parameter λm,n stands for the "eigenvalue" and the maximum number of modes m and n
corresponds to the number of cells in the homogeneous directions, jmax and kmax, respec-
tively. Due to the 4th order accurate spacial discretisation, jmax× kmax decoupled penta-
diagonal linear systems have to be solved, using Gaussian elimination. In the last step, the
solution has to be transformed back into physical space by an inverse FFT (iFFT).

One major issue regarding computational time arises from the axial domain decompo-
sition used for parallel processing. While the FFT/iFFT in the azimuthal direction can
be performed without any additional communication between computational nodes, some
additional communication procedures are needed for applying the FFT/iFFT in axial di-
rection.





4 EXPERIMENTS

The computational data produced by the DNS are validated against experimental data ac-
quired on a specially designed pipe flow test facility. The obtained experimental data also
represent a valuable database for further model validation. In this chapter, the experimental
setup and the measurement procedure will be explained in detail.

4.1 Experimental setup

The aim of the experiments was, on the one hand, to generate a reliable database for the
validation of the DNS results and, on the other hand, the evaluation of predictions from
heat transfer models in flow regimes beyond the range amenable to DNS. Dynamically and
thermally fully developed flow conditions needed to be realized in the experiments as well
to deliver representative data for the conditions considered by the DNS. Special interest
was devoted to Reynolds numbers covering the transition regime from laminar to turbulent
flow. The constant wall heat flux boundary condition assumed in the computations was
accomplished adopting a heating concept similar to the concept of Ghajar and Tam (1994).
Figure 4.1 gives a schematic overview of the experimental loop with a detailed represen-
tation of the testsection. The loop essentially consists of a Coriolis mass flow meter, a
heat exchanger in order to achieve thermally stationary flow conditions, an oil reservoir,
a speed-controlled pump and the test-section. The test-section is made of stainless steel
(1.4301) with an inner and outer diameter of di = 12 mm and da = 15 mm, respectively.
The first part of the test-section is the "entrance section" with the length L = 1.2 m, rep-
resenting 100 diameters, which is sufficiently long to ensure dynamically developed flow
conditions at the begin of the "heated test-section". The uniform heat flux condition at
the inner wall of the pipe was realized by electrically heating the pipe wall. The heat is
generated by short circuiting the heated part of the test-section with an electrical trans-
former which provides high electrical current at low voltage. The length of the heated
part of the test-section, being L = 2 m, was designed long enough to ensure thermally
fully developed flow inside a large part near the exit of the section. Further downstream
the fluid passes a well insulated "thermal equalization section", including a static mixer,
where the temperature is supposed to reach a uniform value over the whole cross-section,
representing the enthalpy flow equivalent outlet bulk temperature Tb,1. The inlet and outlet
bulk temperatures (Tb,0 and Tb,1) as well as the wall temperature at the end of the heated
test-section are measured using highly accurate resistance thermal probes (PT-100). Ad-
ditionally, "Type T" thermocouples are mounted along selected axial position of the entire

57
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Figure 4.1: Experimental setup

"heated test-section" to measure the wall temperature gradient in flow direction. The whole
test-section is thermally well isolated in order to avoid thermal losses.

To exclude any interference with the fully developed flow inside the pipe, exclusively
the outer wall temperature is measured with the probes, which is further used to com-
pute the inner wall temperature by solving a radial solid conduction equation. To avoid
any influence of the electrical current used for heating on the temperature measurements,
the temperature sensor is electrically isolated against the pipe surface by an additional
layer of a Kapton tape. The actually applied setup can be seen in figure 4.2, including
the thick outer thermal isolation against the ambience, made of glass wool with λiso =
0.055 Wm−1 K−1.

The computation of the inner wall temperature distinguishes two different radial layers,
the heated pipe wall and the layer of the unheated Kapton tape. The radial heat transfer
inside the heated pipe wall (ri 6 r 6 ra), which is made of stainless steel with a thermal
conductivity λp = 15Wm−1 K−1 is described by the following conduction equation

λp
1
r

∂

∂ r

(
r

∂T
∂ r

)
+ q̇el = 0 (4.1)

where q̇el is the volumetric heat source computed from the measured electrical current and
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Figure 4.2: Temperature measurement setup

voltage output of the electrical transformer,

q̇el =
Pel

VHT
=

UI
(d2

a−d2
i )π/4L

. (4.2)

Inside the unheated Kapton tape (ra 6 r 6 ra +δC) the conduction equation reads

λC
1
r

∂

∂ r

(
r

∂T
∂ r

)
= 0, (4.3)

with the thickness being δC = 0.065 mm and a thermal conductivity λC = 0.16Wm−1 K−1.
At the outer radial boundary, at r = ra + δC, an assumed heat loss is prescribed as qv =
∂T/∂ r, and the temperature is set to the value measured by a sensor T = Twa. Using
these thermal boundary conditions, the solutions of equations (4.1) and (4.3) for the radial
variations of the temperature read

• ri 6 r 6 ra

Tpipe(r) = Twa +
q̇el

λp

r2
a
2

[
1
2
− 1

2

(
r
ra

)2

+ log
(

r
ra

)]
(4.4)

− qv

λp
(ra +δC)

[
λp

λC
log
(

ra

ra +δC

)
+ log

(
r
ra

)]

• ra 6 r 6 ra +δC

TC(r) =−
qv

λC
(ra +δC) log

(
r

ra +δC

)
+Twa (4.5)
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The heat loss qv is estimated from the thermal conductive heat transfer inside the thermal
isolation layer, written as

qv =
1

ra
1

λiso
log
(

riso

ra

) (Tiso−Twa) . (4.6)

The temperature difference occurring in (4.6) uses measured values for the outer pipe wall
temperature Twa, as well as for Tiso, which is measured with a probe at the outer surface
of the isolation, r = riso. The pressure drop is measured using pressure probes located
at two axially far distant positions within the heated testsection, in order to account for
the variability of the fluid properties due to temperature increase. Based on the measured
pressure drop, the corresponding wall shear stress can be computed as

τw =
∆p
∆z

di

4
, (4.7)

and furthermore the skin-friction coefficient

c f =
τw

ρb
w2

b
2

. (4.8)

The Nusselt number is computed as

Nu =
αdi

λb
=

qwdi

λw(Tw−Tb,1)
, (4.9)

where the wall heat flux qw is computed based on the inlet and outlet bulk temperature
as

qw =
ṁcp,b(Tb,1−Tb,0)

diπLheated
. (4.10)

This wall heat flux basically represents the amount of heat, which is produced by the elec-
tric volumetric heat source q̇el and transferred per unit area into the fluid.
For the mean specific heat capacity cp,b the relation (2.112) is employed. An important
distinction must be made regarding the reference quantities for the non-dimensional quan-
tities. The subscript "b" denotes quantities computed with thermophysical fluid propertied
based on the outlet bulk temperature, whereas subscript "w" denotes quantities computed
based on the wall temperature.

4.1.1 Measurement error

For the measurement error of the skin-friction coefficient, the bulk velocity wb can be
estimated by expressing it in terms of the measured mass-flow rate ṁ and the wall shear
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stress in terms of the measured pressure drop according to (4.7), so that equation (4.8) can
be rewritten as

c f =
∆p
∆z

d5
i π2ρb

32ṁ2 . (4.11)

The total error can be obtained from the error propagation

∆c f

c f
=

1
c f

√(
∂c f

∂∆p
∆(∆p)

)2

+

(
∂c f

∂ρb
∆ρb

)2

+

(
∂c f

∂ ṁ
∆ṁ
)2

(4.12)

=

√(
∆(∆p)

∆p

)2

+

(
∆ρb

ρb

)2

+

(
2

∆ṁ
ṁ

)2

(4.13)

The relative error of the Nusselt number measurement is based on the error propagation
determined from equation (4.9) in combination with equation (4.10), which yields

Nu =
ṁcp,b(Tb,1−Tb,0)

λb(Tw−Tb,1)πLheated
, (4.14)

and the resulting total measurement error reads

∆Nu
Nu

=
1

Nu

√√√√√√√√
(

∂Nu
∂ ṁ

∆ṁ
)2

+

(
∂Nu
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∆cp,b

)2
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(
∂Nu
∂λb

∆λb

)2
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∂Nu
∂Tb,1

∆Tb,1

)2

+

(
∂Nu
∂Tb,0

∆Tb,0

)2

+

(
∂Nu
∂Tw

∆Tw
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(
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)2

+(
∆T

Tb,0−Tb,1

)2

+

(
∆T (Tb,0−Tw)

(Tb,0−Tb,1)(Tb,1−Tw)

)2

+

(
∆T

Tb,1−Tw

)2 (4.15)

For the mass-flow rate and the pressure measurement sensors, the manufacturers specify a
relative error, relative to the measured value, whereas for all other sensors an absolute error
is specified, independent of the measured value. Table 4.1 shows the relative and absolute
errors of all contributions to either error propagation equations (4.12) and (4.15).

Table 4.2 exemplarily shows the skin friction coefficient and the Nusselt number with their
corresponding relative errors for a certain measurement case2 presented at a later point.

2Corresponding to measurement results of case M20/8, for detail see table 4.4 on page 66
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Table 4.1: Relative and absolute error for the error propagation of the skin-friction and
Nusselt number measurement

Contribution absolute error Unit
∆ṁ 0.20E−3× ṁ kgs−1

∆T 0.20 K
∆(∆p) 0.35E−3×∆p Pa
∆ρb 0.13 kgm−3

∆cp,b 0.73 Jkg−1 K−1

∆λb 1.56E−5 Wm−1 K−1

4.2 Experimental results and validation

The validation of the experimental setup was carried out considering heated as well as un-
heated conditions. The latter was imposed to check the pressure measurements, performing
measurements at various Reynolds numbers at constant temperatures in order to exclude
any temperature effect of the fluid properties. The resulting skin-friction coefficients were
then evaluated against the theoretical solution of c f for the laminar flow regime, which
reads

clam
f =

16
Reb

, (4.16)

and against the well validated empirical correlation of Konakov (1954)

cturb
f = 0.25(1.8log10(Reb)−1.5)−2 , (4.17)

for the turbulent flow regime.

Figure 4.3 compares the measurements against (4.16) and (4.17). Except for the laminar-
turbulent transition region, where both above shown formulations are expectedly not ap-
plicable, the measurements agree very well.

The shown validation of the skin friction coefficient certainly just makes sense without
heating because both of the equations (4.16) and (4.17) assume constant fluid properties.

Table 4.2: Skin friction coefficient and the Nusselt number with their corresponding rela-
tive errors

c f ∆c f Nu ∆Nu
×10−3 ×10−3 − −
9.18 0.05 59 2
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On the other hand, the radial temperature variation due to heating in combination with
the fairly strong temperature dependence of the fluid properties may have a considerable
effect on c f . Therefore, the measurements for the Nusselt number, which are inherently
associated with heated (or cooled) flow conditions, should only be validated against cor-
relations that account for this dependency. Accordingly, measured Nusselt numbers were
presently compared against the well established empirical Gnielinski (1995) correlation
for the Nusselt number written as

Nu =
c f /2 RebPrb

1+12.7
√

c f /2
(

Pr2/3
b −1

) (Prb

Prw

)0.11

. (4.18)
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Figure 4.3: Skin-friction coefficients vs. bulk Reynolds number, isothermal flow
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In principle this correlation was proposed for the range

0.1 6Prb 6 1000

104 6Reb 6 106

which falls essentially into the fully turbulent regime. It is therefore consistently recom-
mended to use the correlation of Konakov (1954), (4.17), for computing the skin friction
coefficient c f in (4.18). The last factor in equation (4.18) accounts for the temperature vari-
ation and the corresponding fluid property variation. There are only few Nusselt number
measurements available for high Prandtl number fluids in the laminar-turbulent transition
regime in literature and most of them are fairly old. Still, most of these measurements,
e.g. by Morris and Whitman (1928), Sherwood (1932), which were also used by Gnielin-
ski (1995) for validation, indicate an over-prediction of the Nusselt number from equation
(4.18). Therefore, Gnielinski (1995) proposed an extended correlation for the transitional
regime, 2300≤ Reb ≤ 104, introducing a linear interpolation between a laminar and a fully
turbulent contribution, written as

Num = (1− γ)Num,lam + γNum,turb. (4.19)

The weighting parameter γ is defined as

γ =
Reb−2300
104−2300

, (4.20)

such that it varies within 0 6 γ 6 1.

Num,L,lam represents a laminar Nusselt number at Reb = 2300, which is determined by
Gnielinski (2002) from

Num,lam =

3.663 +0.73 +

(
1.615

(
Reb Prb

di

L

)1/3
)3
1/3

(4.21)

Num,turb denotes the fully turbulent contribution computed from equation (4.18) at Reb =
104. Despite this extension proposed for the not fully turbulent low Reynolds number
regime, the superposition (4.19) still under-predicts the Nusselt number when compared to
the aforementioned measurements presented in literature for the transitional regime.

In the following all measurement results will be compared against the predictions of the
Gnielinski correlation, and additionally, against data points from literature measured by
Morris and Whitman (1928) and Sherwood (1932).
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4.3 Measurement series

Table 4.3 gives an overview over the measurement cases, which were considered in this
thesis and partly further used for the validation of the simulation results. As it can be seen
from table 4.3, the individual series are distinguished by a certain roughly constant setting
for the molecular Prandtl, while varying the Reynolds number. The molecular Prandtl
number is based here on the wall conditions

Prw =
νw ρw cp,w

λw
, (4.22)

where the material properties are evaluated with the wall temperature Tw measured at the
end of the heated test section (see figure 4.1). On the other hand, the bulk Reynolds
number, which is defined as

Reb =
D wb

νb
, (4.23)

depends via the viscosity on the bulk temperature Tb,1, measured at the end of the thermal
equalization section. The bulk velocity is determined from the massflow-rate, controlled
by the pump.

As the higher molecular Prandtl numbers imply a higher molecular viscosity, the upper
limit of the accessible range of Reynolds numbers is reduced for increasing Prandtl num-
ber. The increase in viscosity cannot be fully compensated by an increased mass flow rate
due to the limited capacity of the pump.

In the following, the results of all five measurement series listed in table 4.3 are shown. At
first, a table lists all important experimental parameters together with the measured skin-
fiction coefficients and Nusselt numbers. Both transfer coefficients for momentum and
heat, respectively are also shown as graphs dependent on the bulk Reynolds number.

Table 4.3: Measurement series
Prw Reb range

M20 21−25 4200−27000
M30 29−32 3700−20000
M40 33−39 7000−17000
M50 49−51 5200−13000
M60 56−61 5500−10000
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4.3.1 M20

Table 4.4: Parameters of measurement series M20
Tb0 Tb1 Tw ṁ qw Reb Rew Reτ,w Prb Prw Nu c f

K K K kgs−1 Wm−2 − − − − − − 10−3

1 445.85 447.75 454.25 0.332 22475 26592 28420 1544 26 25 334 5.90
2 445.25 447.75 456.15 0.280 25194 22461 24463 1366 26 24 290 6.23
3 445.05 448.15 458.15 0.233 25414 18789 20782 1170 26 24 245 6.34
4 444.15 448.15 460.75 0.176 25252 14195 16098 957 26 23 193 7.07
5 443.35 448.95 465.95 0.125 24559 10175 12002 748 26 22 140 7.77
6 443.05 450.35 472.05 0.094 24026 7772 9544 622 26 21 107 8.50
7 443.58 452.87 478.97 0.073 23548 6172 7835 536 25 21 89 8.78
8 438.25 446.85 472.45 0.054 15705 4275 5467 370 26 21 59 9.18
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Figure 4.4: Skin-friction coefficient vs. bulk Reynolds number of measurement series M20
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Figure 4.5: Nusselt number vs. bulk Reynolds number of measurement series M20
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4.3.2 M30

Table 4.5: Parameters of measurement series M30
Tb0 Tb1 Tw ṁ qw Reb Rew Reτ,w Prb Prw Nu c f

K K K kgs−1 Wm−2 − − − − − − 10−3

1 419.95 421.75 429.05 0.337 21384 19511 21390 1217 34 32 279 6.47
2 419.85 421.95 430.35 0.288 21482 16721 18583 1068 34 31 242 6.61
3 419.75 422.35 432.35 0.234 21172 13650 15457 920 34 30 201 7.08
4 419.55 422.85 434.85 0.180 20192 10615 12303 756 34 30 159 7.56
5 416.65 420.45 434.75 0.149 19322 8459 10092 630 35 30 129 7.79
6 414.05 419.05 437.45 0.113 19151 6337 7947 508 35 29 199 8.18
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Figure 4.6: Skin-friction coefficient vs. bulk Reynolds number of measurement series M30
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Figure 4.7: Nusselt number vs. bulk Reynolds number of measurement series M30
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4.3.3 M40

Table 4.6: Parameters of measurement series M40
Tb0 Tb1 Tw ṁ qw Reb Rew Reτ,w Prb Prw Nu c f

K K K kgs−1 Wm−2 − − − − − − 10−3

1 404.45 405.75 411.85 0.340 15194 15559 16997 1001 42 39 236 6.93
2 404.25 405.85 413.35 0.289 16059 13259 14756 886 42 38 204 7.21
3 404.15 406.15 415.05 0.240 16079 11053 12557 759 42 37 170 7.30
4 404.05 406.75 417.85 0.189 16465 8802 10306 629 41 36 139 7.44
5 404.15 407.45 421.15 0.146 15886 6885 8321 547 41 35 110 8.63
6 403.35 407.45 424.05 0.121 16164 5689 7143 466 41 33 92 8.51
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Figure 4.8: Skin-friction coefficient vs. bulk Reynolds number of measurement series M40
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Figure 4.9: Nusselt number vs. bulk Reynolds number of measurement series M40
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4.3.4 M50

Table 4.7: Parameters of measurement series M50
Tb0 Tb1 Tw ṁ qw Reb Rew Reτ,w Prb Prw Nu c f

