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ABSTRACT: Imagined speech is gaining traction as a 

communicative paradigm for brain-computer-interfaces 

(BCI), as a growing body of research indicates the 

potential for decoding speech processes directly from the 

brain. The development of this type of direct-speech BCI 

has primarily considered feature extraction and machine 

learning approaches typical to BCI decoding. Here, we 

consider the potential of deep learning as a possible 

alternative to traditional BCI methodologies in relation to 

imagined speech EEG decoding. Two different 

convolutional neural networks (CNN) were trained on 

multiple imagined speech word-pairs, and their 

performance compared to a baseline linear discriminant 

analysis (LDA) classifier trained using filterbank 

common spatial patterns (FBCSP) features. Classifiers 

were trained using nested cross-validation to enable 

hyper-parameter optimization. Results obtained showed 

that the CNNs outperformed the FBCSP with average 

accuracies of 62.37% and 60.88% vs. 57.80% (p<0.005).  

 

INTRODUCTION 

 
A direct-speech brain-computer interface (DS-BCI) is 

one in which a user’s imagined speech is harnessed as the 

mode of communication between themselves and a 

computer, or interlocutor [1]. Imagined speech is the 

internal pronunciation of words or sentences, which does 

not result in any audible output [2]. Imagined speech has 

received relatively little attention from BCI researchers 

in comparison with more common paradigms such as 

motor imagery (MI) or steady-state visually-evoked 

potentials (SSVEP) (see [3] for a review). However, a 

DS-BCI does offer the possibility of a more naturalistic 

form of communication and must therefore be considered 

an important field of study within the BCI community. 

Both invasive and non-invasive approaches to data 

acquisition have been applied to the recording of 

imagined speech, primarily through electrocorticography 

(ECoG) [4] and electroencephalography (EEG) [5]. In 

this study, we focus specifically on the decoding of 

imagined speech from EEG recordings.  

Approaches to imagined speech decoding have typically 

employed traditional BCI feature extraction and 

classification algorithms. Among the features used to 

represent imagined speech from EEG are autoregressive 

coefficients [6], common-spatial patterns [7] and 

spectrotemporal features [8]. More recently, Mel 

Frequency Cepstral Coefficients (MFCC) [9], [10] and 

Riemannian manifold features [5] have enabled imagined 

speech classification.   

Several traditional machine learning approaches have 

been applied to the task of decoding imagined speech 

from EEG. These include support vector machines 

(SVM) [9], [11], Linear Discriminant Analysis (LDA) 

[6], [12], Naïve Bayes [12], k-Nearest Neighbors [10] 

and Random Forests [13]. Of these, the SVM has been 

the most-often utilized classification method, resulting in 

accuracies of 71.3% [7] and 69.3% [14] in binary tasks.  

However, to-date no combined feature extraction and 

classification method has proven itself to be the dominant 

approach. For this reason, research into a deep learning 

approach to imagined speech classification is a logical 

undertaking. Deep learning has been enormously 

successful across fields such as computer vision [15] and 

automatic speech recognition [16]. More recently, it has 

been successfully applied to BCI in relation to MI [17] 

and SSVEP [18] but its application to imagined speech 

has been relatively sporadic [19]. Of the deep learning 

approaches available, convolutional neural networks 

(CNN) have been the most heavily-utilized in relation to 

BCI/EEG. Among many others, the applicability of 

CNNs has been demonstrated for automated screening of 

depression [20], and prediction of drivers’ cognitive 

performance [21]. For a review into deep learning 

analysis of EEG, see [22].  

Here we evaluate the performance of two CNNs tasked 

with decoding imagined speech from EEG. The data used 

consisted of fifteen word-pairs extracted from a dataset 

containing six Spanish words produced with imagined 

speech. The performance of the CNNs are rated in 

comparison with a regularized-LDA (rLDA) trained on 

FBCSP features. A nested approach to cross-validation is 

implemented to facilitate parameter-optimization and 

improve the robustness of results. The results obtained 

show that the CNNs perform significantly better than the 

rLDA classifier, and that the performance of the deep 

CNN was significantly better than that of the shallow 

CNN.  

 

MATERIALS AND METHODS 

 

The methodology implemented in order to classify 

imagined speech production from EEG signals is    
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Figure 1Depiction of the methodology followed for this study

depicted in Figure 1 and described throughout the 

remainder of this section, beginning with the dataset. 
      

