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ABSTRACT: Communication is a critical human 

function that can be severely compromised in patients 

with neurological diseases such as amyotrophic lateral 

sclerosis (ALS). The P300 speller is a brain-computer 

interface (BCI) device that restores communication in 

these patients by detecting evoked responses in subjects’ 

electroencephalography signals. One of the bottlenecks 

of these systems is the pause after character selections. 

This pause has been necessary for the P300 speller 

because it signals users that a character selection has been 

made and gives them time to transition to the next 

character. If this pause is too long, the system is slowed 

down unnecessarily. If it is too short, stimuli for the next 

character begin before the user is ready. We propose a 

system that does away with the pause entirely and 

continually flashes stimuli. We employ a joint model that 

determines the target characters as well as the transition 

times so that users can change between characters at their 

own pace. A preliminary study on eight subjects showed 

a selection rate of 16.35 characters/minute and an 

average accuracy of 94.85%, both significant 

improvements over performance in an equivalent system 

with standard flashing. These results suggest that the 

P300 speller could be improved by implementing a 

continuous flashing paradigm. 

 

INTRODUCTION 

 
Communication is a critical human function that can be 

severely compromised in patients with neurological 

diseases such as amyotrophic lateral sclerosis (ALS). 

Brain-computer interfaces (BCI) provide a unique 

opportunity to restore communication in severe cases 

where traditional augmentative and alternative 

communication devices are unusable due to lack of motor 

control. The P300 speller is one BCI system that provides 

this communication ability by detecting evoked 

responses after flashing characters on a visual display [1]. 

Limits to the signal to noise ratio require multiple stimuli 

before making a selection, leading to slow typing rates. 

Several projects have improved performance by 

incorporating optimizations such as varying the 

dimensions of the character matrix [2], [3]; optimizing 

system parameters [4], [5]; and employing various 

signal-processing methods [6], [7]. 

Recent work has involved the incorporating of language 

models into the classifier [8]. This movement in BCI 

research integrates knowledge about the domain of 

natural language to improve classification, similar to 

methods used in other domains such as speech 

recognition [9]. Several BCI studies have shown 

incremental improvements in system speed and accuracy 

using n-gram language models, first using Naïve Bayes 

[10], [11] and later using a partially observable Markov 

decision process [12] and a hidden Markov model [13]. 

Recently, a particle filter (PF) algorithm made the use of 

more complicated language models possible, which was 

shown to have superior results [14]. 

One area that language models have had particular 

impact is the ability to provide prior probabilities for 

dynamic stopping [8]. These methods compute the 

probability distribution over all characters after each 

stimulus and select that character after the probability of 

a character reaches a threshold [11], [15]. This method 

has the potential to drastically improve typing speed as 

selections are made once the system is confident in a 

selection rather than continuing until a set number of 

stimuli is reached. It also allows the system to spend 

more time on selections where the confidence is lower so 

that it can collect more information rather than forcing a 

selection. 

A P300 speller with continuous stimulus presentations is 

an extension of the dynamic stopping paradigm in that it 

allows subjects to move at their own pace rather than 

forcing them to wait a predefined period of time between 

character selections. It also allows them to take more time 

if they are unable to find a character or are unsure of what 

they want to say next. It accomplishes this task by 
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computing the joint probability distribution over possible 

target characters and transition times between characters 

after every stimulus presentation. 

In this study, we propose a novel P300 speller system that 

incorporates continuous stimulus presentations. This 

system was incorporated into the BCI2000 [16] 

framework using a previously published particle filtering 

classifier [14]. A pilot study of eight healthy subjects was 

conducted to compare typing performance using this 

paradigm to the traditional P300 speller system. 

 
MATERIALS AND METHODS 

 
     Data Collection All data collection was performed 

using g.tec amplifiers, active EEG electrodes, and 

electrode cap (Guger Technologies, Graz, Austria); 

sampled at 256 Hz; referenced to the left ear; grounded 

to AFz; and filtered using a passband of 0.1 – 60 Hz. 

Additional artifact detection (e.g., eye blinks) was not 

performed as it was left to the classifier to determine 

whether a signal contained a valid ERP. The electrode 

montage consisted of a previously reported set of 32 

electrodes [5]. The subjects for the online study consisted 

of eight healthy volunteers with normal or corrected to 

normal vision between the ages of 20 and 35. The system 

used a 6 x 6 character grid, famous faces stimuli [17], 

row and column flashes, and a stimulus onset asynchrony 

of 125 ms. Using the standard interface, a 3.5-second gap 

was included between characters to allow subjects time 

to find the next character in the sequence. 