K K K kgs−1 Wm−2 − − − − − − 10−3

1 385.05 386.34 393.68 0.340 15018 11159 12670 776 56 50 191 7.50
2 383.05 384.60 393.39 0.287 15459 9113 10626 667 58 50 164 7.88
3 381.85 383.79 394.25 0.235 14839 7353 8829 566 59 49 132 8.23
4 376.55 378.93 392.12 0.200 15610 5686 7218 476 64 51 110 8.69
5 371.45 374.81 394.34 0.144 15327 3773 5392 370 69 49 73 9.43
6 369.95 373.34 393.88 0.141 15083 3571 5218 360 71 50 68 9.50
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Figure 4.10: Skin-friction coefficient vs. bulk Reynolds number of measurement series
M50
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Figure 4.11: Nusselt number vs. bulk Reynolds number of measurement series M50
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4.3.5 M60

Table 4.8: Parameters of measurement series M60
Tb0 Tb1 Tw ṁ qw Reb Rew Reτ,w Prb Prw Nu c f

K K K kgs−1 Wm−2 − − − − − − 10−3

1 370.05 386.35 393.65 0.335 18035 8189 9980 633 73 61 167 8.04
2 369.05 370.95 382.75 0.281 18106 6777 8547 554 74 60 142 8.40
3 366.95 369.25 383.05 0.248 18383 5769 7584 498 76 59 123 8.61
4 366.05 368.55 383.65 0.213 16930 4863 6576 437 77 59 103 8.84
5 365.45 368.30 386.02 0.176 15589 3995 5664 381 78 56 81 9.03
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Figure 4.12: Skin-friction coefficient vs. bulk Reynolds number of measurement series
M60
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Figure 4.13: Nusselt number vs. bulk Reynolds number of measurement series M60
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4.4 Discussion

Comparing the measured skin-friction coefficients to the Konakov (1954) correlation, as
defined by equation (4.17), one can see that for low molecular Prandtl numbers the accor-
dance is very good. With increasing Prandtl number the agreement gets worse, especially
close to the laminar flow regime. Keeping in mind that the Konakov (1954) correlation
was originally proposed for isothermal flow with constant fluid properties, the observed
deviation in case of heating is still acceptable. Petukhov (1970) argued that due to the tem-
perature difference between wall temperature and mean temperature, the reference tem-
perature for the skin-friction as well as for the Nusselt number correlation needs to be
adjusted. This adjustment should reflect the radial variation of the fluid properties, where
the viscosity, due to its strong temperature dependency varies the most. Consequently, the
bulk to wall viscosity ratio

K =
µb

µw
(4.24)

is introduced to capture the effect of the variable properties. Figure 4.14 shows the varia-
tion of K dependent on the bulk Reynolds number for all measurement series. Due to the
non-linear decrease of the viscosity with the temperature (see equation (2.114)), the ratio
K is not only determined by the wall overtemperature, Tw−Tb, but also by the bulk tem-
perature level Tb itself. This is exemplarily shown in figure 4.15 for the measurement cases
M20/8 and M50/6, displaying the respective range of the radial viscosity variation.

The generally observed decrease of K with the bulk Reynolds number Reb can be attributed
to the increase of the Nusselt number for increasing Reb. This increase in the Nusselt
number is generally not compensated by a higher wall heat flux, so that the wall overtem-
perature, and hence, the span ∆µ generally decreases, leading to a lower K. Accordingly,
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Figure 4.14: K over Reb
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Figure 4.15: Temperature and viscosity ranges for the measurement cases M20/8 and
M50/6

the highest K is observed for the measurement 6 of the M50 series, where in particular
the overall fairly low temperature level results in a steep decrease in viscosity dependence
on the temperature. The Nusselt number correlation of Gnielinski (1995) already uses the
parameter K raised to some power in equation (4.18).

The validation of the present measurements against available data from previous measure-
ments in literature of Morris and Whitman (1928) and Sherwood (1932) generally show
good agreement. Comparing the present measurements with the Gnielinski (1995) Nusselt
number correlation, it becomes evident that the linear superposition based Nusselt num-
ber correlation (4.19) tends to under-predict the heat transfer coefficient in the transition
regime between laminar and turbulent flow. This under-prediction is also confirmed by a
comparison against the measurements of Sherwood (1932). In the fully turbulent regime
the measurements show a very good agreement with the correlation of Gnielinski (1995)
(4.18), proposed for this regime. As already noted above, the fairly wide error margins in
the measurements for the high Reynolds number are due the very low temperature differ-
ence between the wall and bulk temperature in these cases.



5 DNS ANALYSIS

This chapter is devoted to an in-depth analysis of the DNS data. At the beginning all
simulation cases are listed together with the corresponding simulation meshes, which is
followed by a discussion of the quality of the resolution. A major part of the chapter shall
analyze the effect of real fluid behavior by comparing the DNS data of the constant fluid
property simulations (DC) with the variable fluid property simulations (DV). Furthermore,
the DNS data are compared with corresponding measurements, shown in section 4.3, in
order to evaluate the simulation results.

For convenience, the discussion of the results does not always include a graphical presen-
tation of all available data sets. These not included diagrams can be found in the appendix
A.

5.1 DNS cases

The following tables show all computationally investigated cases, with their corresponding
Reynolds number, Prandtl number, and the employed computational grid. Wall conditions
are chosen as reference conditions for the friction velocity wτ and friction temperature
Tτ . Table 5.1 lists all cases with constant fluid properties and table 5.2 all cases with real
temperature-dependent fluid properties.

Table 5.1: DNS simulations with constant fluid properties
Reτ,w(Reb) Prw Number of grid cells

(imax× jmax× kmax)

DC360/10 360(5275) 10 256×512×1024
DC360/20 360(5275) 20 256×512×1024
DC360/50 360(5275) 50 256×512×1024

DC500/10 500(7680) 10 256×512×1024
DC500/20 500(7680) 20 256×512×1024

For the constant fluid property cases, two Reynolds number Reτ,w = 360/500 were consid-
ered in order to highlight the effect of the Reynolds number. The variation of the molecular
Prandtl number from Prw = 10 up to Prw = 50 is intended to study the influence of an in-
creasing thermal resistance near the wall.

73
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Table 5.2: DNS simulation cases with real fluid properties
Reτ,w(Reb) Prw Number of grid cells

(imax× jmax× kmax)

DV370/21 370(4152) 21 256×512×1024
DV360/50 360(3557) 50 256×512×1024

DV520/20 519(6311) 20 256×512×1024

The input data for the real fluid cases are chosen so as to represent real measurement cases,
as shown in section 4.3. In consistence with the cases for constant fluid properties, two
different friction Reynolds numbers are considered associated with Reτ,w ≈ 360/500, to
examine the influence of varying flow velocities. The measurement cases which actually
correspond to the present DNS cases for variable fluid properties, are shown in table 5.3,
including the reference quantities based on the experimental conditions.

Table 5.3: DNS simulation cases with real fluid properties and corresponding experimental
cases

Measurement
case

Tre f = Tw wτ Tτ

K ms−1 K

DV370/21 M20(8) 472.5 0.0419 0.1948
DV360/50 M50(6) 393.9 0.1053 0.0789

DV520/20 M20(7) 477.3 0.0564 0.2257

5.2 Resolution

All presently discussed simulations are done on a mesh with the same number of cells.
Regardless of the input parameters shown in table 5.3, the radial cell size measured in wall
units y+, defined as

y+ =
y wτ

νw
, (5.1)

was set to ∆y+|wall = 0.05 and ∆y+|center = 0.4, at the wall and the center, respectively,
for all considered cases. Table 5.4 gives an overview over the minimum and maximum cell
sizes for the individual directions, for the two most critical cases regarding Kolmogorov
and Batchelor scale. These are the case with the highest Reynolds number and the case
with the highest Prandtl number, DV520/20 and DV360/50, respectively.

The grid resolution was chosen in order to fulfill the DNS requirements for capturing
suitably the smallest structures, measured by the Kolmogorov- and Batchelor- length scale,
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Table 5.4: Mesh resolution for the two most critical cases
∆r+min ∆r+max (r+∆ϕ)max ∆z+max

DV360/50 0.05 1.375 2.207 1.756
DV520/20 0.05 2.180 3.187 2.536

defined in equations (2.17) and (2.18), respectively. Aside of the kinematic viscosity and
the molecular Prandtl number, both length scales depend on the turbulent dissipation rate
εii of the turbulent kinetic energy k = u′′i u′′i /2, which can be obtained according to equation
(2.31) based on the statistically averaged DNS velocity fluctuation, as

ε+ii =−τ
′+
ik

∂u′′+i
∂x∗k

. (5.2)

Figure 5.1 shows the radial profiles of the spatial resolution rescaled by these two length
scales, for the most critical cases. Table 5.5 lists the occurring numerical minimum and
maximum values.

Table 5.5: Minima and maxima of spatial resolution normalized with η and ηθ

DV360/50 DV520/20

∆r+min
η

0.029 0.031

∆r+max

η
0.443 0.608

(r+∆ϕ)max

η
1.267 1.913

∆z+max

η
1.008 1.522

∆r+min
ηθ

0.205 0.141

∆r+max

ηθ

3.126 2.759

(r+∆ϕ)max

ηθ

8.933 8.681

∆z+max

ηθ

7.110 6.907

The chosen grid spacing appears as adequate to resolve the smallest near-wall turbulent
structures. The radial variations shown in figure 5.1, make further evident that the spatial
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Figure 5.1: Spatial resolution normalized by the Kolmogorov scale η and the smallest tur-

bulent thermal length scale ηθ

resolution for the dynamic and thermal structures remains sufficiently high over the whole
cross-section. As such, the present resolution closely matches that of other recent DNS
studies, such as of Zonta et al. (2012), Nemati et al. (2016) and Lee et al. (2013). The
latter of these three applied a resolution, associated with 0.599 < ∆y/ηθ < 2.98 in wall
normal, ∆z/ηθ = 7.91 in span-wise and ∆x/ηθ = 12.4 in stream-wise direction, which is
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well comparable to the present resolution.

5.3 First-order turbulence statistics

The here presented data is statistically averaged in space, along the two homogeneous
directions, ϕ and z, as well as in time. For the latter, 30 flow-through times, defined as

t∗f tt =
L

Dw+
b
, (5.3)

were employed as sampling period, once the solution was statistically converged. The
statistical averages represent ensemble averages, as appearing in the Reynolds and Favre
decompositions, shown in section 2.2.3. The Favre averages for the axial velocity and the
enthalpy difference, discussed below, are in particular defined as

ŵ+ =
ρw+

ρ
(5.4)

and

χ̂
+ =

ρχ+

ρ
(5.5)

For the constant fluid property cases they are identical with the Reynolds averages w+ and
χ
+, respectively.

In the presently considered flow associated with only minor density variations, the dif-
ference between the Reynolds and Favre averages are basically negligible. More impor-
tantly, turbulence models based on the Boussinesq eddy viscosity concept generally use
Reynolds-averaged values. The reason for this is that this concept incorporates the turbu-
lent stress tensor and a turbulent heat flux vector, as introduced in formulation (2.20) and
(2.21) into the corresponding diffusive contribution, which involves only the gradients of
Reynolds averaged quantities. Accordingly, all DNS data shown in the following are rep-
resented as Reynolds averages and the density fluctuation ρ ′ is assumed to be zero, which
implies constant density independent of temperature fluctuation

ρ
′ (T ′)∼= 0 ⇒ ρ = ρ = const. (5.6)

5.3.1 Velocity

In a first step, all obtained results need to be validated. Typically, this is done by com-
paring the DNS results to literature data. Especially, for the pipe flow at Reτ,w = 360
there are various DNS data from previous isothermal studies available. On the other hand,
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Figure 5.2: Comparison of the axial velocity to literature data

there exist only scarce validation data for high Prandtl number flows, especially including
temperature-dependent fluid properties. For this reason, only the constant fluid proper-
ties cases are evaluated against literature data, while the DNS results for the variable fluid
properties are validated against the in-house measurements presented in section 4. Con-
cerning DNS data from literature, Wu and Moin (2008) published a highly resolved DNS
of an isothermal pipe flow, providing accurate validation data for the case Reτ,w = 360.
The flow conditions of the second considered Reynolds number, Reτ,w = 500, are covered
by the experimental work done by Durst et al. (1995). Their LDA measurements con-
sider an isothermal pipe flow case, at a moderate Reynolds number (Reb = 7442), with an
exceptional near-wall resolution.

The predicted axial variations for the average axial velocity are compared against the men-
tioned data from literature in figure 5.2. The agreement with the DNS data of Wu and
Moin (2008) is excellent and only minor deviations are observed in the comparison of the
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Figure 5.3: Axial velocity for the different Reynolds number of the DC cases

simulation data against the measurements. This confirms the accuracy of the simulation in
predicting the first-order statistics of the velocity field.

It is noted that for the constant fluid property cases the conservation equations of mo-
mentum and heat are decoupled. The flow field therefore only depends on the Reynolds
number, regardless of the considered Prandtl number. In contrast, in the variable fluid prop-
erty simulations, the energy equation is coupled with the momentum transfer, through the
temperature-dependent fluid properties, so that the velocity field depends both on Reynolds
and Prandtl number.

As known from various previous studies, the presently considered turbulent pipe flow
should be described very well by the universal wall laws. For this reason the axial ve-
locity of cases DC360 and DC500 are compared to the universal wall laws in figure 5.3.
The shown universal profiles read

w+ = y+, (5.7)

for the viscous sub-layer, and

w+ =
1
κ

lny++β . (5.8)

for the fully turbulent inertial sublayer, with the standard setting of κ = 0.4 and β = 5.5
suggested by Kays and Crawford (1980). Close to the wall, in the viscous sub-layer equa-
tion (5.7) reproduces the DNS results perfectly. Further remote from the wall, inside the
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inertial sub-layer, increasing deviations from the log-law can be perceived. However, with
increasing Reynolds number, the deviations decrease. This tendency, which basically indi-
cates a broadening of the inertial sub-layer with increasing Reynolds number and therefore
widening the region, where the log-law is applicable, was already noted by Tennekes and
Lumley (1972). DNS studies by Eggels et al. (1994) and Redjem-Saad et al. (2007) con-
firm this behavior. Additional confirmation gives the experimental study of Durst et al.
(1998), which compares the axial velocity profiles of a fully developed turbulent plane
channel flow for increasing Reynolds numbers.

The scope and the limits of the universal log-law (5.8) can be also measured by extracting
the von Kármán constant from the DNS data. For this evaluation, equation (5.8) has to be
derived with respect to y+ and rearranged to isolate κ in terms of the expression

κ =
1

y+

(
∂w+

∂y+

)−1

. (5.9)

Substituting the DNS data for the local axial velocity gradients into equation (5.9) results
in the variations dependent on y+ shown in figure 5.4.

It can be clearly seen that the standard setting κ = 0.4 suggested by Kays and Crawford
(1980) differs from the DNS obtained plateau at κ = 0.34. This is due to the fairly low
Reynolds numbers considered. This explanation is supported by the observed increase in
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Figure 5.5: Variation of the axial velocities for the DC and the DV cases

the extracted value for the von Kármán constant inside the inertial sub-range for the case
with the higher Reynolds number DC500 in figure 5.4.

In figure 5.5 the cases with temperature-dependent fluid properties are compared against
the corresponding constant fluid property cases. The effect on the flow field due to fluid
property variation is clearly seen here. At the wall, which represents the position of the
reference state determining the reference quantities, the solution is expectedly the same for
all cases. Inside the buffer layer, a substantial velocity decrease can be observed. For the
case with the strongest variation of the fluid properties, seen from the highest value of Tτ

in table 5.3, i.e., case DV360/50, a notable increase in velocity can be seen in the inertial
sub-range.

5.3.2 Enthalpy and temperature

For the here considered high Prandtl number flows, no suitable literature data could be
found for an evaluation of the thermal quantities predicted by the DNS. For this reason,
table 5.6 compares the DNS results for the temperature difference of Tw−T b against the
corresponding data from the measurements described in section 4.
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Table 5.6: Temperature difference comparison of the DNS results and the measurements
Tw−T b Discrepancy

K K %

DV370/21 26.02
0.42 1.64

M20(8) 25.60

DV360/50 20.14
-0.36 -1.76

M50(6) 20.50

DV520/20 26.97
0.89 3.38

M20(7) 26.09
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Figure 5.6: Variation of the enthalpy for the DC and the DV cases

The fairly small discrepancies shown in table 5.6 attests a high accuracy in the present DNS
data. The fact, that the highest considered Reynolds number (case DV520/20) exhibits a by
more than two times higher deviation than the other two cases, is also not very concerning.
At a later point in this thesis, where comparing the Nusselt numbers, it will be seen that
this deviation is still within the measurement error, which tends to be larger for increasing
Reynolds numbers, as seen in section 4.3.
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Figure 5.6 shows the DNS results (DV and DC cases) of the non-dimensional enthalpy χ
+

plotted over the wall distance y+.

Owing to the constant specific heat capacity in the DC cases, the non-dimensional en-
thalpy χ+ is identical with the non-dimensional temperature θ+. The transition into almost
straight lines heading towards the center indicates the formation of an inertial log-law sub-
layer. Due to the effect of varying fluid properties, in particular the increase of the local
viscosity towards the center, an considerable increase in the predicted level of the enthalpy
in the inertial sub-layer is seen for all DV cases.

In order to highlight the increase in thermal resistance near the wall with increasing molec-
ular Prandtl number, the data shown in figure 5.6 is plotted again in a double logarithmic
axis scaling in figure 5.7

In general, with increasing Prandtl number the thermal resistance increases, which goes
hand in hand with an increasing enthalpy gradient at the wall. This general trend is clearly
visible for both the DC and the DV cases in figure 5.7. Regarding the DV cases, the
wall value of the Prandtl number is imposed from the reference conditions, yet, due to the
decreasing temperature towards the center, the local molecular Prandtl number increases.
Therefore, the thermal resistance for the DV cases becomes higher than that for the DC
cases in the core region.
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Figure 5.7: Variation of the enthalpy for the DC360 cases and all DV cases
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The effect of the Reynolds number on the wall temperature gradient is evidently of minor
importance, as seen from the red dotted line, representing a case with Prandtl number
Prw ≈ 20 at a higher Reynolds number.

