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ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a 
neurodegenerative disease, which leads to the 
progressive loss of muscle control. In Denmark, 
approximately 150 people are diagnosed with ALS each 
year. The ensuing burden on related health care costs 
increases substantially as patients lose the ability to 
perform tasks of everyday living. Brain-computer 
interface (BCI) systems provide an approach to allow 
these patients some interaction with their environment. In 
this ongoing study we investigate whether the 
movement-related cortical potential (MRCP) extracted 
from electroencephalography (EEG) signals can be used 
for BCI control of an assistive glove in ALS patients. To 
this aim, the BCI needs to detect the intention of the 
subject to open and close the hand. The MRCP is a slow 
negative drift that commences 2 seconds prior to 
movement onset and contains features that differ between 
different types of movement, making it an ideal signal 
modality for multi-dimensional BCI control. Preliminary 
analysis from three ALS patients reveal a classification 
accuracy above 85% for the best channel between 
movement and rest conditions. However, classification 
accuracy between movement types (hand 
opening/closing), was lower (>65% for the best channel). 
Combining MRCP detection, with methods that allow 
using a single input (brain switch) to select multiple 
commands, may thus be a viable solution for this patient 
group. 

 
INTRODUCTION 
 
Amyotrophic lateral sclerosis (ALS) is a debilitating 
progressive neurological disease. In Denmark, more than 
150 new ALS patients are diagnosed per year. Symptoms 
vary from patient to patient, but may be manifested by 
reduced muscle strength, muscle wasting, fatigue, 
increased muscle tension, convulsions, muscle soreness, 
dysfunction, speech impairment, and difficulty 
breathing; several patients also present with behavioral 
changes and Frontotemporal Dementia. In Denmark, 
approximately 20% of ALS patients end up with 
respiratory therapy due to respiratory problems [1]. ALS 
has both personal as well as societal consequences. The 
economic impact of ALS at the community level is high 
[2], a large proportion being due to the care costs when 
patients can no longer perform everyday activities like 
personal care due to muscle weakness [3]. Therefore, it 

is of great interest to provide these patients with assistive 
systems that would facilitate and/or prolong functional 
independence, and thereby decrease the need for constant 
care.  
The focus of the present study is on the assistance of hand 
grasping function. Several methods can be used to assist 
grasping function in paralyzed patients (e.g., functional 
electrical stimulation – FES and exoskeletons) [4]. For 
example, rigid exoskeletons are efficient in restoring 
movements but they are also bulky and esthetically 
unappealing. FES can be delivered using a compact 
hardware but the movements are difficult to control 
precisely and selectively. Recently, a number of soft 
exoskeletons have been proposed [5], [6]. A typical 
solution comprises a textile glove that is actuated using a 
network of tendons pulled by a motor placed somewhere 
on the body (e.g., around the waist). These systems 
combine good controllability and compact design, and 
therefore, represent an attractive solution to assist highly 
disabled patients. 
The overall aim of the present project is to develop a 
brain-computer interface (BCI) [7], [8] that can be used 
to control a soft hand exoskeleton in ALS patients. The 
envisioned BCI will be based on detection and 
classification of movement related cortical potentials 
(MRCPs) [9]. The MRCP is a characteristic modulation 
of brain potentials comprising a negative deflection that 
anticipates the movement, followed by a positive 
rebound. The MRCP has been selected because it does 
not require training, it is present during motor execution 
and imagination, and it has been successfully detected in 
different patient populations [10], [11], including ALS 
[12]. In order to control a soft glove, the user should be 
able to generate opening and closing commands via BCI 
(Fig. 1). Previously, the MRCPs related to foot 
dorsiflexion were successfully detected and used for 
online control of a foot orthosis [13]. In addition, several 
studies have used MRCPs to detect and classify hand 
motions, including different grasp types [14], and 
movement speed and force [15].  In a recent study [16], 
low-frequency time domain features within the 
bandwidth of the MRCP were used to detect and classify 
natural reach-to-grasp movements. However, these 
studies were performed in healthy subjects, except [15] 
which was conducted in stroke patients.   
In the present study, electroencephalography (EEG) 
signals during hand opening and closing were recorded 
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in three patients suffering from ALS. The patients were 
recruited at different stages of ALS, as assessed by the 
ALS functional rating scale [17]. The aim was to 
preliminarily assess the feasibility of detecting the patient 
intention to perform the two hand movements (closing 
vs. rest, opening vs. rest) as well as to discriminate 
between them (closing vs. opening).  
 