To validate our methods, we implemented the continuous 

P300 speller in BCI2000 [16]. In a pilot study, eight 

subjects used the continuous speller to type out the 

sentence: “THE QUICK BROWN FOX JUMPS OVER 

THE LAZY DOG.” Eye tracking was not used, so 

training sessions consisted of two copy spelling sessions 

using the traditional P300 speller. When using the online 

speller, subjects were instructed to focus on each 

character for approximately three seconds (about two 

complete sets of flashes) before moving to the next 

character. Feedback was turned off to avoid distraction. 

     Continuous Speller The continuous speller 

formulation is similar to the traditional p300 speller with 

dynamic stopping [11]. After each flash, the probability 

distribution across the set of characters is estimated based 

on a set of observation probabilities and transition 

probabilities based on a language model. The main 

difference is the introduction of a variable 𝑑𝑡 that 

represents the amount of time the subject will remain at 

the current state, 𝑥𝑡. 
𝑝(𝑥𝑡 , 𝑑𝑡|𝑦𝑡 , 𝑥0:𝑡−1, 𝑑𝑡−1)

∝ 𝑝(𝑥𝑡 , 𝑑𝑡|𝑥0:𝑡−1, 𝑑𝑡−1)𝑝(𝑦𝑡|𝑥𝑡) 
In this model, 𝑑𝑡 is reduced after each flash until it 

reaches zero. At that point, the transition probability is 

determined by the language model as in the traditional 

speller. 

𝑝(𝑥𝑡 , 𝑑𝑡|𝑥0:𝑡−1, 𝑑𝑡−1)

= {
𝑝(𝑥𝑡|𝑥0:𝑡−1)𝑝(𝑑𝑡|𝑥𝑡) 𝑑𝑡−1 = 0

𝛿𝑥𝑡−1
𝑥𝑡 𝛿𝑑𝑡

𝑑𝑡+1 𝑑𝑡−1 > 0
 

A Gaussian distribution was used to estimate the time 

taken to transition between characters, 𝑝(𝑑𝑡|𝑥𝑡). 
Initially, this distribution was set empirically at a mean 

of one second and a standard deviation of 0.5 seconds 

(with a minimum of zero seconds). To further tailor this 

distribution, expectation maximization was used to find 

the distribution for each subject in an unsupervised 

manner. This process was similar to the methods used in 

previous studies that trained the P300 speller with 

unlabeled data [18], [19]. In this version, the empirical 

distribution was used to find preliminary labels for and 

transition times for all characters. These labels were then 

used to find more accurate parameters for the transition 

distribution. Iteration between these two steps continued 

until the distribution stabilized. 

Because it will always take time for the subject to find 

new characters in the grid, an additional state needs to be 

made for when the subject is transitioning between 

letters. During this time, the stimulus responses will look 

different from those when the subject’s attention is on a 

character. The observation probability distribution needs 

to take this into account. 

𝑝(𝑦𝑡|𝑥𝑡) = {

𝑓(𝑦𝑡|𝜇𝑎, 𝜎𝑎
2) 𝑥𝑡 ∈ 𝐴𝑡

𝑓(𝑦𝑡|𝜇𝑡𝑟𝑎𝑛𝑠 , 𝜎𝑡𝑟𝑎𝑛𝑠
2 ) 𝑥𝑡 = 𝑥𝑡𝑟𝑎𝑛𝑠

𝑓(𝑦𝑡|𝜇𝑛, 𝜎𝑛
2) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

     Language Model: A language model is used to 

determine the transition probabilities, 𝑝(𝑥𝑡|𝑥0:𝑡−1). This 

probability can be simplified using the nth-order Markov 

assumption to create a n-gram model [11], [20]. While n-

gram models are able to capture character patterns, they 

allow for strings that are not valid words on the language. 

A probabilistic automaton (PA) creates a stronger prior 

by creating states for every substring that starts a word in 

the corpus. Thus, the word “the” would result in four 

states: “t”, “th”, “the”, and the start state which 

corresponds to a blank string. Each state then links to 

every state the represents a superstring that is one 

character longer. Thus, the state “th” will link to the states 

“the” and “tha” (Fig. 1). 

 

Figure 1: Example language model containing only the 

words at, that, the, and them. 

Transition probabilities are determined by the relative 

frequencies of words starting with the states’ substrings 

in the Brown English language corpus [21]. 
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    Particle Filter: As more sophisticated language 

models are used, the ability to fully represent the 

probability distribution over possible output sequences 

becomes impractical. Particle filtering (PF) is a method 

for estimating this distribution by creating a set of 

realities (called particles) and projecting them through 

the model based on the observed data [22], [23]. Each of 

these particles contains a reference to a state in the model, 

a history of previous states, and an amount of time that 

the particle is going to remain in the current state. The 

distribution of states occupied by these particles 

represents an estimation of the probability distribution. 