5.3.3 Averaged fluid properties

Using the temperature variation, which corresponds to the enthalpy variations shown in
figure 5.6, the fluid properties can be evaluated and plotted over the wall distance. Figure
5.8 displays ρ∗, c∗p, λ ∗ and µ∗ for all considered DV cases.

As already indicated in the discussion for the dependence of material properties on the
temperature in section 2.5, the radial variation of ρ∗, c∗p and λ ∗ remains less than 5% for
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all cases, justifying the neglection of density fluctuations. In contrast, the viscosity varies
up the almost 50%. Although the wall overtemperatures listed in table 5.6 show higher
values of Tw−T b for Prw = 20, the corresponding DNS solution still exhibit less variation
of viscosity than the case with Prw = 50. This behavior is due to the slower decrease of the
viscosity at higher temperature levels, which applies to the cases with Prw = 20. This was
already illustrated in figure 4.15, plotting the relevant viscosity ranges over the underlying
temperature ranges. The influence of the Reynolds number variation is relatively low,
which can be seen from the red-dotted line compared against the green line in figure 5.8.

The observed variations of the material properties, predominantly that of the viscosity,
cause considerable variations in the radial distribution of the dimensionless parameters
Reτ,w and Prw. Figure 5.9 shows their radial variation over the wall distance. For the
constant fluid property cases, the prescribed wall values remain constant over the whole
cross-section, whereas, for the DV cases, the Reynolds number decreases, and the Prandtl
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number increases towards the center, which essentially reflects the variation of the viscos-
ity shown in figure 5.8.

The shown radial variation of Reτ,w and Prw for the DV cases are useful to interpret the
observed deviations in the velocity and enthalpy profiles from the corresponding DC cases.
Especially the increasing Prandtl number with the associated increasing thermal resistance
explains the higher level of the enthalpy, which is reached in the core region for the DV
cases, as seen in figure 5.6. For a more detailed insight into the effect of the temperature-
dependent real fluid properties on the momentum and heat transport, further analysis of
the higher-order turbulence statistics is needed. This will be discussed in the following.

5.4 Higher-order turbulence statistics

This chapter will discuss the turbulent second-order moments obtained from the DNS data,
examining in particular the differences observed for the variable fluid property cases in
comparison to the constant property cases. The second-order moments and turbulence
intensities are dependent on the radial position, r = ri, and are computed as the statistical
averages over the homogeneous directions (azimuthal j, axial k), and time t, generally
written as

ϕ ′ψ ′i = 〈
(
ϕi jk,t−ϕ i

)(
ψi jk,t−ψ i

)
〉 j,k,t (5.10)

and
ψi,rms = 〈ψ ′i jk,t

2〉1/2
j,k,t = 〈

(
ψi jk,t−ψ i

)2〉1/2
j,k,t (5.11)

respectively.

5.4.1 Velocity fluctuations

Since no suitable data from literature is available to validate the DV cases, only the predic-
tions from the DC cases shall be validated against previous DNS and experiments. Figure
5.10 compares the DNS results of the DC360 and DC500 against the corresponding data
of Wu and Moin (2008) and Durst et al. (1995), respectively.

The agreement with both the simulation data and the experimental data is very good. Some
deviations are seen for the case DC500. This is most probably due to the slightly higher
Reynolds number (Reb = 7680) of the presently performed DNS compared to Reb = 7442,
as considered in the experiments by Durst et al. (1995). Apart form that, the general shape
of the profiles is predicted very well. Comparing the velocity fluctuations for the two differ-
ent Reynolds numbers, it is remarkable that the axial turbulence intensity hardly depends
on the Reynolds number. The peak of w+

rms remains at same magnitude and position. For
the intensities in the two other directions, the magnitude of the peak increases and shifts
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towards the center of the pipe, for increasing Reynolds number. Durst et al. (1995) showed
exactly this behavior in their LDA measurements.

In figure 5.11 the turbulence intensities of the DV cases are compared against the corre-
sponding DC case. Since the tendencies for the different Reynolds numbers are practically
identical, only the cases with Reτ,w = 360 are shown and discussed in the following. The
case with the higher Reynolds number can be found in the appendix A. The radial and
azimuthal components of the rms-fluctuation for the DV cases generally decrease in mag-
nitude, which is expected considering the decreasing Reynolds number, seen in figure 5.9.
Following from the remarks in the validation against experiments above, it would have also
been expected that the peak of the radial and azimuthal turbulence intensities would move
towards the wall, as the Reynolds number decreases. However, the shift for all fluctuations
goes into the opposite direction.

One way to address this issue is to consider that a reduction of the local Reynolds num-
ber basically implies an reduced normalized wall-distance relative to the definition y+ =
ywτ/νw, based on the wall conditions where ν = νw. Representing the local flow condi-
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tions dependent on the localized wall distance y∗ = ywτ/ν = y+νw/ν , based on the local
viscosity ν , would effectively shift all flow components towards the wall. However, it can
be clearly seen that the variation of the fluid property not just causes a shift of the quantities
towards the center of the pipe. It also causes a change in their magnitude, which cannot
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be compensated by just rescaling the wall distance y+. For this reason Patel et al. (2015)
proposed a semi-local scaling for the velocity, which will be discussed in full detail later
in this chapter.

5.4.2 Shear stress

In a fully turbulent, statistically stationary, axially symmetric pipe flow, the total shear
stress, obtained as the component τ13 = τtot based on equation (2.22), consists of a laminar
and a turbulent component, given as

τtot = µ
∂w
∂ r︸ ︷︷ ︸

τlam

+µ ′
∂w′

∂ r︸ ︷︷ ︸
τµ

−ρu′w′︸ ︷︷ ︸
τturb

∼= (µ +µT )
∂w
∂ r

(5.12)

where the turbulent contribution is computed analogously to its viscous counterpart, ap-
plying the Boussinesq eddy viscosity concept

−ρu′w′ = µT
∂w
∂ r
. (5.13)

Recast into wall coordinates, the total shear stress finally reads

τtot
+ =

τtot

τw
=−µ

∗
(

1+
µT

µ

)
∂w+

∂y+
. (5.14)

The term τµ appears in (5.12) due to the fluctuation of the fluid properties, yet is of minor
importance, and can therefore be neglected.

Figure 5.12 displays the total shear stress, as given by equation (5.12), together with the
laminar and turbulent contributions, as well as the underlying shear rate. The insignificant
contribution due to the variation of the fluid properties represented by τµ is not included.

As shown in section 2.4.3, in a statistically stationary fully developed turbulent pipe flow,
the total shear stress varies always linearly with the wall distance, regardless of any varia-
tion of the fluid properties.

The laminar contribution τ
+
lam, shown in sub-figure (A) is increased in the buffer layer for

the DV cases due to the increasing viscosity towards the center. Since the laminar shear
stress depends on the viscosity as well as the shear rate, reading

τ
+
lam = µ

∗∂w+

∂ r∗
, (5.15)

the variation of the latter, shown in sub-figure (B) has to be also considered in the interpre-
tation of the magnitude of τ

+
lam. At the wall, which represents the reference point, all cases
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have to show the same value as expected. Towards the center, the shear rate is significantly
reduced for the DV cases. This decrease is evidently overcompensated by the substantial
increase in viscosity, as shown in figure 5.8, resulting in a higher value of τ

+
lam for the DV

cases. Close to the center, the shear rate of the DV cases exceeds that of the DC cases, so
that both components in (5.15) show the same increasing tendency for the DV cases.

Sub-figure (C) shows the turbulent contribution to the total shear stress. Its behavior is
complementary to that of τ

+
lam. Near the wall, the decreased shear rate, producing less

intense turbulent mixing, combined with the increased viscosity, results in a reduction of
turbulent shear stress, leading to a lower peak of τ

+
turb. In the following, the phenomena,

which govern the budget of the turbulent and laminar stresses will be analyzed in detail.

Instantaneous turbulence coherent structures

The dynamics of turbulent coherent structures and their modification due to the influence
of real fluid behavior are important for possible modeling purposes. Of special interest are
bursting events, like sweep and ejection events, because alterations of these events have
a major impact on the turbulent shear stress, and hence, the modeling of these. Wallace
et al. (1972) proposed a quadrant analysis to identify fractional contributions to ρ∗u′+w′+.
For this purpose, the fluxes were conditionally averaged, classifying them into four cate-
gories:

• Q1: (−u′+,+w′+) are outward interactions, where streamwise motion moves from
the wall to the center

• Q2: (−u′+,−w′+) are ejection events, where counter-streamwise motion moves
from the wall to the center

• Q3: (+u′+,−w′+) are inward interactions, where counter-streamwise motion and
hot fluid moves toward the wall

• Q4:(+u′+,+w′+) are sweep events, where streamwise motion moves toward the
wall

Ejection (Q2) and sweep (Q4) are gradient-type events, which means their motion is in
favor of the mean streamwise velocity gradient, whereas Q1 and Q3 are counter gradient-
type events.

Figure 5.13 shows the absolute fractional contributions to the turbulent shear stress. Ejec-
tion and sweep contribution make up for most part of the shear stress. Near the wall for
all contributions, the variable fluid property case produces smaller values than the constant
fluid property case, yet the reduction is larger for the sweep and ejection events, which
have a positive contribution to the total value. The reason of this lower levels of turbu-
lent velocity fluctuations, is the increased damping due to the increased viscosity for the
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DV cases. Aside from the reduction in amplitude, a general shift towards the center in all
quadrants is noticeable.

5.4.3 Turbulent kinetic energy

The turbulent kinetic energy per unit mass contained in the fluctuating velocity components
represents a very important measure for total intensity of the turbulent motion. Based on
the general definition shown in equation (2.13) the turbulent kinetic energy is computed
from the previously shown turbulence intensities, as

k+ =
1
2

u′i
+u′i

+ =
1
2

u′+2
+ v′+2

+w′+2
. (5.16)
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Figure 5.14 displays the variation of k for the Reτ,w = 360 cases. As expected, the turbulent
kinetic energy for the variable fluid properties varies in consistence with the observations
on the previously discussed components.

Turbulent kinetic energy budgets

The budget of the turbulent kinetic energy is determined by the individual sources, sinks,
and transfer terms appearing in the Reynolds stress transport equations (2.24), contracted
for the normal component, written as

1
2

∂ρu′iu
′
i

∂ t
=

∂ρk
∂ t

=−1
2

∂u j ρk
∂x j︸ ︷︷ ︸

Ck

−ρu′iu
′
k

∂ui

∂xk︸ ︷︷ ︸
Pk

−1
2

∂ρu′ju
′
iu
′
i

∂x j︸ ︷︷ ︸
Tk

−∂ p′u′i
∂xi︸ ︷︷ ︸
Πk

+
∂τ ′i ju

′
i

∂x j︸ ︷︷ ︸
Dk

−τ ′i j
∂u′i
∂x j︸ ︷︷ ︸

εk

. (5.17)
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As stated above in section 5.3, the density fluctuations are assumed to be zero, hence the
contributions of Ψk and Ek vanish.

The following discussion examines in particular the case DV370/21 as representative for
all DV cases, compared against its counterpart with constant material properties DC360/20.
Figure 5.15 shows all contributions to the k budget, appearing on the rhs of equation (5.17).
Near the wall all contributions are reduced for the DV case. Additionally, the viscous dif-
fusion Dk and the turbulent diffusion Tk, are shifted towards the center due to the increasing
viscosity. By far the greatest difference can be seen in the dissipation εk and production
Pk. The dissipation is notably reduced up to a wall distance of y+ ≈ 30 and then remains
approximately at the same value as for the DC cases. The production decreases inside the
buffer layer around y+ ≈ 10, so that its peak is considerably shifted towards the center. By
comparing the total alteration between the DC and the DV cases, it becomes evident that
near the wall, the turbulent kinetic energy is reduced. However, due to the shift towards
the wall, the contributions of Dk, Tk and Pk show higher values starting beyond y+ ≈ 20,
resulting in a higher k, as seen in figure 5.14.

In order to further investigate the effect of the variable fluid properties on the budgets of
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the individual normal and turbulent stresses a concept proposed by Leschziner (2000) as
"cycle of turbulence" will be employed. This schematic of the "cycle of turbulence" is
shown in figure 5.16. Considering equation (2.24) for normal stresses i = j = 1/2/3

giving ρ∗u′+
2
/ρ∗v′+

2
/ρ∗w′+

2
and assuming a fully turbulent, developed flow, it becomes

evident that only the streamwise component contains a production term, while for the other
directions the production term vanishes. The exact streamwise production rate reads

P+
zz =−ρ

∗w′+u′+
∂w+

∂ r∗
, (5.18)

which contains the turbulent shear stress and the average shear rate, both already shown
in figure 5.12. The fluctuation energy produced from P+

zz is then redistributed primarily
through the fluctuating pressure in the term ψ

+
i j (see Pope (2001)), which reads for the

streamwise direction

ψ
+
zz = π ′∗

∂w′+

∂ z∗
. (5.19)

Figure 5.17 plots the radial variation of all budget contributions to the axial velocity fluc-
tuation. Starting from the wall, the increasing viscosity for the DV case causes a reduction
of all contributions, which is consistent with the reduced rms-fluctuations observed in this
region in figure 5.11. However, while the dissipation and the pressure diffusion/dilata-
tion mainly undergo a reduction, the other contributions exhibit a shift towards the center
as well. Due to this shift, it becomes evident that starting from y+ ≈ 20, the turbulent
and viscous transport are intensified. The production term obviously shows the same ten-
dencies as observed for the turbulent kinetic energy, exhibiting a slight increase beyond
y+ ≈ 30. These two effects lead to an increase of the axial fluctuation in this region, as
shown in figure 5.11. Furthermore, the pressure term is reduced over the whole radial
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domain, which essentially indicates an overall less intense redistribution of fluctuation en-
ergy. The reduced energy redistribution via pressure fluctuations together with the viscos-
ity gradient counteract the homogenization of turbulence, steering the turbulence towards
an anisotropic state, for the DV cases.



5.4 Higher-order turbulence statistics 97

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

0.01 0.1 1 10 100 1000

bu
dg

et
s

u′
+

u′
+

y+

DC360
DV370/20

D+
rr

Ψ+
rr

ε+rr

Figure 5.18: Variation of the turbulent budgets u′+u′+ budgets over the wall distance for
the Reτ,w = 360, Prw = 20 cases

In the budget for the radial velocity fluctuations, energy is not produced. Therefore, the
budget of u′+u′+ is mainly determined by the pressure fluctuation terms Ψ+

rr, written as

ψ
+
rr = π ′∗

∂u′+

∂ r∗
, (5.20)

which is counteracted by the dissipation term ε+rr, as seen in figure 5.18. The reduction
in pressure redistribution term seen before in the budget of the axial fluctuations accord-
ingly carries over to a reduced corresponding source term in the budgets of u′+u′+. The
dissipation, representing the major sink term in the u′+u′+ budget, follows the pressure
term reduction. Regarding the viscous transport term D+

rr, its magnitude reduces and shifts
towards the center, similar to the other contributions.

Figure 5.18 further indicates that the most pronounced reduction in the pressure redistri-
bution term takes place at a wall distance of y+ ≈ 20. Yet, the reduction of the major
sink term at this radial position ε+rr is less pronounced, resulting in a overall reduction of
the u+rms. Figure 5.11 clearly confirms this by showing the higher differences between the
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DC and DV cases at the wall distance of y+ ≈ 20. Further toward the center, both budget
contributions, Ψ+

rr and ε+rr, exhibit a slight increase resulting in an unchanged u+rms value.

Following from the turbulence cycle displayed in figure 5.16, a reduction of the normal
radial stress ρ∗u′+u′+ component causes a reduction of the production term for the shear
stress ρ∗w′+u′+ , which reads

P+
rz =−ρ

∗u′+
2 ∂w+

∂ r∗
. (5.21)

This also explains the reduced turbulent shear stress observed in figure 5.12.

As for the azimuthal normal stress components, described by equation (2.24), essentially
the same statements as for its radial counterpart are applicable, which results in the similar
shift and reduction in magnitude of the azimuthal component observed in figure 5.11.
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5.4.4 Enthalpy fluctuations

Due to the lack of suitable validation data, the rms-enthalpy fluctuation of all presently
considered high molecular Prandtl number cases could not be validated against literature
data. Figure 5.19 compares therefore only internally the enthalpy rms-fluctuation of the
variable fluid property cases against the constant fluid property cases.

In the upper sub-figure of figure 5.19, it can be seen by looking first only at the DC cases,
that an increase in Prandtl number causes an increase in rms-fluctuation amplitude and a
shift of the peak towards the wall. This typical behavior can be attributed to the increase in
thermal resistance at higher Prandtl numbers. However, comparing the DV cases against
the corresponding DC cases a partly different behavior is shown. Again, the magnitude
of the peak increases for the higher Prandtl number, reaching higher levels than the DC
cases, though. However, in contrast to the DC cases, the peaks are always shifted towards
the center of the pipe. The observed increase of the peak rms value can be explained by the
increase of the local Prandtl number with the wall distance leading to higher χ

+, as seen
in figure 5.6, and the enthalpy fluctuations increase accordingly. A reasonable explanation
for the shift into the opposite direction requires a closer examination of all underlying
phenomena.
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Budget of turbulent enthalpy fluctuation

Examining the reason for the differences in the turbulent thermal fluctuations exhibited by
the DV cases compared to the DC cases, the turbulent budgets for the enthalpy fluctuation,
presented in the conservation equation (2.35), are revisited at first. Concerning the effect
of the material properties, it becomes evident that this equation is directly affected only by
the variation of ρ∗, λ ∗ and c∗p. Due to the fact that the variation of these properties is by
far less than the variation of the viscosity, it can be assumed that the effect of the material
properties enters the budgets rather indirectly through viscosity-dependent contributions.
In the budgets given by equation (2.35) theses contributions are in particular the turbulent
diffusion and production terms, written as

T+
χ =−∂ρ∗u′+χ ′+2

∂ r∗
(5.22)

and

P+
χ =−ρ

∗u′+χ ′+
∂ χ

+

∂ r∗
(5.23)

respectively, both involving the viscosity-dependent fluctuation of the radial velocity u′+.
Considering the production term in figure 5.20, it seems, that the increase of the enthalpy
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rms-fluctuation, see figure 5.19, compensates the viscosity induced notable decrease of the
radial velocity rms-fluctuations. Both the turbulent and the molecular diffusion terms, T+

χ

and D+
χ , respectively, are shifted towards the center, as well, similar to P+

χ . This finally
leads to the shift of the peak of the χ+-rms towards the center, as observed for the DV
cases in figure 5.19.