 
Figure 1: The envisioned BCI system for restoring 

grasping using a soft exoskeleton glove 
 
MATERIALS AND METHODS 
 
Patients 
Three patients with ALS participated to the recording. 
All signed an informed consent form approved by the 
local ethical committee. The patients were recruited by a 
neurologist, who also determined the functional score 
using the ALS functional rating scale [18]. The scores for 
the patients numbered 13, 14 and 23 were 0, 0, and 3.6, 
respectively. All recordings were performed at the 
patient’s home.  
 
Signal acquisition 
 
Non-invasive electroencephalographic (EEG) recordings 
were obtained using the g.USBamp (g.tec, AU) and 
g.GAMMAcap equipped with nine active electrodes 
(g.LADYbird). The electrodes were arranged according 
to the standard 10-20 system over the motor area of the 
arm/hand (channels: F3, FC1, FC5, Cz, C3, C7, CP1, 
CP5, P3) contralaterally to the dominant hand of the 
patient. Electromyography (EMG) was recorded from the 
hand flexor and extensor muscles using a bipolar 
configuration (Ag/AgCl electrodes (AMBU Neuroline, 
US)). The ground for the EMG recording was separate 
from the EEG ground. The sampling frequency was set 
to 1200 Hz for all signals and no filtering was activated 
in the amplifier.  

 
Figure 2: The cue-based data collection paradigm 
comprising focus, preparation, hold and rest phase. The 
protocol is explained in the text. 
 
The patients were seated in a chair in front of a table. 
Since two of the patients had no residual hand function, 
EMG could not be implemented to indicate movement 

 
Figure 3: The traces (mean ± standard deviation) for rest 
(black line), MRCP during closing (red line) and opening 
(blue line) for patient P14 (top) and P23 (bottom). 
Movement onset is at 0 s. Two representative channels 
are depicted (FC1 and CP5). 
 
onset and thus to extract the MRCP of each trial. Patients 
were thus presented with a visual cue that was displayed 
on a computer screen following a predefined 
experimental paradigm (Fig. 2). In the focus phase, the 
patient was asked to focus on the middle of the screen. In 
the preparation phase, the movement to be executed was 
indicated by a text message (open/close) and a triangular 
cursor started moving across the screen. When the cursor 
arrived at the middle of the screen, it instantly jumped, 
indicating the moment when the patient should perform 
the movement. The patient was instructed to hold the 
movement, until the cursor disappeared from the screen 
(hold phase). This was followed by a resting phase. In 
each recording block, 15 hand opening and 15 hand 
closing movements were collected in randomized order, 
and two blocks were recorded in the experimental 
session, hence 30 movements in total in each class.  
 
Signal processing 
 
The EMG signals were bandpass filtered using a second 
order Butterworth filter with a cut off frequency at 10 Hz 
(movement artifacts) and 3 Hz (linear envelope). The 
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EEG signals were bandpass filtered between 0.01 and 3 
Hz (zero-phase Butterworth 2nd order) which is the 
bandwidth of the MRCP. Segmenting the epochs was 
challenging due to noise from the electrical/medical 
equipment (e.g., patient respirator) and low signal levels 
(e.g., weak or no EMG). Therefore, a custom-made 
Matlab application was developed and used to manually 
inspect each trial and to discard those that were 
corrupted. In all patients, there was at least 20 good trials 
in each movement class. The onset of the trial was 
identified either manually based on the recorded EMG or 
based on the cue to move. 
The selected “good” trials were then segmented to extract 
the MRCP and rest. The interval from -2 s to 2 s, with 
respect to the movement onset (0 s), was considered as 
an MRCP and the interval between -6 s and -2 s was 
assumed to be the resting state. The MRCPs were 
baseline corrected by subtracting the mean of the resting 
state.  
  