When the system begins, a set of 𝑃 particles is generated 

and each is associated with the root node of the language 

model. At the start of a new character, samples are drawn 

from the proposal distribution defined by the transition 

probabilities from the previous state. 

𝑥𝑡
(𝐿) ∼ 𝑝(𝑥𝑡|𝑥𝑡−1

(𝐿) ) 
The time that the particle will stay in that state is drawn 

from a distribution representing how long the subject is 

expected to spend looking at that character. After each 

stimulus response, the probability weight is computed for 

each of the particles. 

�̂�𝑡
(𝐿) ∝ �̂�𝑡−1

(𝐿) 𝑝(𝑦𝑡|𝑥𝑡
(𝐿)) 

The weights are then normalized and the probability of 

possible output strings is found by summing the weights 

of all particles that correspond to that string. When 

feedback is enabled, the string with the highest 

probability is then displayed to the user. The effective 

number of particles is then computed. 

𝑃𝑒𝑓𝑓 =
1

∑ (�̂�𝑡
(𝐿))

2

𝑖

 

If the effective number falls below a threshold, 𝑃𝑡ℎ𝑟𝑒𝑠ℎ , a 

new set of particles are drawn from the particle 

distribution. 

After each stimulus, the amount of time for a given 

particle to remain in a state is decremented. Once that 

counter reaches zero, the particle transitions to a new 

state in the language model based on the model transition 

probabilities 𝑝(𝑥𝑡|𝑥0:𝑡−1). 
     Evaluation: Performance of the system is evaluated in 

terms of the speed and accuracy of typing characters. 

Selection rate (SR) is the average number of characters 

selected per minute and accuracy (ACC) is the 

percentage of those characters that match the target 

sentence. Because of the tradeoff between speed and 

accuracy, performance is also evaluated in terms of 

information transfer rate (ITR), which measures the bits 

of information conveyed through the output message 

divided by time. ITR has been shown to be an imperfect 

measure of BCI communication due to assumptions 

about the uniform probability across characters and the 

independence of selections [24], [25]. However, it 

remains a standard metric used in the BCI field and can 

compare relative performance on identical sequences. 

Calculation of ITR starts by computing the number of 

bits of information contained per symbol in the output 

sequence. 

𝐵 = log(𝑁) + 𝐴𝐶𝐶 log(𝐴𝐶𝐶)

+ (1 − 𝐴𝐶𝐶) log (
1 − 𝐴𝐶𝐶

𝑁 − 1
) 

Where N is the number of characters in the grid (36). ITR 

can then be found by multiplying the by SR. Significance 

was tested using Wilcoxon rank-sum tests. 

 

RESULTS 

 

Even though subjects were all instructed to type at the 

same speed (three seconds per letter), each subject typed 

at a slightly different pace (Fig. 2). 

 

Figure 2: Output for each subject during the first 60 

seconds of use of the continuous speller. Each subject 

was attempting to spell “THE QUICK BROWN FOX 

JUMPS OVER THE LAZY DOG.” 

Table 1. Selection rate (SR), typing accuracy (ACC) and information transfer rate (ITR) for the traditional P300 speller 

and the continuous speller (CS). 

 SR (characters/minute) ACC (%) ITR (bits/minute) 

Subject P300 CS P300 CS P300 CS 

1 14.06 17.79 93.33 100.00 62.92 89.89 

2 13.81 18.18 95.00 90.91 63.91 77.50 

3 13.77 16.51 100.00 91.11 71.21 75.74 

4 7.58 11.94 75.00 100.00 23.33 61.72 

5 13.43 16.28 95.00 90.70 62.13 69.12 

6 12.63 16.31 100.00 95.35 65.30 72.64 

7 13.69 17.45 65.00 97.73 33.42 85.47 

8 13.04 17.09 75.00 93.02 40.13 75.98 

Mean 12.71 16.35 89.05 94.85 54.60 76.01 
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Overall, subjects types an average of 16.35 

characters/minute using the continuous speller, which 

was a significant improvement over the 12.71 

characters/minute achieved using the traditional P300 

speller (p=0.004, Tab. 1). When using a generic model 

for dwell and transition times, the average selection 

accuracy for the continuous speller (85.4%) was lower 

than the P300 speller (89.05%), although the difference 

was not statistically significant (p=0.42). The resulting 

ITR for the continuous speller (64.5 bits/minute) was 

higher than that of the P300 speller (54.6 bits/minute), 

although the difference was not statistically significant 

(p=0.13). Once subject-specific transition distributions 

were learned, the accuracy rose to 94.9%, resulting in an 

average ITR (76.0 bits/minute) that was significantly 

higher than that of the P300 speller (p=0.004). 