5.4.5 Heat flux

Analogously to the shear stress, the total heat flux in a fully turbulent, statistically station-
ary, axially symmetric pipe flow consists of a laminar and a turbulent contribution given
as

qtot =−λ
∂T
∂ r︸ ︷︷ ︸

qlam

−λ ′
∂T ′

∂ r︸ ︷︷ ︸
qλ

+ρu′h′︸ ︷︷ ︸
qturb

≈−(ρ a+ρ aT )
∂h
∂ r
. (5.24)

The contribution qλ due to the fluctuations entering Fourier’s law used for the conduc-
tive heat transfer is assumed as negligibly small. The turbulent convective contribution is
computed analogously to its laminar counterpart, applying the Boussinesq eddy diffusivity
concept

−ρu′h′ = ρaT
∂h
∂ r
. (5.25)

Rewritten in wall coordinates, the total heat flux finally reads

qtot
+ =

qtot

qw
=−

(
1

Prw

λ
∗

cp
∗ +µ

∗ρaT

µT

µT

µ

)
∂ χ

+

∂y+
. (5.26)

Figure 5.21 shows the laminar and turbulent contributions of the heat flux together with
the radial enthalpy gradient for the DC cases. With increasing Prandtl number the thermal
resistance near the wall increases, which leads to an decreasing thickness of the diffusive
sublayer. The increased thermal resistance as well as the thinning of the diffusive sub-
layer can be seen in sub-figure (A) from the shift of the laminar heat flux profile towards
the wall and the strongly increased enthalpy gradient at the wall in sub-figure (B) as the
Prandtl number becomes higher. Furthermore, this increased enthalpy gradient causes an
intensified convective exchange of heat between the hot near-wall layer and the cooler
bulk region. This essentially translates into an increased turbulent heat transfer, as seen in
sub-figure (C) of figure 5.21 for the higher Prandtl numbers.

In consistence with the trend observed for the laminar component in sub-figure (A), the lo-
cal increase of the complementary turbulent contribution, becoming dominant at the upper
limit of the diffusive sublayer, is shifted towards the wall as well. This tendency effectively
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raises the turbulent heat flux to a significant level very close to the wall, already at y+ not
far above unity, as seen in sub-figure (C).

Figure 5.22 compares the results for the DV cases with Reτ,w = 360 and Prw = 20 against
the corresponding DC results. The total heat flux shown in subfigure (A) refers to the
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results of the constant fluid property case (DC). As follows from equation (2.96), in a
statistically stationary fully developed turbulent pipe flow the non-dimensional total heat
flux reads

q+tot =
1
r∗

r∗∫
r̃∗=0

r̃ ρ
∗w+ dr̃. (5.27)

As seen from figure 5.5, the variation of the axial velocity w+ does not significantly differ
for the DC and the DV case, except inside the buffer layer. Therefore, the variation of q+tot
is hardly affected by the real fluid properties, so that the DC solution is well representative
for the DV cases as well.

Sub-figure (A) of figure 5.22 compares the laminar contributions of the heat flux for the
DC and DV case for Reτ,w = 360. The increase in thermal resistance inside the diffusive
sublayer due to the locally increasing Prandtl number is clearly indicated by the higher
values of the laminar hear flux.

In accordance with the increasing local thermal resistance due to the increase in the Prandtl
number with the distance from the wall, the near wall region associated with a high en-
thalpy gradient is extended for the DV cases, as seen from sub-figure (B).

Sub-figure (C) compares the turbulent contribution of the heat flux for the DC and the DV
case. The shift of the DV profile to higher y+ reflects the thickened diffusive sublayer
discussed above.

For a more detailed examination of the underlying transport phenomena, a quadrant anal-
ysis for the turbulent heat flux as well as an analysis of the turbulent budgets will be
presented in the following.

Quadrant analysis

Similarly to the dynamic turbulent coherent structures the turbulent heat flux can be con-
ditionally averaged and classified into four categories:

• Q1: (−u′+,+χ ′+) are outward interactions, where cold fluid moves from the wall to
the center

• Q2: (−u′+,−χ ′+) are ejection events, where hot fluid moves from the wall to the
center

• Q3: (+u′+,−χ ′+) are inward interactions, where hot fluid moves toward the wall

• Q4:(+u′+,+χ ′+) are sweep events, where cold fluid moves toward the wall
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Similar tendencies are noticeable, when comparing the fractional contributions ρ∗u′+χ ′+

shown in figure 5.23 to the dynamic counterparts shown in figure 5.13. Again, the two
major contributors to the turbulent heat flux are the ejection and sweep events. Both effects
are associated with an enhanced heat transfer, because hot fluid moves away from the wall
and cold fluid moves towards the wall. Yet, the difference in amplitude between these
events and the outward/inward interaction is not as large as that observed for the turbulent
shear stress. Considering the effect of the Prandtl number, the results keep a similar shape,
yet up-scaled for increasing Prandtl number.

As a general feature of all presently shown DV cases, all fractional contributions are shifted
closer to the center. This finally results in the already noted smaller turbulent heat flux as
compared to the DC case. The tendency to a lower radial turbulent heat flux for the DV
cases can be attributed to the fact that the radial velocity fluctuation is significantly reduced
by the enhanced viscous damping due to the locally increasing viscosity. Nevertheless, the
reduction observed for the turbulent heat flux in the DV cases is less pronounced than that
observed for the turbulent shear stress, as shown in figure 5.12 and 5.22. The reduced
convective turbulent mixing carried by the fluctuation u′+ is apparently compensated to
some extent by the increased intensity of the enthalpy fluctuations seen in figure 5.19 for
the DV cases. Due to this compensating effect the turbulent heat even exceeds the value of
the DC cases beyond y+ ≈ 20, as seen from figure 5.22 (C).

Turbulence budgets of the turbulent heat flux

A further insight into the interaction of the individual mechanism determining the turbulent
heat flux is provided by the budgets, computed from equation (2.43) using the DNS data.
The individual contributions are shown in figure 5.24 and 5.25 for the two considered
Prandtl numbers with Reτ,w = 360, respectively.

It can be observed, that all contributions for the DV cases exhibit a shift towards the center
and a reduction in magnitude compared the corresponding DC components. This general
tendency seems to be even enhanced with increasing molecular Prandtl number, seen in
figure 5.25, which can be attributed to the increasing fluid property variation for the higher
Prandtl number case. In order to further investigate the origin of the observed trends,
the most relevant contributions of the turbulent heat flux will be examined in detail. The
production term Pqr, generally defined in equation (2.45), actually reads

P+
qr =−ρ

∗u′+u′+
∂ χ

+

∂ r∗
. (5.28)

As such, it is strongly determined from the variation of the turbulent radial normal stress
u′+u′+, which is considerably reduced in the region around y+ ≈ 10, as seen in figure
5.11.
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Reτ,w = 360, Prw = 20

The present analysis of the budgets can also be incorporated into the schematic of the
"cycle of turbulence", which was already shown in figure 5.16, by extending it with an
additional enthalpy path, as sketched in figure 5.26. The starting point is the alteration of
the radial turbulent stress u′+u′+ due to the real temperature-dependent fluid properties,
which directly affects the production term Pqr of the turbulent heat flux. This resulting
modified turbulent heat flux enters the production term Pχ for the turbulent χ ′+χ ′+ budgets
which, in addition to the significant local Prandtl number variation, produces the observed
significant differences in the variations of χ ′2 between the DC and the DV cases. The
heat flux alterations further causes a variation of the temperature, which alters the fluid
properties and thus the momentum transfer, closing the loop.
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Figure 5.25: Variation of the turbulent heat flux budgets over the wall distance for the case
Reτ,w = 360, Prw = 50

5.5 Turbulent transport coefficients

As shown in equations (5.12) and (5.24), the turbulent contributions of the shear stress
and the heat flux are generally modeled based on the eddy viscosity νT and the eddy
diffusivity aT , respectively. Using the DNS results it is possible to determine these two
transport coefficients, as dependent on the fully resolved fluctuating flow variables.
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5.5.1 Eddy viscosity

Following from equation (5.13), the eddy viscosity can be determined as

µT

µ
=−ρ∗u+′w+′

ρ∗
∂w+

∂y+

, (5.29)

based on DNS data. In addition, the near wall variation of the eddy viscosity can be
obtained by analytical considerations. Very next to the wall the fluctuation velocity com-
ponents can be assumed as Taylor series expansions of y+. Enforced by continuity and
no-slip wall conditions these expansions read

u+′ = cuy+2
+ ... (5.30)

w+′ = bwy++ ... (5.31)

Along with the velocity gradient, being dw+/dy+ = 1 for y+ → 0, this produces a y+3-
dependence for the turbulent shear stress ρ∗u′+w′+ as well as for the eddy viscosity ra-
tio.

Figure 5.27 plots the variation of the eddy viscosity ratio over the wall distance y+, as ex-
tracted from the DNS data. It becomes evident that the near wall variation strictly follows
the y+3-dependence for all cases. As already shown in figure 5.12, comparing the turbulent
shear stress contribution for the DC to those for the DV cases, the increase in molecular
viscosity with wall distance effectively dampens the turbulent fluctuations. Since the gra-
dient of the average axial velocity dw+/dy+ does not change in the near-wall region, the
magnitude of the eddy-viscosity ratio is notably reduced, as seen from figure 5.27.
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5.5.2 Eddy diffusivity

Analogously to the eddy viscosity, the eddy diffusivity can be determined incorporating
the DNS results into equation (5.25), which yields

aT

ν
=−ρ∗u′+χ ′+

ρ∗
∂ χ

+

∂y+

. (5.32)

The same analytical consideration as for the eddy viscosity can be applied here, assuming
a Taylor series expansions of y+ the near wall variation of the enthalpy fluctuation, as

χ
+′ = bχy++ ... (5.33)

Together with the mean enthalpy gradient close to the wall being dχ
+/dy+ = Prw, this

produces again a y+3-dependence for the turbulent heat flux ρ∗u′+χ ′+, as well as for
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Figure 5.28: Eddy diffusivity ratio vs. y+ for the DC cases with Reτ,w = 360

the eddy diffusivity, which is strongly supported by various authors (see, e.g., Harriott and
Hamilton (1965), Hubbard and Lightfoot (1966) and Sirkar and Hanratty (1969)). The near
wall asymptotic variations obtained from the DNS results shown in figure 5.28 confirm
this dependence for y+→ 0. Further away from the wall the exponential growth with y+

becomes somewhat different, dependent on the molecular Prandtl number. This feature
was also discussed by Irrenfried and Steiner (2017), where the variations of aT/ν were
compared against each other for different Prandtl numbers. For unity Prandtl number,
the same y+n with n = 3 dependency as for the eddy viscosity was observed while for
increasing Prandtl number, the power n increased as well. This is also indicated here by
the DC cases in figure 5.28. For the DC360/20 case, n needs to be increased to n = 3.3 and
for the DC360/50 cases to n = 3.4.

The radial variation of the eddy diffusivity for the DV cases show the same asymptotic y+3-
dependence at the wall as the corresponding DC cases, as seen from figure 5.29. However,
resulting from the differences in the turbulent heat flux, the y+-dependence differs from
the DC cases further away from the wall. It seems that the eddy diffusivity of the DV cases
maintains the y+3-dependence also beyond the diffusive sublayer.
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5.5.3 Turbulent Prandtl number

The turbulent Prandtl number PrT can be interpreted as the turbulent equivalent of the
molecular Prandtl number. It relates the eddy viscosity to the eddy diffusivity, as follows
from its definition

PrT =
νT

aT
. (5.34)

Using DNS results it can be evaluated as

PrT =
u′+w′+

u′+χ ′+
dχ

+/dy+

dw+/dy+
. (5.35)

Its radial variation for the DC data can be seen in figure 5.30. A commonly assumed value
for the turbulent Prandtl number is PrT,∞ = 0.85, which basically represents PrT in the limit
y+→∞, and the DNS supports this assumption. Closer to the wall, inside the inertial sub-
range, it remains around unity, independent of the molecular Prandtl number. Inside the
viscous sub-range, y+ < 5, a significant increase towards the wall can be observed for all
cases. The wall asymptotic agrees with the previously shown analytical considerations,
essentially resulting in

lim
y+→0

PrT =
bw

bχ

Prw→ const. (5.36)

These findings are consistent with the simulation results of Schwertfirm and Manhart
(2007) as well as with the measurements of Hollingsworth et al. (1989). The magnitude of
the asymptotically approached wall value is increased with increasing molecular Prandtl
number. The steepening of the near wall gradient with increasing molecular Prandtl num-
ber is in accordance with the increase of the exponent n in the y+-dependence of the eddy
diffusivity seen in figure 5.28. The Reynolds number has evidently no notable effect on the
variation of the turbulent Prandtl number. For the presently considered Reynolds numbers,
the near wall behavior of PrT appears as decoupled from the momentum transfer.

Figure 5.31 compares the turbulent Prandtl number obtained for the DV cases to those
obtained for the corresponding DC cases. It is evident that for all DV cases the asymp-
totically approached wall value is lower than for the DC cases. This reduction reflects the
already discussed observation that the increase in the local viscosity with the wall distance
leads to a stronger decrease in the turbulent shear stress than in the turbulent heat flux. The
quantitatively different decrease in the turbulent fluxes translates into stronger reduction in
the eddy viscosity than in the eddy diffusivity in the DV cases, as seen in figures 5.27 and
5.29, which explains the lower level of PrT near the wall observed for the DV cases. The
radial variation of the fluid properties, furthermore also alter the turbulent Prandtl number
remote from the wall. Inside the inertial sublayer, beyond y+ ≈ 20, the turbulent Prandtl
number of the DV cases drops below the value of the DC cases. This deviation may be
attributed by the increased turbulent heat flux due to the increases enthalpy fluctuations
observed in this region for the DV cases (see figures 5.19, 5.22, and 5.23).
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5.6 Skin-friction coefficient

For the validation of the predicted flow against experiments a comparison of the skin-
friction coefficient is carried out. According to its definition already given in (4.8)

c f =
τw

ρb
w2

b
2

,

the skin-friction coefficient involves the wall shear stress and the bulk velocity. For the
experimental reference value the latter is determined from the measured mass flow rate
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Figure 5.30: Turbulent Prandtl number vs. y+
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as
wb =

ṁ
ρbA

, (5.37)

with A being the cross-sectional area of the pipe. The wall shear stress is experimentally
determined from the measured axial pressure drop ∆p substituted into (4.7).

The evaluation of c f from the DNS results recalls the definition of the non-dimensional
bulk velocity written as

w+
b =

8
ρ∗b

1/2∫
r∗=0

ρ
∗w+r∗dr∗, (5.38)

which directly yields the skin-friction coefficient as

c f = 2
τw

ρw

ρw

ρbwb
2 =

2

ρ∗b w+
b

2 . (5.39)
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Table 5.7: Skin-friction coefficient validation for the DV cases
Reb c f error
− − %

DC360 5275 0.00936 −0.2
Wu and Moin (2008) 5300 0.00938

DC500 7680 0.00848 −6.1
Durst et al. (1995) 7442 0.00903

Table 5.8: Skin-friction coefficient

# cM
f cDC

f (error in %) cDV
f (error in %)

− − −
DV370/21 0.0092±7×10−5

0.009362 (1.7%)
0.00912 (0.9%)

DV360/50 0.0095±7×10−5 0.00943 (0.7%)
DV520/20 0.0089±7×10−5 0.008480 (−4.8%) 0.00854 (4.0%)

For the constant fluid property cases the c f values predicted from the DNS are also vali-
dated against DNS results of Wu and Moin (2008) and experiments of Durst et al. (1995),
as is shown in table 5.8. Table 5.8 compares the DNS predictions for both the DV and DC
cases to the present own measurements discussed in section 4.

Comparing the different Prandtl number cases associated with the different DV cases, it
can be generally stated that the higher the variation of the fluid properties, the higher is the
discrepancy from the corresponding DC cases. Quantitatively the skin-friction coefficient
still does not differ much from that of the DC case.

Comparing the DNS results to the measurements, a very good agreement with a maximum
discrepancy of 4% can be seen. Due to the neglect of any material property variation, the
DC cases expectedly show higher discrepancies. The observed good agreement proves a
high reliability of the present DNS in predicting the radial velocity variation.
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5.7 Nusselt number

The validation of the heat transfer is frequently done by comparing the predicted non-
dimensional Nusselt number defined as

Nuw =
αD
λw

=
qwD

λw(Tw−Tb)
(5.40)

against experimental values, as presently obtained from equation (4.9) with equation (4.10).
It basically relates the convective heat transfer to the conductive heat transfer.

Recalling the definition of θ , introduced in (2.80), its non-dimensionalized bulk value
reads

θ
+
b =

T w−Tb

qw
ρwcp,wwτ (5.41)

so that
Nuw =

wτ

θ
+
b

ρwcp,wD
λw

=
Reτ,wPrw

θ
+
b

. (5.42)

The evaluation of Nuw from the DNS results determines the enthalpy-equivalent bulk tem-
perature as

θ
+
b =

1
ṁ∗

1/2∫
r∗=0

ρ
∗w+

θ
+

r∗dr∗, (5.43)

with the non-dimensionalized mass flow rate defined as

ṁ∗ =
ṁ

ρwwτD2π
= 2

1/2∫
r∗=0

ρ
∗w+r∗dr∗. (5.44)

Table 5.9 compares the DNS results for the DC and the DV cases to the own measurements
for the corresponding experimental conditions. Unlike for the skin-friction coefficient, the
discrepancy between the DC and the DV results is considerable. The DV results based
on the real temperature-dependent fluid properties generally exhibit notably lower values,
which is supported by the measurements.

The presently observed decrease of the Nusselt number due to real fluid behavior, was also
addressed by Petukhov (1970) and is accounted for in the Nusselt number correlation of
Gnielinski (2002) by the last Pr-dependent factor in equation (4.18).