Classification 
 
For the purpose of classification, the time domain 
features were computed from the epochs (MRCP and 
rest). Most studies that rely on MRCP consider only the 
phase preceding the movement (negative deflection). 
This is done to minimize the detection delay and provide 
timely feedback using electrical stimulation following 
the paradigm of Hebbian learning [19]. In the context of 
the present project, however (Fig. 1), the overall 
reliability of detection and classification is more 
important than the delay since the focus is on robust 
control. Therefore, the entire epoch was considered, 

including both pre and post movement phases (i.e., 
deflection and rebound of the MRCP). 
Each epoch was divided in windows (500 ms) and the 
mean and the slope of the signal were computed within 
each window, resulting in 16 features per epoch. Linear 
discriminant analysis was used for classification between 
the pairs of classes (open vs. rest, close vs. rest, and open 
vs. close). The classification was tested for each 
individual channel. Due to the low number of trials, the 
classifier was validated using the leave-one out cross 
validation scheme. The classification accuracy was 
adopted as the outcome measure.  
 
RESULTS 
 
The average traces of the rest and MRCP epochs 
recorded in two patients with substantially different 
functional scores are shown in Fig. 3. In both cases, the 
MRCP is prominent for both movements, and there is a 
difference between the two MRCPs, particularly during 
the rebound phase. However, there is also a significant 
variability and overlap between the MRCPs 
corresponding to opening and closing.  
The distribution of the time domain features for the same 
data as in Fig. 3 top (patient 14, channel FC1) is depicted 
in Fig. 4. Both mean and slope features exhibit clear 
differences between movement and rest, and this reflects 
the morphology of the MRCP. The mean in the windows 
4, 5 and 6 indicate the negative deflection of the MRCP. 
The slope in the windows 4 and 6 exhibit the change in 
the sign, which corresponds to the downward (negative 
slope) and then upward (positive slope) trend of the 
MRCP. The difference in the features between the two 

 
Figure 4: Distribution of time domain features extracted from the epochs shown in Fig. 3 (Patient 14). The boxplots 
indicate median, interquartile range and min/max values for mean (top) and slope (bottom) in each time window for 
rest (black), closing (red) and opening (green). 
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movements is however less visible, i.e., nevertheless, 
there seems to be a difference in the mean in time 
windows 7 and 8 and in the slope in time windows 6 and 
7, reflecting the faster and stronger rebound of the MRCP 
associated to hand opening (see also Fig. 3).  
The channel-wise classification success rates obtained 
using the leave one out cross validation scheme are 
shown in Table 1. The grayed cells indicate the channels 
with the highest classification success rate.  
 
DISCUSSION 
 
In the present study, EEG data were collected during 
hand opening and closing movements from three ALS 
patients, and the MRCP profiles were extracted. An 
important conclusion from the collected profiles is that a 
pronounced MRCP can be observed even in highly 
disabled ALS patients (patient 13 and 14). The profiles 
resemble, in shape as well as in depth, those that were 
collected in a more functioning patient (patient 23). This 
is in line with the results reported in [12] where they 
compared the MRCPs of ALS patients to those of healthy 
subjects and found no significant difference in the peak 
negativity.   
A preliminary classification of the collected patterns has 
demonstrated that they have sufficient discriminative 
information to be correctly classified. Both opening and 
closing could be differentiated from rest with high 
accuracy. Classifying between opening and closing was 
however a substantially more challenging task, as can be 
seen from the low classification accuracies for many 
channels (O/C in Table 1). An important insight is that 
the classification should likely consider the post 
movement period, since this is the phase where the two 
profiles somewhat diverge (Fig 3).  
The present test is a first and simple evaluation of the 
feasibility of discriminating between the patterns. The 
next step is to implement classification using a sliding 
window during pseudo online (offline data) and online 
applications. This represents a more difficult task and it 
is to be expected that the accuracies will be lower than 
those reported here (Table 1). In addition, instead of 
classifying on each channel individually, they could be 
combined using a spatial filter [20] and classification 

could be performed on the surrogate channel. Finally, for 
the offline analysis in the present study, the corrupted 
trials were eliminated manually. During an online 
application, an automatic artifact rejection scheme needs 
to be implemented [21], [22]. 
Nevertheless, the obtained results are encouraging for 
detection (movement versus rest), which is the most 
important command for the online system. Even if direct 
classification (closing versus opening) is revealed 
insufficiently reliable, the lack of this input can be 
circumvented using state machine and/or recently 
presented electrotactile menus [15]. Both of these 
methods allow using a single input (brain switch) to 
select multiple commands.  
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