     Dataset: The dataset used for this research was 

recorded at the offices of the Laboratorio de Ingeniería 

en Rehabilitación e Investigaciones Neuromusculares y 

Sensoriales (LIRINS) in the Faculty of Engineering at the 

National University of Entre Ríos (UNER) by Pressel 

Coretto et al. [23]. EEG signals were recorded while 15  

subjects performed overt and imagined speech tasks 

corresponding to the production of Spanish words and 

vowels. Only the EEG associated with imagined word 

production was analysed for this study. Thus, the EEG 

data used consisted of those trials recorded while 

participants imagined the production of six Spanish 

words: “arriba”, “abajo”, “derecha”, “izquierda”, 

 
Figure 2 The EEG montage used to acquire data. 

“adelante” and “atrás” (corresponding to the English 

words up, down, left, right, backward and forward). 

These words were selected as commands a user might 

make when interacting with a BCI. The experimental 

protocol for the imagined words tasks required 

participants to imagine speaking one of the prompted 

words at three audibly-cued time-points during the 4-

second trial-period. Prior to the trial-period, stimuli were 

presented in both visual and auditory form, showing each 

subject the word for 2 seconds before being removed 

during the trial. EEG signals were recorded using a six-

channel system, sampled at 1024 Hz. Electrodes were 

positioned according to the 10-20 international system 

over F3, F4, C3, C4, P3 and P4 (Figure 2). 

     Preprocessing: The original dataset was filtered 

between 2 Hz and 40 Hz using a finite impulse response 

bandpass filter [23], so no further filtering was applied 

for this study. Artefact detection and removal were 

implemented using Independent Component Analysis 

with Hessian approximation preconditioning [24].  

     Data splitting: In order to facilitate the analysis of 

multiple binary classifiers, all possible pairs of words 

were extracted from the dataset (Figure 1B). This 

resulted in 15 different pairs of imagined words for 

binary classification (e.g. arriba vs. abajo). The number 

of trials per class varied across subjects, with a maximum 

of 51. However, all pairs were balanced prior to training.   

Due to the high computational load associated with the 

nested cross-validation scheme employed for this study 

(see below), a 500 ms segment was extracted from each 

4000 ms trial (Figure 1C) to act as the classification 

window. The selection of this window was based on the 

description of the experimental protocol described in 
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[23], in which three audible clicks directed participants 

when to imagine speaking. Therefore, a window was 

extracted to encompass the first of these periods of 

imagined speech production, about the 1-second mark of 

the overall trial. Concretely, this was the 500 ms segment 

between 750 ms and 1250 ms of the overall trial window. 

     Classification methods: Three distinct methods of 

classification were applied to the imagined words EEG 

data. The first of these methods, was the use of FBCSP 

features to train a rLDA (Figure 1D). The rLDA classifier 

is a regularized version of the LDA algorithm [25], which 

reduces the dispersion of the eigenvalues of the sample 

covariance matrix when a diverging dimension p is large. 

It has been employed elsewhere as a classification 

method for EEG signals [26], and is used here to provide 

a baseline reference for the performance of the CNNs. 

Unlike CNNs, the rLDA requires separate feature 

engineering and classification, and thus the type of 

features must be selected prior to training. FBCSP is a 

widely-used feature extraction algorithm across multiple 

BCI paradigms [27]. Linear combinations of the EEG 

channels are computed to enhance discrimination of band 

power features between classes. FBCSP has been proven 

successful in MI tasks, including as the winner in several 

EEG decoding competitions (e.g. [28]). Its proven results 

as a decoding algorithm in BCI, and the fact that there is 

no clear benchmark specifically for imagined speech, has 

led to selection of FBCSP as a reasonable baseline in this 

study.  