The experimental data are in excellent agreement with the predictions of the DV cases,
with a maximum error of around 3%. This further highlights the high reliability of the
present DNS results, which proves this DNS data as an outstanding basis for further model
evaluation and development.
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Table 5.9: Nusselt number

# NuM
w NuDC

w (error in %) NuDV
w (error in %)

− − −
DV370/21 60.1±2.9 65.29 (8.6%) 58.11 (3.3%)
DV360/50 68.7±8.3 88.22 (28%) 68.66 (0.1%)
DV520/20 89.2±4.4 94.24 (5.6%) 89.77 (0.7%)

5.8 Semi-local scaling

The radial variation of the material properties changes the results for the mean flow in a
way, which at first glance, appears to exclude an universal description. Different scaling
approaches have been still proposed to account for real fluid behavior and achieve a col-
lapse of the rescaled flow quantities, independent of the material property variation. For
non-hypersonic flows, van Driest (1951) proposed a scaling, written as

dwvD =

√
ρ

ρw
dw+ (5.45)

accounting for a variation of the density ρ with respect to the reference state, which is
presently specified by the wall conditions. The transform (5.45), is supposed to describe
compressible flow with universal laws, basically derived for constant density flow. Re-
cently, it was shown by Sciacovelli et al. (2017) that the van Driest scaling collapses also
results for high Mach numbers very well. Patel et al. (2016) extended this scaling approach
introducing semi-local reference quantities, defined as w•τ =

√
τw/ρ and δ •m = µ/(ρw•τ),

which depend on the local density ρ as well as the local molecular viscosity µ . Based on
this scaling the semi-local Reynolds number is defined as

Re•τ,w =
D ρ w•τ

µ
= Reτ,w

√
ρ∗

µ
∗ (5.46)

and the semi-local molecular Prandtl number is defined as

Pr• =
µ cp

λ
= Prw

µ
∗ cp

∗

λ
∗ . (5.47)

The reasoning behind this scaling approach is based on the observation of Patel et al.
(2016), who showed that the rescaled viscous shear stress contributions, written as

τ
•
lam =− D

Re•τ,w

dwvD

dy
(5.48)
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collapse perfectly, when plotted over the semi-local wall distance

y• =
y
D

Re•τ,w. (5.49)

This collapse is also featured by present results displayed in figure 5.32, showing that the
rescaled viscous shear stress contributions for the DV cases perfectly collapse with the
corresponding DC contributions, if the wall distance is rescaled with the semi-local wall
distance, as defined in formulation (5.49). Based on the observation

− D
Re•τ,w

dwvD

dy
= φ(y•) (5.50)

Patel et al. (2016) derived the following relation for the rescaled velocity w• to wvD

w• =
w

wτ
• =−

wvD∫
0

(
1+

y+

Re•τ,w

dRe•τ,w
dy+

)
dwvD. (5.51)

Figure 5.33 compares the axial velocity of the DC case to the DV cases, rescaled according
to the formulation (5.51). It can be seen that by applying this scaling, all velocity profiles
collapse perfectly with that of the constant material property case for both shown molecular
Prandtl numbers.

Regarding the scaling for the enthalpy, Patel et al. (2017) extended the scaling used of
the shear stress to the diffusive heat flux, which implies for the gradient of the van Driest
transformed temperature, defined by dθ

vD
=
√

ρ∗ dθ
+,

q•lam =− D
Re•τ,wPr•

dθ
vD

dy
= φ(y•). (5.52)

Figure 5.34 shows that, analogous to the viscouse shear stress, also the rescaled diffusive
heat flux of the DV cases perfectly collapse with the corresponding DC cases, when plotted
over the semi-local wall distance y•.

As proposed by Patel et al. (2017) for the temperature, based on equation (5.52), a relation
analogous to (5.51) can be written for a rescaled enthalpy

χ
• =

χ

χτ
• =−

θ
vD∫

0

(
1+

y+

Re•τ,w

dRe•τ,w
dy+

)
dθ

vD ≈−
y•∫

0

1−2y/D
ρaT/µ +1/Pr•

dy•, (5.53)

involving the semi-local reference quantity χ•τ = qw/(ρ w•τ). For the solution of χ
• depen-

dent on y• Patel et al. (2017) further suggested to separate the integrand on rhs of equation
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(5.53) into a contribution varying with the Reynolds number and a contribution accounting
for the varying molecular Prandtl number. In consistence with the rescaled formulation for
the total heat flux given by (5.26) we may accordingly write

dχ
•

dy•
≈− q+tot

ρaT/µ +1/Pr•
=

=− q+tot

ρaT/µ +1
+

q+tot

{
1−
[
1+ 1/Pr•−1

ρaT /µ+1

]−1
}

ρaT/µ +1
(5.54)

with

χ
• = χ

ρ w•τ
qw

= χ
+

ρ
∗ w•τ

wτ

. (5.55)

Evidently, the latter contribution vanishes, if the Prandtl number is unity, hence it can
be considered similar to a P-function, representing the thermal resistance of the diffusive
sublayer. Instead of doing a series expansion for the Prandtl number dependent contribu-
tion, as shown in Patel et al. (2017), the term is computed directly here, by integrating the
formulation (5.54) as

χ
• =−

∫ y•

0

q+tot

ρaT/µ +1
dy•

︸ ︷︷ ︸
χ
•
T

+

∫ y•

0

q+tot

{
1−
[
1+ 1/Pr•−1

ρaT /µ+1

]−1
}

ρaT/µ +1
dy•

︸ ︷︷ ︸
χ
•
P

. (5.56)

The results of this integration are shown in figure 5.35. Using this decomposition, the χ
•
T

contribution of all considered cases evidently collapse very well, while the χ
•
P component

accounts for the changes due to the actual different deviations of the molecular Prandtl
number from unity.

The good collapse for the axial velocity as well as for the enthalpy contribution χ
•
T indicate

a suitable scaling for the first-order statistics, which is not necessarily restricted to low
molecular Prandtl numbers near unity.
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6 NEAR WALL MODEL

In this chapter, some popular state-of-the-art models for the thermal boundary conditions
in RANS type simulations are reviewed and compared against the previously shown DNS
results. At the beginning the mathematically more elaborate P-function approach origi-
nally proposed by Spalding (1967) will be discussed and further developed. The second
presently considered approach is the computationally simpler two-layer model.

6.1 P-function approach

The P-function approach was proposed for modeling the thermal boundary conditions in
RANS-type simulations at high molecular Prandtl numbers. It represents a well estab-
lished concept, which is basically derived by relating the total flux of momentum (equation
(5.12)) to the total flux of heat (equation (5.24)). Using the non-dimensional representation
shown in section 2.4.5, rewritten in wall units, these total fluxes read

τtot
+ =

τtot

τw
=−µ

∗
(

1+
µT

µ

)
∂w+

∂y+
, (6.1)

q+tot =
qtot

qw
=−µ

∗
(

1
Prw

a∗

ν∗
+

1
PrT

µT

µ

)
∂ χ

+

∂y+
. (6.2)

Dividing (6.2) by (6.1) yields

dχ
+ =

[
1+ µT

µ

1
Prw

a∗
ν∗ +

1
PrT

µT
µ

q+tot

τ
+
tot

]
dw+, (6.3)

where the bracketed pre-factor can be interpreted as a total Prandtl number Prtot . The
integration of this differential equation from w+ = 0 at the wall, up to some value obtained
in the log-law region (y+ > 30) associated with the velocity profile

w+ =
1
κ

log
(
y+
)
+β .

finally gives

χ
+ =

w+∫
0

Prtot dw+ = PrT,∞
(
w++P

)
, (6.4)

125
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involving on rhs the bulk turbulent Prandtl number PrT,∞ = (νT/aT )∞ in the limit of high
y+� 1, and the P-function P

P =

∞∫
0

(
Prtot

PrT,∞
−1
)

dw+ =

∞∫
0

 1+ µT
µ

PrT,∞
Prw

a∗
ν∗ +

PrT,∞
PrT

µT
µ

q+tot

τ
+
tot
−1

dw+. (6.5)

Considering the fact that the ratio Prtot/PrT,∞ deviates from unity only beneath the inertial
sub-range, the upper limit of the integral in the definition (6.5) has been extended from
w+ to infinity, without changing the output value of the definite integral. Due to this inde-
pendence of any upper limit, the P-function represents an universal integration constant in
(6.4).

As seen from the definition (6.5), a reliable estimation of the P-function essentially de-
pends on appropriate sub-models for the viscosity ratio µT/µ and the turbulent Prandtl
number PrT in the proximity of the wall. The parameter PrT,∞ can be generally assumed
to be close to unity, mostly set to PrT,∞ ≈ 0.85.

Various approaches for the computational modeling of turbulent near-wall transfer of mo-
mentum and heat can be found in literature, which model the P-function directly, or would
deliver equivalent expressions extracted from their model formulations (see, e.g., von Kár-
mán (1939), Hofmann (1940), Spalding (1967), Jayatilleke (1969), Kader and Yaglom
(1972), Malin (1987)). Among these, the P-function models of Spalding (1967) and Jay-
atilleke (1969) have become most popular representatives, especially, when considering
molecular Prandtl numbers considerably larger than unity.

Since the integrand of the P-function in (6.5) has essentially support only inside the thermal
diffusive sub-layer δth, which is thinner than the viscous sub-layer δm for molecular Prandtl
numbers Prw > 1, Spalding (1967) argued that the viscosity ratio, defined as

µT

µ
=

ρ∗

µ∗
`+m

2
∣∣∣∣∂w+

∂y+

∣∣∣∣ , (6.6)

can be approximated using a series expansion of the mixing-length ansatz of Van Driest
(1956), which is defined as

`+m = κy+
(
1− exp

(
−y+/A+

))
, (6.7)

in the limit of vanishingly small y+. Assuming accordingly the near-wall asymptotic be-
havior inside the viscous sub-layer for the velocity being w+ = y+, this approximation
reads

µT

µ
≈ κ2

A+2 w+4
. (6.8)
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As for the turbulent Prandtl number, Spalding (1967) simply assumed the constant bulk
value, PrT = νT/aT = PrT,∞ = const., throughout the whole range of y+. Applying this
uniform value for PrT , the approximation (6.8), and further assuming the total flux ratio to
be constant and unity over the whole cross-section,

q+tot

τ
+
tot

= 1, (6.9)

equation (6.5) can be solved analytically to yield

P =

(
Prw

PrT
−1
)(

PrT

Prw

) 1
4 π/4

sin(π/4)

(
A+

κ

) 1
2

. (6.10)

Based on a best fit to a very comprehensive set of experimental data Jayatilleke (1969)
later proposed

P = 9.24

[(
Prw

PrT

) 3
4

−1

][
1+0.28exp

(
−0.007

Prw

PrT

)]
, (6.11)

which essentially modifies Spalding’s analytically derived expression (6.10) in the lower
Prandtl number range near unity, while it still approaches the same asymptotic limit for
Prw→ ∞.

Both shown P-function approaches assume constant fluid properties. Therefore, the en-
thalpy profiles predicted by (6.4) using there P-functions are consistently compared against
the results of the constant fluid property DNS (DC) cases in figure 6.1. For the model pa-
rameters in the P-functions of equations (6.10) and (6.11), a standard setting proposed
by Kays and Crawford (1980) was prescribed, using κ = 0.4, β = 5.5, A+ = 26 and
PrT = 0.85. The empirically based correlation of Jayatilleke (1969) shows very good
agreement with the DNS data, while the prediction of the analytically based correlation
of Spalding (1967) shows worse agreement with increasing molecular Prandtl number.
These discrepancies are mainly due to the simplifying assumptions made in the derivation
of equation (6.10), which are

• near-wall approximation of the eddy viscosity µT/µ

• assumption of unity turbulent flux ratio q+tot/τ
+
tot

• assumption of a constant turbulent Prandtl number PrT

In general, an analytically based P-function would be preferred over an empirical one due
to the more universal character. For this reason, the presently proposed P-function model
basically relies on the same analytical concept as applied by Spalding, while eliminating
the shortcomings mentioned above and extending it further to varying fluid properties as
well.



128 6 Near wall model

0

50

100

150

200

250

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000

χ
+

DC360/10
DC360/20
DC360/50

Spalding (1967)
Jayatilleke (1969)

χ
+

y+

DC500/10
DC500/20

Figure 6.1: Variation of the enthalpy for the DC vs. y+



6.1 P-function approach 129

6.1.1 Modeling of the eddy viscosity

The present approach prescribes the full van Driest equation for the mixing length rather
than the near-wall approximation (6.7) applied by Spalding (1967). This extension notably
improves the description of the eddy viscosity, especially in the buffer layer. However, it
still predicts a wrong near-wall asymptotics. The eddy viscosity of either approaches,
using the full van Driest formulation or its near wall approximation of Spalding (1967)
asymptotically varies as y+4 next to the wall, whereas analytical considerations as well
as the DNS results shown in figure 5.27 require a y+3-dependency. The present approach
enforces the correct near wall asymptotic, by adopting a modification of the van Driest
mixing length ansatz proposed by Grifoll and Giralt (2000). This modification assumes
the damping coefficient (A+

m) in the van Driest formulation as dependent on y+ , written
as

A+
m = A0

[
1− exp

(
−y+/C

)]0.5
, (6.12)

with the model parameter C defined as

C =
bA2

0
κ2 . (6.13)

Substituting the modified damping parameter A+
m into the mixing length formulation (6.7)

yields for the eddy viscosity ratio

µT

µ
=

ρ∗

µ∗
`m(A+

m)
2
∣∣∣∣dw+

dy+

∣∣∣∣= ρ∗

µ∗

[
κy+

(
1− exp

(
− y+

A+
m(y+)

))]2 ∣∣∣∣dw+

dy+

∣∣∣∣ . (6.14)

The resulting near wall asymptotic behavior of this eddy viscosity formulation for y+→ 0
can be shown by expanding formulation (6.14) in terms of a series expansion around y+ =
0, which yields

µT

µ
= by+3− b3/2

κ
y+7/2

+O(4), (6.15)

predicting the analytically proven correct y+3-dependence near the wall.

The present model for the viscosity ratio evidently involves three parameters, κ , A0 and b.
Van Driest (1956) originally proposed A0 = 26, while Grifoll and Giralt (2000) obtained
a better agreement with measurements by increasing this parameter. The best agreement
with the present DNS results is observed prescribing a value of A0 = 33. Regarding b,
Kays (1994) proposed the setting b = 0.001, based on DNS results for a fully turbulent
flat plate boundary layer flow, and they considered b as a universal constant for turbulent
flows. On the other hand, the present DNS data in the transition regime suggest lower
values dependent on the Reynolds number. In the present setting, A0 is always assumed as
constant being A0 = 33, while the other two model parameters, the von Kármán constant κ ,
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Table 6.1: Setting of κ and b
κ b

DC360 0.34 0.0006
DC500 0.36 0.0008

and b were adjusted dependent on the flow Reynolds number. Table (6.1) lists the chosen
values of κ and b for the DC cases based on the DNS results.

Figures 6.2 and 6.3 show the DNS based eddy viscosity ratios extracted from DNS com-
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Figure 6.2: Eddy viscosity ratio vs. y+ for the case with Reτ,w = 360
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pared against the model predictions. In this first step of model development and validation,
the fluid properties are still assumed to be constant, implying ρ∗ = 1 and µ

∗ = 1. The
near-wall approximation of the eddy viscosity computed with the van Driest mixing length
proposed by Spalding (1967) using the standard setting of κ = 0.4 and A+ = 26 generally
shows the worst agreement. The best agreement with the DNS data over the whole compu-
tational domain is shown by the eddy viscosity predicted by equation (6.14). The observed
very good agreement of the viscosity ratio predicted by the present approach translates
into a reliable prediction of the axial velocity w+ dependent on the wall coordinate y+.
The velocity profile is obtained by incorporating the formulation (6.6) into expression for
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the total shear stress (6.1), yielding

dw+

dy+
=−

2 τ
+
tot

µ
∗

1+
√

1−4`+m
2
τ
+
tot

ρ∗

µ
∗2

. (6.16)

The total shear stress τ
+
tot varies linearly with the wall coordinate, as shown in equation

(2.94) and the mixing length is evaluated based on (6.14). The formulation for the axial
velocity gradient (6.16) is important for two reasons. On the one hand, it is used to express
the integrand in the P-function (6.5) in terms of wall distance y+ instead of velocity w+ .
On the other hand, as follows from the formulation for the temperature (6.4), the predicted
axial velocity determines directly the prediction of the temperature. The good agreement
of the predicted axial velocity with the DNS data is shown in figure 6.4.
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6.1.2 Analytical determination of the total flux ratio

Assuming hydraulically and thermally fully developed flow with constant wall heat flux,
equations (2.94) and (2.96) can be used to compute the radial variation of the total shear
stress for the total heat flux, respectively. Rewritten in non-dimensional representation,
these fluxes read

τ
+
tot =−1+2

y+

Reτ,w
(6.17)

and

q+tot =−
1− 1

ṁ∗
1

Reτ,w

∫ y+

0

ρ∗w+

(
1−2

ỹ+

Reτ,w

)
dỹ+

1−2
y+

Reτ,w

, (6.18)

where the radial coordinate has been consistently replaced by the wall coordinate y+ de-
fined as

y+ =

(
1
2
− r∗

)
Reτ,w. (6.19)

The axial velocity occurring in equation (6.18) is computed from the integration of equa-
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Figure 6.5: Total shear stress and heat flux vs. y+ for case DC360/20



6.1 P-function approach 135

tion (6.16). Figure 6.5 plots the analytically obtained solution for the total shear stress and
the total heat flux. It can be seen that the total heat flux considerably exceeds the total
shear shear stress over the whole radial domain. Therefore, the flux ratio q+tot/τ

+
tot deviates

markedly from unity. Including this variation into the P-function, as specified in (6.5), the
under-prediction of the original approach of Spalding (1967), who applies the commonly
used assumption of unity flux ratio, can be reduced.

6.1.3 Modeling of the turbulent Prandtl number

In literature several models for predicting the turbulent Prandtl number have been pro-
posed. However, none of these approaches can be regarded as superior over the others,
which is particularly due to the lack of reliable experimental data for validation.