 

 

Figure 3: Boxplots of ITR values using the standard 

P300 and the continuous speller (CS). 

 

In general, subjects’ gaze times were close to the 

suggested value of three seconds (Tab. 2). One subject 

(subject 4), however, spent over one second longer per 

letter on average. The other subjects’ averages were 

between 2.93 and 3.32 seconds. The average time spent 

transitioning between characters was also fairly 

consistent across the subjects with an average of 0.36 

seconds. 

 

Table 2: Average gaze and transition times 

Subject Gaze Time (s) Transition Time (s) 

1 3.28 (0.58) 0.14 (0.06) 

2 2.93 (0.65) 0.31 (0.23) 

3 2.98 (0.75) 0.35 (0.26) 

4 4.39 (0.73) 0.59 (0.28) 

5 3.13 (0.70) 0.41 (0.31) 

6 3.32 (0.61) 0.32 (0.21) 

7 3.06 (0.61) 0.32 (0.27) 

8 3.07 (0.63) 0.43 (0.31) 

Mean 3.27 (0.47) 0.36 (0.13) 

 

 

DISCUSSION 

 

The average typing speed achieved using the continuous 

speller was 16.35 characters/minute, which was 

significantly faster than the 12.71 characters/minute 

achieved by the same subjects using the traditional P300 

speller. The bit rate for the P300 speller was similar to 

values achieve in previous studies using similar systems 

[14]. 

Only one subject failed to achieve a typing speed greater 

than 16 characters/minute. While this subject was still 

able to type at a speed faster than she did using the 

standard P300 speller, it was substantially slower than the 

other subjects in this study, taking over a minute longer 

to type the sentence than any other subject. This 

difference is likely because she dwelled longer on each 

character than the suggestion of three seconds. 

The results achieved using continuous spelling 

demonstrate that this system has the potential to 

outperform existing ERP-based BCI systems. However, 

the results from this study are likely far from optimal, as 

most of the parameters were not optimized for this 

system. For instance, the flashing rate and ISI values used 

were optimized for the traditional p300 speller, and do 

not necessarily reflect the best configuration for this 

system. We also used the row/column flashing paradigm 

as it is the standard stimulus paradigm for the P300 

speller. There are various other paradigms that have been 

introduced, including the checkerboard [2], 

combinatorial [3], and asynchronous [26] paradigms, 

which could improve typing performance in this system 

as well. Finally, the strategy of looking at each character 

for approximately three seconds was chosen empirically 

as it gave approximately four positive stimuli for each 

character, which we felt would be sufficient to make an 

accurate classification. It is possible that less information 

is needed, which could allow the system to achieve even 

greater speeds. 

This study was conducted using healthy volunteers who 

did not have the same constraints as “locked-in” patients, 

such as restrictions on eye gaze. While a similar P300 

speller system was previously tested in the ALS 

population [27], it is unclear whether the continuous 

flashing will be more difficult and therefore offset the 

gains seen by applying continuous flashing. The healthy 

subjects in this study generally had no problems with the 

additional cognitive task, and therefore appreciated the 

added speed that continuous flashing afforded. However, 

it is possible that his additional task will make the system 

more taxing for ALS patients, which could make it less 

practical despite the performance increase. Future studies 

in the ALS population should be conducted to determine 

how these results in healthy subjects translate to affected 

population. If continuous flashing is a hindrance to some 

subjects, those subjects could continue to use the 

traditional P300 speller with the continuous flashing 

paradigm included as an option for those subjects who 

would benefit. 

The results presented in this study are promising, but they 

represent offline performance which does not include 

several factors that occur in an online implementation. 

For instance, offline systems do not include feedback to 
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the user, which can provide additional motivation or 

allow the user to adjust their strategy. Particularly in this 

system, feedback can be difficult to implement because 

the user does not have specific built in to allow for 

checking past input. Also, the fact that the system 

optimizes over multiple characters at once means that the 

system will likely make changes to the displayed text, 

which can distract the user’s focus from the current 

character. The lack of feedback can make the task more 

difficult, however, as subjects can lose track of where 

they are in the target word or phrase. They are also unable 

to adjust their strategy such as slowing down if the 

system is unable to make accurate selections. 

 

CONCLUSION 

 

Overall, continuous stimulus presentation allowed 

subjects to type an average of 16.35 characters/minute 

with an accuracy of 94.85%, resulting in an average ITR 

of 76.01 bits/minute, all significantly higher than the 

values achieved using the standard P300 speller. Future 

work involves optimizing system parameters for the 

continuous flashing paradigm, and implementing 

feedback in an online system. 
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