The second classifier tested was a deep CNN designed by 

Schirrmeister et al. [29] specifically for EEG decoding 

applications (Figure 1E). The network architecture is 

based on similar CNNs used in computer vision [30] and 

is constructed to extract a wide range of features from the 

EEG signals. Figure 3 depicts the composition of the 

deep CNN. The input block of the CNN consists of two 

convolutional layers, one to perform convolution over 

time and one for spatial filtering. This first block also 

contains batch normalization, a non-linear activation 

 

  
Figure 3 Deep CNN architecture designed by [22]. 

function and a mean-pooling layer. Following this are 

three identical convolution blocks, each containing 

dropout, convolution, batch normalization, non-linear 

activation and mean-pooling.  Finally, the output consists 

of a dense softmax layer for classification. The second 

CNN has been constructed with a shallow architecture 

and designed to decode band power features from EEG 

[29]. The shallow CNN is constructed of the same series 

of layers featured in the input block to the deep CNN 

(Figure 3), followed by dropout and a softmax 

classification layer. Here, we set dropout to 0.1 and 

selected the leaky rectified linear units activation 

function to add non-linearity into the two networks. Both 

CNNs used the ADAM optimizer [31] and the cross 

entropy loss function, and were allowed to train for 60 

epochs with a patience of 30. A batch size of 64 was used. 

The CNNs were implemented in PyTorch [32], using the 

Braindecode repository [29]. 

     Nested cross-validation: A nested approach to cross-

validation has been applied to training and testing of both 

the rLDA and the CNNs, with only small differences 

implemented when required by the respective classifiers 

(Figure 1D and E). Although not typically employed in 

deep learning contexts, nested-cross validation is utilized 

here to improve the robustness of results and to facilitate 

hyper-parameter optimization. Based on principles 

described in [33], the data are first split into 4-folds, one 

of which is retained in the outer-fold. An inner fold is 

then instantiated using the remaining 3 folds. The 

combined inner-fold is then re-split into 4 folds, with 

each fold iteratively acting as the test-set. The inner-fold 

facilitates training and testing of the two classifiers using 

each possible combination of hyper-parameters. The 

hyper-parameter combination with the best average 

accuracy across all inner-folds is then used to train the 

classifier on the entire inner-fold data. The outer-fold is 

then used as the test-set, or in the case of the CNNs, both 

validation- and test-sets. The classification accuracy is 

reported as the average accuracy across all 4 outer folds. 

     Hyper-parameters: Two hyper-parameters were 

selected for optimization with each classifier (Table 1). 

In the case of the rLDA, hyper-parameters required in the 

computation of FBCSP features were used. The first of 

these is the number of selected spatial filter pairs 

(1,3,4,5). The second hyper-parameter used here was the 

mutual information quantization level, with the values 

considered being 6, 8, 10 and 12. Hyper-parameters 

selected for the deep CNN were learning-rate and the 

number of filters implemented in the final convolutional 

layer (Table 1). The four learning-rates evaluated were  

 
Table 1 Hyper-parameters optimized using nested cross-

validation. 

 Hyper-parameter 1 Hyper-parameter 2 

FBCSP # spatial filters: 

(1,3,4,5) 

mutual information: 

(6,8,10,12) 

Deep 

CNN 

learning–rate: 

(1,0.1,0.01,0.001) 

# final layer filters: 

(100,500,1000,1500) 

Shallow 

CNN 

learning-rate: 

(1,0.1,0.01,0.001) 

# spatial filters: 

(20,40,60,80) 
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1.0, 0.1, 0.01 and 0.001 and the number of filters used in 

the final layer of convolution was 100, 500, 1000 and 

1500. The same learning-rate range was used for the 

shallow CNN but the second parameter considered was 

the number of spatial filters (Table 1).    

     Statistics: Wilcoxon signed-rank tests were used to 

determine whether or not differences between the 

classifiers were statistically significant. 

 

 RESULTS 

 

Here we report classification accuracies for each subject 

in the cohort and for each word-pair used to train the 

classifiers. Cross-subject classification accuracies are 

presented in Figure 4. Here, the highest classification 

accuracy obtained was 65.67%, achieved by subject 13 

with the CNN. The shallow CNN showed similar peak 

performance with 65.28% average accuracy for subject 

8.  Results obtained by the baseline rLDA and the CNNs 

are significantly above chance accuracy (50%) for all 

word-pairs across all subjects. The average classification 

accuracies for the word-pairs when trained on the rLDA 

and the two CNNs were 57.80%, 62.37% and 60.88% 

respectively (Figure 5). The Wilcoxon signed rank tests 

determined that the greater performance of both the 

CNNs across word-pairs was significant in comparison 

with the FBCSP (p<0.005). The greater performance of 

the deep CNN was also significant in relation to the 

shallow network (p<0.05). Accuracies for the different 

word-pairs do not deviate substantially from the mean for 

any of the combinations (Figure 5). The highest average 

classification accuracy for a single word-pair was 

64.55%, achieved by the abajo vs derecha pair, using the 

deep CNN (Figure 5). The highest single-subject 

accuracy obtained for a single word-pair was 78.33%, 

achieved by subject 11, also for the abajo vs derecha pair 

with the deep CNN.  