Some of the existing models, capable of representing the previously shown DNS data will
be discussed and validated against the DNS results in the following. In general, these
models can be classified into two categories:

• Purely empirical

• Experimentally adapted analytical models (semi-empirical)

Purely empirical

Graeber (1970) performed heat transfer measurements on different geometries for a variety
of Reτ,w and Prw. Based on the measured Nusselt numbers he derived a rather simple
correlation for the turbulent Prandtl number. In this correlation the radial variation of
the turbulent Prandtl number was completely neglected, and only the molecular Prandtl
number is used as model parameter. The empirical correlation reads

PrT = 0.91+0.13 Pr0.545
w , (6.20)

and a comparison against DNS data is shown in figure 6.6.

This simple model is evidently capable to account for the increasing asymptotic wall
level for increasing molecular Prandtl number as seen in the DNS data, still with under-
predictions though. In turn, the insensitivity to the radial position leads to strong over-
predictions in the core region.
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Experimentally adapted analytical models

Cebeci (1973) proposed a semi-empirical model, where the Van Driest (1956) mixing
length ansatz for the momentum is extended to the thermal mixing length. The formu-
lation for the turbulent Prandtl number accordingly reads,

PrT =
km [1− exp(−y+/A+)]

kh [1− exp(−y+/B+)]
. (6.21)

The four model parameters appearing in (6.21) are determined dependent on the Reynolds
number, which is defined as

Reδ2 =
wcδ2

ν
, (6.22)

based on the momentum-thickness δ2. The empirically obtained functional dependencies
read

km = 0.40+
0.19

1+0.49(Reδ2/1000)2

kh = 0.44+
0.22

1+0.42(Reδ2/1000)2

A+ = 26+
14

1+(Reδ2/1000)2

B+ = 35+
25

1+0.55(Reδ2/1000)2 .

For the considered pipe flow the momentum thickness required for Reδ2 is computed
from

δ2 =

D/2∫
0

w
wc

(
1− w

wc

)
dr, (6.23)

where wc denotes the Reynolds-averaged axial velocity at the center of the pipe. The
here evidently unconsidered dependence on the molecular Prandtl was later introduced
into the model by Na and Habib (1973). They proposed an empirically based logarithmic
relationship between the parameters B+ and Prw written as

B+ =
5

∑
i=1

Ci(log10 Prw)
i−1 (6.24)

with the model constants

C1 = 34.96, C2 = 28.79, C3 = 33.95, C4 = 6.33, C5 =−1.19



138 6 Near wall model

while they prescribed a standard constant setting for the remaining parameters:

km = 0.40, kh = 0.44, A+ = 26.

Figure 6.7 compares the DNS results of the different molecular Prandtl number cases for
Reτ,w = 360 with the model predictions based on equation (6.21). The model of Cebeci
(1973) as well as the extension proposed by Na and Habib (1973) evidently account for
the increase towards the wall. However, the magnitude of the asymptotically approached
wall level observed in the DNS results is strongly under-predicted for increasing molecular
Prandtl number.
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Based on a simplified description of the relevant transfer mechanisms of momentum and
heat from a turbulent eddy, Jenkins (1951) proposed an analytical formulation for the tur-
bulent Prandtl number. The principle idea of this approach is that a turbulent eddy loses
heat at a different rate than it loses momentum, assuming simple conduction for the ther-
mal heat loss and viscous shear for the momentum loss. The downside of the formulation
derived therefrom is that it inherently predicts a uniformly constant PrT = 1 for unity
molecular Prandtl number, and it offers hardly any possibilities for model adjustment. For
this reason, Kays and Crawford (1980) extended this approach by the idea that the trans-
fer of momentum is also strongly driven by the action of the turbulent pressure forces
rather than by viscous forces. This implies, that the eddies transfer momentum mainly in a
non-diffusive way, differently from their diffusive transfer of heat. Their further advanced
approach allows for model adjustment introducing a model parameter CT . Its value was
chosen based on experimental data, taken from measurements by Blackwell et al. (1972)
for air in a turbulent boundary layer with adverse pressure gradient. The formulation for
the turbulent Prandtl number proposed by Kays and Crawford (1980) reads

PrT =

(
0.5

PrT ∞

+CT PeT

√
1

PrT,∞
− (CT PeT )

2

1− exp

−Pr−1/2
T,∞

CT PeT

)−1

,

with the model coefficient CT = 0.2, and PeT being the turbulent Peclet number defined
as

PeT =
µT

µ
Prw. (6.25)

Figure 6.8 compares the predictions of this model against DNS data. The model, by defi-
nition approaches the prescribed bulk turbulent Prandtl number PrT,∞ in the limit y+→ ∞.
Furthermore, the near wall increase observed in measurements, e.g. Blackwell et al. (1972)
and Hollingsworth et al. (1989), as well as in the present DNS results for increasing Prandtl
number, is featured by the model. However, it predicts always the same value PrT = 2 PrT,∞
at the wall, regardless of the Prandtl number, which is in much contrast to the DNS results.
Aside from this deficit, the model is still capable of prescribing qualitatively the increase
of PrT towards the wall starting from a wall distance around y+ = 5. For this reason, this
model was chosen as a well suited candidate for further improvement to finally produce a
better agreement with the DNS results.
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Modification of turbulent Prandtl number model

As discussed in section 5.5.3, the magnitude of the asymptotic wall value of the turbulent
Prandtl number for the DC cases depends predominately on the molecular Prandtl number
and not on the Reynolds number. For this reason, an additional model parameter γ is
introduced into equation (6.25), which determines the near wall asymptotics. The inverse
of this parameter represents the asymptotically approached wall value of PrT dependent on
the molecular Prandtl number. Based on a best-fit to DNS data, as shown in figure 6.9, it
is defined as

γ =
1

PrT,∞ +Pr0.7
w /6

. (6.26)

The formulation of the turbulent Prandtl number originally proposed by Kays and Craw-
ford (1980) is accordingly modified to

PrT =

(
γ +CT PeT

√
2
(

1
PrT,∞

− γ

)
(6.27)

− (CT PeT )
2

[
1− exp

(
− 1

CT PeT

√
2
(

1
PrT,∞

− γ

))])−1

,

The coefficient CT is set to CT = 1.5. A comparison between the DNS results and the
present model can be seen in figure 6.10. The modified formulation evidently reproduces
the near-wall asymptotics observed the DNS-results very well, while it predicts the same
asymptotic behavior for y+→∞ as the original approach of Kays and Crawford (1980).
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6.1.4 Model validation against DNS for constant fluid properties

Including the presently proposed sub-models for describing the viscosity ratio, the total
flux ratio and the turbulent Prandtl number into the formulation for the P-function, defined
in (6.5), brings the results of this definite integral very close to the corresponding DNS data.
This is exemplary shown in figure 6.11 for the case DC360/20. The model parameters used
for all DC cases are listed in table 6.2. The here observed good agreement of the P-function
with the corresponding DNS-results further translates into very accurate predictions for the
temperature as seen in figure 6.12.

. Table 6.2: Model parameters for DC cases
Case κ A0 b PrT,∞

DC360/10-50 0.34 33 0.0006 0.85
DC500/10-20 0.36 33 0.0008 0.85

In comparison to the analytical model of Spalding (1967) and its semi-empirical exten-
sion of Jayatilleke (1969) the present model offers major improvements with regards to
accuracy and applicability.
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Due to the reliable description of the P-function, the integral of (6.4) can be solved up to
an arbitrary y+ value. Therefore, the whole y+ domain can be covered, from the diffusive
sub-layer up to the inertial sub-range, whereas the classical P-function approach is lim-
ited to the inertial sub-range. As such, being not restricted to a certain range of y+, the
present approach provides highly convenient and accurate thermal boundary conditions for
RANS with molecular Prandtl numbers well beyond unity. The observed accuracy over the
whole y+-range is also reflected by the global characteristic parameters for the momentum
transfer, the skin friction coefficient, computed as

c f =
2

w+2

b

, (6.28)

dependent on the bulk velocity defined in equation (5.6). The Nusselt number, which
represents an analogous global characteristic parameter for the heat transfer, is computed
as

Nuw =
Reτ,wPrw

θ
+
b

. (6.29)

As shown in table 6.3 the predicted skin friction coefficient and Nusselt numbers agree
very well with the corresponding DNS results. This indicates, that the bulk velocity w+

b

and temperature θ
+
b are predicted very accurately.

Table 6.3: Skin-friction and Nusselt number for the DC cases
Case cDNS

f cmodel
f NuDNS Numodel

10−3 10−3 % − − %
DC360/10 9.68 8.88 −4.76 51.40 53.65 4.19
DC360/20 9.68 8.88 −4.76 65.95 67.80 2.73
DC360/50 9.68 8.88 −4.76 89.69 90.86 1.28
DC500/10 8.70 7.97 −7.00 74.89 76.49 2.10
DC500/20 8.70 7.97 −7.00 96.03 97.57 1.57
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6.1.5 Extension to temperature-dependent fluid properties

The approach for the real fluid property cases is essentially the same as for the constant
fluid properties, however extended by additional iterative loops in order to account for the
variation of the fluid properties. The iteratively recomputed radial temperature variation is
used to update the variation of the material properties (section 2.5) which are used in the
successive loop for computing the new velocity and temperature field based on equations
(6.16) and (6.4), respectively. Additionally, the formulations for the mixing length (6.14)
and the turbulent Prandtl number (6.27), were somewhat modified to capture in particular
the most significant effect of the temperature-dependent viscosity.

The actually applied modifications will be discussed below.

Modified mixing length formulation

The presently introduced modification starts from revisiting the original concept of the van
Driest mixing length, which is based on the second problem of Stokes (1851). This generic
flow problem considers the motion of a fluid above an infinite horizontal plate. The plate
performs a harmonic horizontal oscillation prescribed by the plate velocity u being

u(y = 0, t) = u0 cos(ωt). (6.30)

For this problem the conservation equations of momentum (2.2) reduce to

∂u
∂ t

=
∂

∂y

[
ν

∂u
∂y

]
. (6.31)

Using (6.30) as no-slip moving wall boundary condition the solution of (6.31) reads

u = u0 e
− y√

2ys cos
(

ωt− yω√
2us

)
(6.32)

with the length and velocity scales
ys =

µw

usρ
(6.33)

and

us =

(
µwω

ρ

)1/2

, (6.34)

respectively.

Assuming the frame of reference as moving with the oscillating plate, which means a
switching to a configuration with a fixed horizontal wall covered by an oscillating fluid,
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basically the same solution like (6.32) can be applied, which basically represents a velocity
bandwidth uBW determined by the envelope of (6.32) as

uBW =±u−u0 exp
(
− y√

2ys

)
. (6.35)

The corresponding local amplitude of the velocity can be accordingly written as

uBW ∼ u′ = u′0
(
1− e−m y) (6.36)

with
m =

usρ

µw
√

2
. (6.37)

Figure 6.13 exemplarily shows instantaneous non-dimensional velocity profiles u/u0 plot-
ted versus y/ys, based on a numerical solution of equation (6.31). In order to highlights the
impact of the viscosity, a viscosity variation similar to the variation for the case DV360/50
(figure 5.8), shown in figure 6.13 is substituted into equation (6.31) which is then numer-
ically solved for u(t,y). It can be seen, that the envelope of equation (6.38) underpredicts
the numerical solution, yet by including the bulk viscosity into the formulation of m, as

m =
usρ√
2µb

, (6.38)

the agreement with the numerical results can be improved.

Considering the velocity amplitude as turbulent fluctuation (indicated in figure 6.13 with
u′), the local turbulent shear stress can be written as

−ρu′w′ =−ρu′0w′0
(
1− e−m y)2 (6.39)

with−ρu′0w′0 being the turbulent shear stress in the initial sub-range, which is independent
of the viscosity, and is modeled according to Prandtl’s mixing length theory as

u′0w′0 = `2
0

(
∂u
∂y

)2

(6.40)

with
`0 = κy. (6.41)

The damping coefficient defined in (6.38) is rewritten as

m =
wτρ

A+µb
. (6.42)

The definition (6.42) involves the wall friction velocity wτ as relevant velocity scale and
the model parameter A+, similar to the original Van Driest formulation. On the other
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hand, accounting for the effect of the temperature dependent material properties, the cross-
sectional averaged viscosity µb is used as relevant value for the viscous damping. Thus,
rewriting the mixing length as

`+m,ν = κy+
[

1− exp
(
− y+

A+µ
∗
b

)]
(6.43)

allows for capturing the increased viscous damping due to the increase of the temperature-
dependent viscosity with distance to the wall. Incorporating this modified mixing length
formulation (6.43) into the eddy viscosity formulation (6.14) and expanding it in terms of
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the wall distance around y+ = 0, yields

µT

µ
=

b

µ
∗
b

2 y+3− b3/2

κµ
∗
b

3 y+7/2
+O(4). (6.44)

Consequently, the prefactor of the leading order term on the right-hand side of (6.44) is
reduced to

b̃ =
b

µb
∗2 , (6.45)

so that the near wall asymptotic viscosity ratio becomes

µT

µ
= b̃y+3

. (6.46)

Figure 6.14 plots the DNS based eddy viscosity of the cases DV370/21 and DV520/20
together with the eddy viscosity predicted from the modified mixing length formulation. It
can be seen that the presently applied modification to the mixing length yields a very good
agreement with the DNS data over the whole near wall region.
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Modified turbulent Prandtl number formulation

As shown in figure 5.31, the variable fluid properties also alter the radial variation of the
turbulent Prandtl number. Especially, the magnitude of the asymptotic wall value decreases
notably. The temperature-dependent variation of the material properties already enters the
model formulation (6.27) through the local viscosity ratio as part of the turbulent Peclet
number, PeT = µT

µ
Prw. For reflecting correctly the observed trend in the near wall asymp-

totics, as noted above, the model parameter γ defined in equation (6.26) is further modified
with the relative bulk viscosity µ∗b to

γ =
µ∗b

PrT,∞ +Pr0.7
w /6

. (6.47)
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Table 6.4: Skin-friction and Nusselt number for the DV cases
Case cDNS

f cmodel
f NuDNS Numodel

10−3 10−3 % − − %
DV370/21 9.12 9.04 −0.9 58.11 59.72 2.8
DV360/50 9.43 9.69 2.8 68.66 67.63 −1.5
DV520/20 8.54 8.10 −5.5 90.68 84.50 −6.8

Predicted velocity and enthalpy for the DV cases

Figures 6.16 and 6.17 compare the predictions of the present model for the velocity and
enthalpy variation to the corresponding DNS results, including all previously shown mod-
ifications and adaptions into the submodels for µT/µ and PrT .

It can be seen, that the deviations of the predicted velocity and enthalpy variations from
the DNS results are very small for all considered cases. The present model evidently
predicts very well the whole range from the diffusive near wall sublayer up the inertial
sub-range also for the DV cases. Consistently, the predicted skin-friction coefficients and
Nusselt numbers, shown in table 6.4, are very close to the DNS data for all here considered
cases.
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6.1.6 Model validation against experiments

For further assessing the scope and the limits of the present model also for flow conditions
not amenable to DNS, the model predictions are compared against experimental data, ob-
tained from the own measurements described in chapter 4 and from literature.

Comparison against own measurements

The measurements described in chapter 4 do not provide any information about the radial
variation of the axial velocity or the enthalpy. Therefore, the validation of the model is
based here on a comparison against the available data, being the measured skin-friction
coefficient and Nusselt number. Most high Reynolds number data with Reb > 104 could
be acquired in the measurement series M20, associated with Prw = 20 to 25. The measured
and predicted data for these particular conditions are quantitatively shown in table 6.5. A
comprehensive visual validation is further given in figures 6.18 to 6.27, comparing the
model predictions against the data of all measurement series M20 to M60 associated with
increasing levels of molecular Prandtl numbers, as specified in chapter 4. The two model
parameters, κ and b, which markedly determine the viscosity ratio µT/µ have been set to
κ = 0.4 and b = 0.001, respectively, as suggested by Kays (1994) for the fully turbulent
cases. For cases corresponding to the laminar-turbulent transition regime, associated with
Reb > 104, the parameters are reduced according to table 6.2.

Table 6.5: Validation cases from the measurement-series M20 and predictions of the
present model

Reb Reτ,w Prw Nuexp Numodel error cexp
f cmodel

f error
− − − − − % 10−3 10−3 %

M20/1 26592 1544 25 334 329 -1.6 5.90 5.85 -0.9
M20/2 22461 1366 24 290 286 -1.4 6.23 6.07 -2.6
M20/3 18789 1170 24 245 241 -1.6 6.34 6.38 0.6
M20/4 14195 957 23 193 193 -0.2 7.07 6.84 -3.3
M20/5 10175 748 22 140 146 4.0 7.77 7.51 -3.3

The discrepancy between model predictions and experimental data is evidently very small
over the whole Reynolds number range. The agreements is generally better with increasing
Reynolds number.
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Comparison against experimental data from literature

Due to the difficulties in measuring accurately the near wall variation of the enthalpy, re-
liable experimental data for the enthalpy or temperature variation are very rare, especially
for turbulent heated pipe flow with high molecular Prandtl numbers. Hollingsworth et al.
(1989) published near wall temperature measurements, yet in a fully turbulent boundary
layer of a open channel flow. The momentum thickness based Reynolds number, charac-
terizing this particular flow situation, is defined as

Reδ2 =
w∞δ2

νb
, (6.48)

with the momentum thickness given as

δ2 =

∞∫
0

w
w∞

(
1− w

w∞

)
dy.

Hollingsworth et al. (1989) considered a rather high flow rate corresponding to Reδ2 ≈
1400. The considered fluid was water with a boundary layer averaged Prandtl number of
Prb = 5.9 and an associated temperature variation inside the boundary layer of Tw−T∞ =
4K. In order to ensure comparable flow conditions with the present pipe configuration, all
free-stream quantities, denoted with “∞” were set to the centerline quantities. The friction
Reynolds number Reτ,w was equivalently assumed as Reτ,w = 2100, which provides the
same momentum thickness based Reynolds number as in the experiments of Hollingsworth
et al. (1989), essentially resulting in a comparable skin-friction coefficient. Since the here
considered flow conditions are fully turbulent, the same setting for the parameters κ and b
was used as in the comparison against own high Reynolds number data, being κ = 0.4 and
b = 0.001. The resulting model predictions for the velocity and temperature are plotted in
figures 6.28 and 6.29, respectively.

It can be clearly seen that, the velocity is somewhat over-predicted, especially in the in-
ertial sub-range. The discrepancy is minor, though. As for the temperature variation, the
agreement between model and measurement data is very good. The model under-predicts
the temperature in the inertial sub-range. However, considering the fact that the reference
measurements are fairly old and were obtained with thermocouples, the shown discrepancy
may partly also be attributed to considerable measurement errors.

Summing up, it can be stated, that both the comparison against own measurements and
available literature data further proves the present model as a reliable approach for pre-
dicting the dynamic and thermal near wall conditions at Reynolds numbers and Prandtl
numbers beyond the limits of DNS.
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6.2 Two-layer approach

The idea of dividing the near wall velocity variation sharply into a laminar layer near the
wall and a turbulent core region was originally proposed by Prandtl (1910) and Taylor
(1916). This idea was later further extended by von Kármán et al. (1930), leading to the
wall laws, as given by equations (5.7) and (5.8). The two-layer approach is still very pop-
ular for prescribing near wall boundary conditions in RANS. Hereby, the sharp transition
between the two layers is often smoothened using a blending function (see Kader (1981)).
In the following, the assumptions and simplifications commonly made for the two-layer
approach are reviewed and verified against the DNS results. Based on this validation, a
suitable two-layer model formulation shall be developed, which can also predict real flow
conditions with temperature-dependent fluid properties with acceptable accuracy. For the
computation of the velocity we recall the equations for the total shear stress, already pre-
sented in equation (6.1)

τtot
+ =−µ

∗∂w+

∂y+︸ ︷︷ ︸
τlam

+

−µ
∗µT

µ

∂w+

∂y+︸ ︷︷ ︸
τturb

+
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Figure 6.28: Predicted velocity variation w+ compared against measurements of
Hollingsworth et al. (1989)
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and rearrange it to

w+ =−
y+∫
0

τtot
+

µ
∗+µ

∗µT

µ

dy+. (6.49)

Introducing a wall distance y+c,m representing the boundary between the viscous sublayer
and inertial sub-range, the integral (6.49) can be split into two parts. In the first part
close to the wall, 0 < y+ < y+c,m, the viscous shear stress is the dominant contribution and
the turbulent contribution can be neglected. In the second part, y+ > y+c,m, the turbulent
shear stress is dominant, hence the laminar diffusive contribution can be neglected. The
integration of (6.49) is accordingly decomposed into

w+ =



−
y+∫
0

τtot
+

µ
∗ dy+ for y+ ≤ y+c,m

−
y+c,m∫
0

τtot
+

µ
∗ dy+−

y+∫
y+c,m

τtot
+

µ
∗µT

µ

dy+ for y+ > y+c,m

. (6.50)
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providing the solution for the respective layers. The applied distinction between the two
layers allows for a couple of simplifications. The presently applied simplifications are
discussed in the following.

• Near wall variation of the total shear stress:

Revisiting the analytic solution for the total shear stress, as given by equation (2.94),
it can be seen, that τ

+
tot is very close to minus unity in the near wall region, which

is represented here by the interval 0 < y+ < y+c,m. This motivates the assumption
of a constant total shear stress. Although, being applicable only very close to the
wall, this assumption is extended to the fully turbulent region represented by the
second integral in (6.50) for y+ > y+c,m, as it is commonly done in most two-layer
approaches.

• Eddy viscosity formulation

Instead of employing the full eddy viscosity formulation, based on equation (6.14),
including the velocity gradient evaluated according to formulation (6.16), which
would yield

µT

µ
=

ρ∗

µ∗
`+m

2

∣∣∣∣∣∣∣∣
2 τ

+
tot

µ
∗

1+
√

1+4`+m
2
τ
+
tot

ρ∗

µ
∗2

∣∣∣∣∣∣∣∣ , (6.51)

Spalding (1961) suggests rather the prescription of the asymptotic limit (6.51) for
y+→∞. It is argued, that the eddy viscosity appears in the second integral, covering
rather high wall distances, where `+m = `+m|y+→∞

>> 1, so that equation (6.51) can
be simplified to

µT

µ

∣∣∣∣
y+→∞

≈
√

ρ∗

µ∗
`+m
∣∣
y+→∞

=

√
ρ∗

µ∗
κy+. (6.52)

• Near wall variation of the fluid properties

As already extensively discussed above, the radial variation of the fluid properties
mainly takes place very close to the wall (see figure 5.8). For this reason, the fluid
property variation is accounted for in the near wall region, associated with y+≤ y+c,m.
Using the simplification (6.52) the second integral for y+ > y+c,m only involves the
density, as the viscosity µ

∗ cancels out. Since the variation of the density is generally
very small in the considered temperature range, it can be neglected , assuming ρ∗ =
1.
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Applying the simplifications described above to equation (6.50) the two-layer velocity wall
variation can be computed as

w+ =



y+∫
0

1
µ
∗dy+ for y+ ≤ y+c,m

1
κ

log
(
y+
)
+

y+c,m∫
0

1
µ
∗dy+− 1

κ
log
(
y+c,m
)

︸ ︷︷ ︸
βm

for y+ > y+c,m

(6.53)

Von Karman (1939) proposed an extension of this two-layer approach for computing the
temperature variation. Accordingly, the two-layer approach will be applied here for deter-
mining the enthalpy variation near the wall. Analogous to the previous derivation of the
equation for the velocity, the total heat flux shown in equation (6.2) is split into a laminar
and a turbulent contribution, which reads

q+tot =−
λ
∗

cp
∗

1
Prw

∂ χ
+

∂y+︸ ︷︷ ︸
qlam

+

−µ
∗ 1

PrT

µT

µ

∂ χ
+

∂y+︸ ︷︷ ︸
qturb

+

. (6.54)

This equation can be further rearranged and integrated in terms of the wall distance, yield-
ing

χ
+ =−

y+∫
0

q+tot

λ
∗

cp
∗

1
Prw

+µ
∗ 1

PrT

µT

µ

dy+. (6.55)

Introducing a wall distance y+c,th representing the boundary between the diffusive sublayer
and the fully turbulent region, the integral can be split in the same manner as equation
(6.50) into two parts, resulting in

χ
+ =



−Prw

y+∫
0

q+totcp
∗

λ
∗ dy+ for y+ ≤ y+c,th (6.56)

−Prw

y+c,th∫
0

q+totcp
∗

λ
∗ dy+−

y+∫
y+c,th

q+totPrT

µ
∗µT

µ

dy+ for y+ > y+c,th . (6.57)

The evaluation of these integrals is based on similar assumptions as applied for the com-
putation of the velocity variation:
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• Near wall variation of the total heat flux

Based on the analytic solution for the total heat flux, as given by equation (2.96),
the integrand in the integrals covering the region y+ < yc,th in equation (6.56) can
be reduced to solely a variation of the fluid properties. Similar to the total shear
stress, also the total heat flux is assumed as constant minus unity inside the entire
considered y+-region covered by both layers.

• Eddy diffusivity formulation

The eddy diffusivity, appearing in the second integral of the layer associated with
y+ > y+c,th in integral (6.57) is determined from the eddy viscosity and the turbulent
Prandtl number, as

at

µ
=

µT

µ

1
PrT

. (6.58)

The eddy viscosity is consistently obtained from the simplified (6.52), whereas the
turbulent Prandtl number is prescribed as

1
PrT

=
ρ aT

µT
=

1
PrT,∞

[
1− exp

(
− y+

A+

)]
, (6.59)

involving a van Driest-type damping term to reflected the more pronounced decrease
in ρaT in comparison to µT inside the diffusive sublayer, as indicated by the increase
of PrT near the wall (see figures 5.30 and 5.31).

The resulting two-layer based solution is then obtained upon introduction of the mentioned
simplifications into equation (6.56) and (6.57), as

χ
+ =



Prw

y+∫
0

cp
∗

λ
∗ dy+ for y+ ≤ y+c,th

Prw

y+c,th∫
0

cp
∗

λ
∗ dy++PrT,∞

y+∫
y+c,th

1
κy+ [1− exp(−y+/A+)]

dy+ for y+ > y+c,th

.

(6.60)

One major challenge of the two-layer approach lies with the definition of a suitable for-
mulation for determining the effective thickness of the viscous and diffusive sublayers in
terms of the distances y+c,m and y+c,th, respectively.
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Table 6.6: Model-coefficients y+c,m
αm

c 27.625
γm

c −0.137
δ m

c 1.047

Table 6.7: Model-coefficients y+c,th
β th

c −0.304
δ th

c −0.294

We assume following functional dependencies

y+c,m = f (Reτ,w,µ(T )) (6.61)

y+c,th
y+c,m

= f (Prw,µ(T )) (6.62)

which shall be rewritten as the power laws

y+c,m =α
m
c Reγm

c
τ,w (µ∗b )

δ m
c (6.63)

y+c,th =y+c,m Prβ th
c

w (µ∗b )
δ th

c (6.64)

dependent on the model parameters αm
c , β th

c , γm
c , δ m

c and δ th
c . These parameters are ob-

tained from a best fit of the skin-friction coefficients and the Nusselt numbers predicted
by the model equations (6.53) and (6.60) against the corresponding DNS results. The re-
sulting coefficients are listed in tables 6.6 and 6.7. The quality of the best-fitted power
laws is demonstrated in figures 6.30 and 6.31, comparing the DNS based values y+c,m

DNS

and y+c,th
DNS against the predictions from (6.63) and (6.64), including the correlation coef-

ficient R2. The values for y+c,m
DNS and y+c,th

DNS are determined by equating the predictions
for c f and Nuw, obtained from the model formulations (6.53) and (6.60) with the corre-
sponding predictions of the DNS.

The effective thickness of viscous sublayer y+c,m weakly decreases with the increase of
wall friction Reynolds number Reτ,w, as it was expected. The possible influence of the
temperature-dependent viscosity is reflected by the positive correlation with µ∗b . This pos-
itive correlation effectively reproduces the thickening of the viscous sublayer observed in
figure 5.12 for the DV cases.

The effective thickness of the diffusive sublayer obtained from (6.64) decreases relative to
y+c,m with increasing molecular Prandtl numbers, as it is supposed to be. For the cases with
temperature-dependent viscosity this trend is also supported by the negative correlation
with µ∗b , as δ th

c < 0. However, this decreasing tendency for increasing µ∗b is overcompen-
sated by the increase of the thickness of the viscous sublayer, as

(
δ m

c +δ th
c
)
> 0. This on

the first glance counter-intuitive behavior, because the increase of the local Prandtl num-
ber should suggest the opposite trend, effectively reproduces the thickening of the diffusive
sublayer observed for the DV cases as compared to the DC cases, as seen in figure 5.22.
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Assuming constant material properties and uniform turbulent Prandtl number PrT ≈ PrT,∞,
it can be further shown that the dependence on the molecular Prandtl number implied by
(6.64) is in good match with previously proposed alternative descriptions of the fully turbu-
lent region, as found in literature. Setting PrT = PrT,∞, equation (6.60) can be analytically
integrated for y+ > y+c,th yielding

χ
+ =

PrT,∞

κ
log(y+)+Prw y+c,th−

PrT,∞

κ
log(y+c,th)︸ ︷︷ ︸

βχ

(6.65)

Equation (6.65) resembles the thermal log-law, as commonly applied in the fully turbulent
region, with the parameter βχ being dependent on the molecular Prandtl number only.
Substituting y+c,th, as defined by the correlation (6.64), into (6.65), the parameter βχ can be
computed exhibiting the following dependence on the molecular Prandtl number

βχ ∝ Pr0.696
w . (6.66)

This dependence is very close to the analytical consideration of Levich (1962), indicating
a Pr2/3

w dependence of βχ , and results of Kader and Yaglom (1972), who obtained the same
dependence by fitting experimental data.

Applying the present correlations for the effective sublayer thickness y+c,m and y+c,th, the
velocity and the enthalpy variation can be determined by numerically solving the equations
(6.53) and (6.60). A standard setting is used for the other parameters, in particular, κ = 0.4,
A+ = 26 and PrT,∞ = 0.85.

Table 6.8: Predicted skin-friction coefficients compared against DNS data for the DC
cases.
Case cDNS

f cmodel
f

− − %
DC360 9.30e−03 9.22e−03 −0.95
DC500 8.53e−03 8.61e−03 0.92

Figures 6.32 and 6.33 show a comparison of the predicted velocity and enthalpy profiles
against the DNS data for the DC cases. A comparison of the corresponding skin-friction
coefficients and Nusselt numbers is given in table 6.8 and table 6.9, respectively. The most
obvious difference to the previously shown predictions of the P-function based model is
that the two-layer model does not produce a smooth profile. The kink at the boundary
between the two layers, located at y+c,m and y+c,th is clearly visible. Despite this conceptual
shortcoming, the discrepancy between the DNS based skin friction coefficient and Nusselt
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Table 6.9: Predicted Nusselt numbers computed against DNS data for the DC cases.
Case NuDNS Numodel

− − %
DC360/10 51.40 52.37 1.86
DC360/20 65.95 66.46 0.77
DC360/50 89.69 88.96 −0.82
DC500/10 74.88 73.63 −1.69
DC500/20 96.03 94.41 −1.72

number and the model predictions is still within an acceptable range, particularly in view
of the very simple model formulations.

Furthermore, as seen from the radial variations in figures 6.32 and 6.33, the two-layer
model predicts the conditions inside the fully turbulent layer pretty well. Since RANS typ-
ically impose the wall boundary conditions inside this range, the two-layer model appears
as a good candidate for providing suitable dynamic and thermal boundary conditions in
RANS-type simulations.

In the cases with variable fluid properties, basically the same iterative procedure as used in
the P-function approach for computing the temperature-dependent thermo-physical prop-
erties is employed. The resulting radial variations of the velocity and enthalpy can be seen
in figures 6.34 and 6.35, respectively. Table 6.10 and table 6.11 compare the predicted
skin-friction coefficients and Nusselt numbers against the DNS results, respectively.

Table 6.10: Predicted skin-friction coefficients compared against DNS data for the DV
cases.
Case cDNS

f cmodel
f

− − %
DV370/21 9.12e−03 9.13e−03 0.1
DV360/50 9.43e−03 9.56e−03 1.3
DV520/20 8.54e−03 8.42e−03 −1.4

Again the most pronounced discrepancies are observed near the kinks of the two-layer
profiles. On the other hand, the conditions inside the fully turbulent layer are still pre-
dicted reasonably well. This translates again into the fairly well predicted wall friction
coefficients and Nusselt numbers shown in tables 6.10 and 6.11, respectively.

In summary, it can be stated that despite the strong simplifications leading to a rather
simple model formulation, the obtained predictions are generally in good agreement with
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Table 6.11: Predicted Nusselt numbers compared against DNS data for the DV cases.
Case NuDNS Numodel

− − %
DV370/21 58.11 60.71 4.5
DV360/50 68.66 71.43 4.0
DV520/20 90.68 85.07 −6.2

the DNS data for the constant as well as the variable fluid property cases. Such a good
agreement is also seen in the figures (6.36) - (6.45), where the predictions of the present
two-layer model for the skin friction coefficient and the Nusselt number are compared
against all own experimental data acquired in the measurement series M20 to M60, shown
in chapter 4. This comparison extends the validation of the model to a high Reynolds and
Prandtl number range not amenable to DNS.
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Figure 6.44: Skin friction coefficient vs. bulk Reynolds number of measurement series
M60 compared to the present two-layer model
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6.2.1 Blending between the laminar and the turbulent layer

Including the van Driest-type damping into the modeled variation of the turbulent Prandtl
number (6.56) effectively reduces the over-prediction of the enthalpy around the sharp
transition from the diffusive sublayer to the fully turbulent layer. Nonetheless, a notable
deviation from the DNS data still remains in the transition region. Considering the field
of application in RANS, an accurately predicted enthalpy in the thermal boundary condi-
tion is essential for reliable results. The observed over-prediction of the two-layer model
in the buffer region due to the sharp transition between the two layers would certainly
cause inaccuracies when applied as thermal boundary condition in RANS. For this reason,
Kader (1981) proposed a blending between the two thermal layers. Later on, this idea was
adopted for computing the velocity by Popovac and Hanjalic (2007), which improved the
velocity prediction in the buffer region of momentum flux. The blending based approach
essentially starts from the two-layer solution for the velocity and enthalpy, as already pre-
sented in formulations (6.53) and (6.60), with the additional simplification PrT ≈ PrT,∞,
which read

w+ =



y+∫
0

1
µ
∗dy+ for y+ ≤ y+c,m

1
κ

log
(
y+
)
+βm for y+ > y+c,m

(6.67)

and

χ
+ =


Prw

y+∫
0

cp
∗

λ
∗ dy+ for y+ ≤ y+c,th

PrT,∞

κ
log(y+)+βχ for y+ > y+c,th

, (6.68)

respectively. A popular standard setting is used here for the von Kármán constant κ = 0.40.
For determining the parameter βχ , a variety of different formulations can be found in
literature, which are exclusively proposed for constant fluid properties. Table 6.12 gives
an overview of the most popular formulations.