The number of spatial filters used for FBCSP feature 

extraction was selected by the nested cross-validation as 

5 (Table 2), although the difference between selecting 5, 

4 or 3 was minimal. A mutual information coefficient of 

8 was most often selected for optimization. In the case of 

 

 
Figure 4 Subject classification accuracies for rLDA and CNNs. 

Table 2 Hyper-parameters selected with nested cross-

validation. 

 Hyper-parameter 1 Hyper-parameter 2 

FBCSP # of filters = 5 mutual info. = 8 

Deep lr = 0.001 # of filters = 1000 

Shallow lr = 0.001 # of filters = 20 

  

the CNNs, the hyper-parameter optimization selected a 

learning-rate of 0.001 more often than any of the other 

options. 1000 filters were selected for the final analysis 

of the convolution layer of the deep network and 20 were 

selected for spatial convolution in the shallow CNN. 

 

DISCUSSION 

 

The results presented here support the assertion that 

employing deep learning methodologies to the task of 

decoding imagined speech from EEG is a reasonable 

undertaking. For each subject, and for each word-pair, 

the CNNs outperformed the FBCSP-trained rLDA, 

achieving accuracies significantly above chance in each 

case. Despite indicating promise, the results also show 

that this level of performance is not yet close to what 

would be required of a functional DS-BCI. However, the 

greater overall performance of the deep architecture in 

relation to the shallow CNN does indicate the potential 

of deep learning for imagined speech decoding. Hyper-

parameter optimization through nested cross-validation 

enabled selection of parameters most appropriate to the 

current task. Here, we determined that 5 spatial filters and 

a mutual information coefficient of 8, resulted in greater 

performance. Of the CNNs, 0.001 was the optimum 

learning-rate for use with the ADAM optimizer. The 

number of filters selected for the final convolutional 

layer was 1000. While this is greater than the number in 

the original paper [29], it provided the best accuracies 

here.    

A weakness of the present study is the selection of a 

single 500 ms classification segment from the 4000 ms 

trial window. Although this approach was followed in the 

interests of computational efficiency, it is likely that a 

sliding-window would have improved overall 

classification performance. Furthermore, the number of 

trials per class was quite small, ranging from 39 to 51 for 

a single word. This relatively small volume of data 

constrains the classifiers’ ability to infer classes by 

recognizing common patterns. Clearly, if deep learning 

is going to become a useful decoding approach for DS-

BCI, larger datasets are required.  

Interestingly, the results presented in Figure 5 do not 

suggest any significant differences in the effects of the 

linguistic content of the word-pairs. This may be a direct 

result of the choice of words used for this study. 

However, we agree with views expressed elsewhere [1], 

[2] that neurolinguistics research into imagined speech 

can aid the design of experiments in future research. 
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Figure 5 Classification accuracies for imagined speech production, by word-pair

CONCLUSION 

 

In this study, we trained three different types of classifier 

with the purpose of decoding imagined speech from 

EEG. A rLDA using FBCSP features, and two CNNs, 

were trained on a 500 ms classification window extracted 

from trials where subjects imagined speaking Spanish 

words. 15 word-pairs were extracted from the dataset to 

enable multiple binary classifications. Nested cross-

validation was employed to facilitate hyper-parameter 

optimization during training.  

Results showed that the CNNs performed significantly 

better than the rLDA classifier with average accuracies 

of 62.37% and 60.88% vs. 57.80%. The differences 

observed between the two CNNs were significant, with 

the deeper network performing better. Results also 

indicated that differences in the accuracies obtained 

between the different word-pairs were not significant. 

The results suggest that, while further work is required in 

the field, deep learning is a realistic decoding 

methodology for imagined speech EEG.  
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