Table 6.12: Overview over the most popular formulations for the parameter βχ

Jayatilleke (1969) PrT,∞ (βm +P)
P based on formulation (6.11)

Kader and Yaglom (1972) 12.5 Pr2/3
w +2.12 log(Prw)−1.5

Kader (1981) (3.85 Pr1/3
w −1.3)2 +2.12 log(Prw)

Petukhov et al. (1988) 12.7 Pr2/3
w −6.7
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Figure 6.46: Comparison of the two-layer thermal wall law based on different βχ formula-
tions

Figure 6.46 compares the DNS data for the case DC360/20 to the enthalpy predicted from
(6.68) applying the βχ formulations presented in table 6.12. The effective thicknesses of
the viscous and diffusive sublayers are again determined from the correlations (6.63) and
(6.64), respectively. It is clearly visible that the βχ formulation based on the P-function
of Jayatilleke (1969) produces by far the best agreement with the DNS data. However, as
already noted, the sharp transition from the diffusive to the fully turbulent layer, located at
the wall distance of y+c,th, inherently produces a non-physical kink in the predicted radial
variation. In an attempt to enforce a physically more plausible smooth transition, Kader
(1981) proposed a blending between the two layers, represented by a single equation,
covering the whole near wall domain. This formulation reads

χ
+ = Prw y+ exp

(
−Γχ

)
+

(
PrT,∞

κ
log
(
y+
)
+βχ

)
exp
(
− 1

Γχ

)
, (6.69)

with a blending function defined as

Γχ =
0.01 (Prw y+)4

1+5 Pr3
w y+

. (6.70)
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Figure 6.47: Comparison between the DNS data and the thermal wall model based on
equation (6.68) and (6.69)

Introducing the S-shaped blending function defined by equation (6.70) results in a smooth
transition between the two layers. This is shown in figure 6.47, comparing the DNS data
to the predictions of equation (6.69) including the blended laminar and turbulent contribu-
tions.

In comparison to the edged profile obtained from the model with a sharp transition the
blending evidently produces significantly better results in the buffer region. At the lower
end of the buffer region, the blended radial variation still exhibits some notable deviation,
which is caused by the presently used formulation for the blending function as defined in
equation (6.70).

Instead of using one of the expressions listed in table 6.12, the parameter βχ can be alter-
natively determined based on equation (6.65), where it appears as

βχ = Prw

y+c,th∫
0

cp
∗

λ
∗ dy+− PrT,∞

κ
log(y+c,th), (6.71)
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Table 6.13: Model-coefficients y+c,m
α̃m

c 24.076
γ̃m

c −0.109
δ̃ m

c 0.100

Table 6.14: Model-coefficients y+c,th
β̃c

th −0.306

δ̃c
th

0.496

dependent on the effective sublayer thickness y+c,th. The effective thickness of the diffusive
sublayer is modeled again using the power-law correlations (6.63) and (6.64), however,
with adjusted coefficients, to conform better with the blending function based formulation
(6.69). The adjusted values were obtained by a best fit of the skin friction coefficient and
the Nusselt number, predicted from the blending function based model to the DNS data,
and are listed in tables 6.13 and 6.14. Substituting directly the so modified correlations
(6.63) and (6.64) for determining y+c,th into equation (6.71) yields the expression

βχ =Prw

y+c,th∫
0

cp
∗

λ
∗ dy+

− PrT,∞

κ

(
log(α̃m

c ) + γ̃
m
c log(Reτ,w) +(δ̃ m

c + δ̃c
th
) log(µ∗b ) +βc

th log(Prw)
)
.

(6.72)

where the similarities and differences to the alternative formulations, presented in table
6.12, become very obvious. It can be seen that a similar dependence on the molecular
Prandtl number arises. Additionally, the formulation (6.72) shows a dependence on the
Reynolds number Reτ,w, and on account of the spacial variation of the fluid properties a
contribution based on µ∗b appears as well.

Popovac and Hanjalic (2007) applied the blending function based approach to the compu-
tation of the velocity profile. This yields for the velocity variation the following expres-
sion

w+ = y+ exp(−Γ)+

(
1
κ

log
(
y+
)
+βm

)
exp
(
− 1

Γ

)
. (6.73)

The blending function is defined here as

Γ =
0.01 (y+)4

1+5 y+
, (6.74)

which corresponds to the expression for Γχ given by (6.70) with Prw = 1.

The parameter βm, based on equation (6.53) reads

βm =

y+c,m∫
0

1
µ
∗dy+− 1

κ
log
(
y+c,m
)
, (6.75)
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which can be supplied with the correlations for the effective momentum thickness (6.63),
yielding

βm =

y+c,m∫
0

1
µ
∗dy++

− 1
κ

(
log(α̃m

c ) + γ̃
m
c log(Reτ,w) + δ̃

m
c log(µ∗b )

)
. (6.76)

To assess the scope of the present blending function based model for velocity and enthalpy,
the model predictions of the formulations (6.73) and (6.69) are validated against the DNS
data. Two different submodels for βχ are considered, the first is the presently proposed
model formulation (6.72), the second is based on the P-function approach of Jayatilleke
(1969) as shown in table 6.12, which represents a very popular approach in commercial
CFD. A standard setting κ = 0.4 and βm = 5.5 suggested by Kays and Crawford (1980) is
prescribed in the Jayatilleke (1969) P-function approach. Figures 6.48 and 6.49 compare
the radial axial velocity variation against the DNS data of the DC and DV cases, respec-
tively. Figures 6.50 and 6.51 compare the radial variation of the enthalpy against the DNS
data of the DC and the DV cases, respectively.

Due to the alternative setting for the parameter βm based on equation (6.76) and the in-
corporation of the fluid property variation, the model predictions for the velocity are very
good.

Regarding the enthalpy, the model based on the parameter βχ using the P-function of Jay-
atilleke (1969) produces an excellent agreement with the DNS results, yet with somewhat
stronger deviations with increasing Reynolds numbers. It is important to state that the
P-function is determined here with the bulk Prandtl number. Using the wall values in-
stead would lead to significantly lower predictions for χ

+ in the inner region. The present
blending function based model using (6.72) shows some discrepancies for the highest con-
sidered Prandtl number, yet besides this, the agreement with the DNS is still quite good.
Furthermore, a slight edge near the lower limit of the buffer region is clearly visible for all
cases, which in turn reduces the discrepancy in the upper part of the buffer layer.

For validating the model accuracy in the regime of higher Reynolds and Prandtl numbers,
representing fully turbulent flow conditions, the predicted wall friction coefficients and
Nusselt numbers are compared against all the experimental data obtained in the measure-
ment series M20 through M60, as discussed in chapter 4. This comparison is shown in the
figures 6.52-6.61.
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Figure 6.48: Variation of the axial velocity vs. y+ predicted by the blended two-layer
model compared against DNS data for the DC cases
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Figure 6.49: Variation of the axial velocity vs. y+ predicted by the blended two-layer
model compared against DNS data for the DV cases
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Figure 6.52: Friction coefficient vs. bulk Reynolds number of measurement series M20
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Figure 6.53: Nusselt number vs. bulk Reynolds number of measurement series M20 com-
pared to the present blended two-layer model



192 6 Near wall model

M30

6.00e-03

6.50e-03

7.00e-03

7.50e-03

8.00e-03

8.50e-03

9.00e-03

6000 8000 10000 12000 14000 16000 18000 20000

c f
/−

Reb / −

Measurement
present model

Prw = 29...32

Figure 6.54: Friction coefficient vs. bulk Reynolds number of measurement series M30
compared to the present blended two-layer model
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Figure 6.55: Nusselt number vs. bulk Reynolds number of measurement series M30 com-
pared to the present blended two-layer model
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Figure 6.56: Friction coefficient vs. bulk Reynolds number of measurement series M40
compared to the present blended two-layer model
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Figure 6.57: Nusselt number vs. bulk Reynolds number of measurement series M40 com-
pared to the present blended two-layer model
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Figure 6.58: Friction coefficient vs. bulk Reynolds number of measurement series M50
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Figure 6.59: Nusselt number vs. bulk Reynolds number of measurement series M50 com-
pared to the present blended two-layer model
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Figure 6.60: Friction coefficient vs. bulk Reynolds number of measurement series M60
compared to the present blended two-layer model
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Figure 6.61: Nusselt number vs. bulk Reynolds number of measurement series M60 com-
pared to the present blended two-layer model
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The comprehensive comparison against all measured data unveils that the present blended
two-layer model supplied with βχ from Jayatilleke (1969) tends to increasingly under-
predict the Nusselt number for increasing Reynolds number. In contrast, the present model
supplied with βχ from (6.72) is capable of producing a good agreement with the measured
Nusselt numbers over the whole Reynolds number range.
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6.2.2 Fully analytical computation of the Nusselt number

Assuming constant material properties and PrT ≈ PrT,∞ for y+ > y+c,th, reduces the two-
layer formulations given by (6.67) and (6.68), yielding to the following most simplified
representations

w+ =


y+ for y+ ≤ y+c,m

1
κ

log
(
y+
)
+βm for y+ > y+c,m

(6.77)

and

χ
+ =


Prw y+ for y+ ≤ y+c,th

PrT,∞

κ
log(y+)+βχ for y+ > y+c,th

, (6.78)

respectively. The obtained simplified formulation offers the attractive possibility of deriv-
ing an analytical expression for the Nusselt number. The effective thickness of the diffu-
sive sublayer is again modeled using the power-law correlations (6.63) and (6.64) with the
coefficients shown in table 6.13 and 6.14.

In consistence with equation (5.42), the Nusselt number can be generally computed as

Nu =
Reτ,w Prw c∗p,b

χ
+
b

(6.79)

dependent of the bulk enthalpy computed as,

χ
+
b =

2
ṁ∗

Reτ,w/2∫
y+=0

ρ
∗ w+

χ
+

(
1
2
− y+

Reτ,w

)
dy+, (6.80)

with the mass flow rate obtained from

ṁ∗ = 2

Reτ,w/2∫
y+=0

ρ
∗ w+

(
1
2
− y+

Reτ,w

)
dy+. (6.81)

An analytical computation of the bulk enthalpy for predicting the Nusselt number was
similarly proposed by Kader and Yaglom (1972). Yet, they assumed that the Reynolds and
Prandtl number are high enough to provide a sufficiently thin diffusive sublayer thickness
for neglecting its contribution to the bulk enthalpy completely. Accordingly, they used the
enthalpy formulation for the turbulent sublayer (y+ > y+c,th) for the whole radial domain
down to the wall. In contrast, the present approach does not adopt this simplification,
while considering rigorously the contribution from the diffusive sublayer as well. This
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means that the mass flux is computed as the sum of the two definite integrals, Imlam and
Imturb, connected at the boundary of the two sub-layers y+ = y+c,m. For the bulk enthalpy,
three definite sub-integrals, Imχlam, Imχint and Imχturb have to be distinguished in order to
combine correctly the locally applying functions for the velocity and enthalpy. The three
sub-integrals are connected at y+ = y+c,th and y+ = y+c,th, as highlighted in figure 6.62.

Splitting the radial domain into these sub-integrals, the Nusselt number can be computed
as

Nu = Reτ,w Prw c∗p,b
Imlam + Imturb

Imχlam + Imχint + Imχturb
, (6.82)

with the analytical expressions of the sub-integrals given in equations (6.83) - (6.87).
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For the von Kármán constant and the turbulent Prandtl number a standard setting is applied,
reading κ = 0.4 and PrT,∞ = 0.85. For the parameters βm and βχ , the presently proposed
model formulations (6.72) and (6.76) are used, respectively, incorporating the effective
boundary thicknesses, y+c,m and y+c,th from equations (6.63) and (6.64), respectively, together
with the coefficients listed in tables 6.13 and 6.14.

Figures 6.63-6.67 compare the experimentally obtained Nusselt numbers for the measure-
ment series M20-M60 to the present model. It can be clearly seen that the whole Reynolds
number range, from the intermediate range between laminar and turbulent flow, up to the
fully turbulent regime is well predicted. Furthermore, also the effect of the Prandtl num-
ber variation is well captured, although the discrepancy increases slightly with increasing
molecular Prandtl numbers. In order to assess the full scope of the present fully analytic
two-layer model, further experimental data, exceeding the shown Prandtl number range,
would be certainly needed.
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Figure 6.63: Nusselt number vs. bulk Reynolds number of measurement series M20 com-
pared to the fully analytical two-layer model
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Figure 6.65: Nusselt number vs. bulk Reynolds number of measurement series M40 com-
pared to the fully analytical two-layer model
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pared to the fully analytical two-layer model
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7 CONCLUSIONS

The present work performed Direct Numerical Simulations (DNS) of turbulent heated pipe
flows at high molecular Prandtl numbers examining the effect of real fluid properties. Due
to the scarcity of adequate reference data, heat transfer measurements on the same configu-
ration were performed as well providing data for validation of the computational results.

An especially for this purpose designed test-bench was build, capable of performing heat
transfer measurements on a set-up well comparable to the DNS cases assuming real fluid
properties. Special interest was on the intermediate regime between laminar and turbulent
flow. Besides this fairly low Reynolds number regime considered for validation of the
DNS results, the experiments also covered fully turbulent conditions with high Reynolds
numbers. All measurements were validated against the popular Nusselt number correlation
of Gnielinski (2002) and some available but rather old measurements from literature. The
measurements agree very well with the correlation of Gnielinski (2002) in the fully turbu-
lent regime, whereas for low Reynolds numbers the correlation tends to under-predict the
heat transfer coefficient. This finding is also supported by the comparison against the men-
tioned fairly old measurements of Morris and Whitman (1928) and Sherwood (1932).

Two types of DNS have been basically carried out in this work, considering constant fluid
properties and real temperature-dependent fluid properties, assuming the same operating
fluid as used in the experiments. All simulations were carried out on a very fine simulation
mesh, comparable to recent DNS studies from literature. The comparison between the
DNS results for the skin-friction coefficient and Nusselt number against the correspond-
ing measurements showed a very good agreement, which proves the high accuracy of the
simulations.

All alterations in the flow and thermal field due to the real fluid behavior were analyzed
in much detail by a comparison of the DNS results against those for the corresponding
constant fluid property cases. As one of the major findings this analysis showed that, al-
though the DV cases are associated with a higher bulk molecular Prandtl number due to
the increasing viscosity towards the colder center, the effective thickness of diffusive sub-
layer still thickens. This effectively decreases the heat transfer rate. The turbulent budgets,
demonstrated that the observed thickening of the diffusive sublayer could be mainly at-
tributed to a reduced radial turbulent transport of momentum. Furthermore, the DNS data
provided very insightful findings regarding the turbulent transport coefficients, as com-
monly employed in RANS modeling. Special interest was here on the turbulent Prandtl
number. The typical asymptotic increase of PrT towards the wall, which has been fre-
quently reported in literature, when considering molecular Prandtl numbers higher than

205
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unity and imposing zero temperature fluctuations at the wall, was clearly confirmed by the
present DNS results. On the other hand, this already existing knowledge could be extended
by a further insight into the influence of the real fluid properties on the magnitude of the
asymptotically approached near wall value of PrT , which was considerably decreased for
the considered conditions in the DV cases. Finally, it was shown that the semi-local scaling
proposed by Patel et al. (2016) for the shear stress and a modified version of the semi-local
scaling later presented by Patel et al. (2017) for the diffusive heat flux produces a very
good collapse of the velocity and enthalpy variations for the considered real fluid property
cases with those obtained for the constant fluid properties.

The knowledge obtained from the rich DNS data base was further applied in the validation
and further development of two commonly used RANS boundary condition approaches.
The first revisited approach is the mathematically rather elaborate P-function approach
based on analytical considerations of Spalding (1967). The underlying assumption origi-
nally made in this approach were reviewed and modified based on the DNS findings. The
predictions of this thermal wall model could be most significantly improved by modifying
the eddy viscosity, the ratio of the total shear stress and heat flux, and the turbulent Prandtl
number. For the eddy viscosity, the typically used Van Driest (1956) mixing length ansatz,
prescribing an incorrect near wall asymptotic, was replaced by the modified mixing length
ansatz of Grifoll and Giralt (2000), providing the analytically proven correct near wall
variation of the eddy viscosity. Accounting for the effect of the fluid property variation,
the mixing length formulation was additionally adjusted by including a viscosity depen-
dence. The influence of the temperature-dependent fluid properties was also included into
the sub-model for the turbulent Prandtl number. Instead of neglecting the near wall varia-
tion assuming this parameter simply as constant, various different model proposals found
in literature were reviewed and compared against the DNS data. Among these, the ex-
perimentally adapted analytical model by Kays and Crawford (1980) was selected as a
well-suited candidate for further development. The original model was already capable of
prescribing the near wall increase of PrT , so that model extensions essentially incorporated
the missing molecular Prandtl number dependence as well as the influence of the real fluid
properties. The predictions of the presently proposed extended analytical P-function model
generally showed a very good agreement with the DNS results for both the constant and
the real fluid property cases. As a further attractive feature, the present approach is capable
of describing the enthalpy variation over the whole radial domain, spanning from the dif-
fusive sublayer to the inertial subrange, while the popular alternative P-function model of
Jayatilleke (1969) covers only the latter subrange. The improvements are also highlighted
by comparing the DNS based skin-friction coefficients and Nusselt numbers against the
model predictions. Both the agreement with the constant and the real fluid cases are ex-
cellent. The second considered candidate for specifying dynamic and thermal boundary
conditions is a classical two-layer approach. The original idea was proposed by Spalding
(1961) for the near wall velocity variation and basically divides the flow field into two sub-
layers, the diffusion dominated near wall layer and the fully turbulent inertial inner layer.
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The same approach was applied here for the enthalpy variation. The advantage of this
splitting into two layers lies in its computational simplicity resulting from certain model
assumptions. A suitable submodel for the boundary between the diffusive and the inertial
sublayer (y+c ) is still needed, while the turbulent Prandtl number model can be dispensed
setting it simply constant to PrT,∞. An additional advantage of the presented two-layer
approach is that it allows for a fully analytical formulation for the Nusselt number, which
produced a very good agreement with the own measurements over the whole considered
range of Reynolds and Prandtl numbers.

Besides the DNS based modifications, which have been introduced for model parametriza-
tion and calibration, both of the presently proposed concepts for providing reliable thermal
boundary conditions have a strong analytical foundation. This analytical description of the
underlying transport mechanisms makes them clearly preferable over empirically based
models, due to their universal character and good scalability over wide ranges of Reynolds
and Prandtl numbers.
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Here are all figures, which were not shown in the previous.
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Figure A.1: Spatial resolution normalized by the Kolmogorov scale η and the smallest
turbulent thermal scale ηθ for the case DC360/50
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Figure A.2: Spatial resolution normalized by the Kolmogorov scale η and the smallest
turbulent thermal scale ηθ for the case DC500/20
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Figure A.5: Variation of shear stress contributions over the wall distance for the cases with
Reτ,w = 500
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