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ABSTRACT: Interpretability, accuracy and a solid 

neurophysiological basis can be considered as the main 

requirements for the classification model to monitor 

motor imagery tasks in post-stroke motor recovery 

paradigms supported by the brain-computer interface 

technology.   

This study aimed at comparing the accuracy performance 

of different classification approaches applied on a dataset 

of 15 stroke patients. We also explored how the variation 

in the dimensionality of the feature domain would 

influence the different classifier performance. 

To this purpose, stepwise linear discriminant analysis 

(SWLDA), shrinkage linear discriminant analysis, 

logistic regression, support vector machine, multilayer 

perceptron, decision tree and random forest classifiers 

entered in the performance analysis.  

SWLDA statistically outperformed the classifiers 

commonly used in sensorimotor-BCI paradigms, 

achieving 80% in classification accuracy even in case of 

feature domain dimensionality reduction. The linearity, 

the interpretability and the accuracy of the SWLDA 

model, even just by means few EEG electrodes, yielded 

to consider SWLDA an optimal solution to fulfil the main 

requirements of the rehabilitation context.  

 

INTRODUCTION 

 
Electroencephalogram (EEG)-based brain-computer 

interfaces (BCIs) have been recently proposed to assist 

motor recovery training in stroke patients [1], [2]. In this 

context two main approaches have been identified: the 

first employs brain activity to control devices to assist 

movement [1], the second aims at modifying brain 

activity to improve motor behaviour [2].  

In [2], BCIs monitor the modulation of brain activity 

induced by the movement imagination. Indeed, motor 

imagery (MI) practice as well as motor execution elicits 

event-related desynchronization that occurs within EEG 

frequency bands (alpha and beta) and primarily over the 

scalp in sensorimotor cortical regions contralateral to the 

part of the body involved in the task. Therefore, the 

rationale behind such BCI approach is based on the 

assumption that the practice of mental imagery with 

motor content could influence brain plasticity and thus, 

enhance post-stroke functional motor recovery.  

Although many approaches have already been proposed 

to detect and classify EEG signals [3], i.e. sensorimotor 

rhythms (SMR), classification algorithms are still being 

investigated. Low signal-to-noise ratio of EEG signals, 

their non-stationarity over time and the limited amount 

of training data available to calibrate the classifiers are 

the main challenges faced by classification methods for 

BCI [4].  

In the context of SMR classification, although a survey 

of classifiers’ performances has been already approached 

[3], no conclusive results were achieved because of the 

different context, i.e. different set of subjects, set of 

features and parameters, in which the studies took place.  

To overcome that limitation, Bashashati et al. [5] built a 

unified comparison framework to evaluate the 

performance of different classifiers (two feature 

extraction methods and seven classification methods) on 

several sensorimotor BCI dataset collected from healthy 

subjects. Multilayer perceptron, logistic regression, 

support vector machine and linear discriminant analysis 

classifiers resulted in the best performance in 

synchronous BCI paradigms. Moreover, the authors 

concluded that, since pre-processing of the data, feature 

extraction and feature selection all change the 

distribution of the data in the feature space, a BCI system 

should be viewed as a unit consisting of different blocks 

in which all the block settings and parameters should be 

adjusted jointly for each individual subject.  

In contrast to other fields of application where optimal 

control is pursued, in the rehabilitation context the aim is 

also to reinforce the appropriate sensorimotor activation 

in terms of both topographical and spectral 

characteristics. Therefore, physiological constraints 

should be considered in the classification process to take 

into account neurophysiological evidences and 

rehabilitation principles.  

In [2], neurologists selected the proper EEG features, i.e. 

BCI control parameters, basing on the visualization of 

EEG pattern in form of statistical index matrix obtained 

by the comparison between two conditions (task and 

rest). Those features and their weights (conventionally 

fixed to -0.5) were merged in a linear classifier.  

From this approach, we have recently moved toward a 

semiautomatic selection, based on physiological 

constraints, able to reproduce the choices of neurologists 

[6]. The possibility to combine a proper feature selection 
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and a linear classifier (fast and powerful in interpretative 

terms) led us to apply the stepwise linear discriminant 

analysis [7], [8].  

Since the specific rehabilitative context and the 

neurophysiological constraints, this study aimed to 

compare our classification approach and those proposed 

for the classification of sensorimotor rhythms. The 

experimental group, 15 stroke patients, made unique this 

analysis. Seven classification methods were compared, 

even on varying of the feature space size (two, ten or all 

available features). The methods, proposed in [5] as the 

best for synchronous BCI paradigms, i.e. the linear 

discriminant analysis, the logistic regression, the support 

vector machine and the multilayer perceptron were 

considered. The random forest classifier and its 

elementary module, the decision tree, were included in 

the comparative framework because of good 

classification performance achieved by the former [9] in 

binary classification of imaginative tasks.   

 

MATERIALS AND METHODS 

 
     Data collection: EEG data were previously collected 

from fifteen stroke subjects according the procedure and 

the protocol in [2]. Scalp EEG potentials were acquired 

from 61 electrodes, assembled on an electrode cap 

(according to an extension of the 10–20 International 

System, linked ears reference, mastoid ground) and 

bandpass filtered between 0.1 and 70Hz.  

All signals were digitalized at 200 Hz and amplified by a 

commercial EEG system (BrainAmp; Brain Products, 

Gilching, Germany). 

     Experimental protocol: During the acquisition all 

subjects were comfortably seated in an armchair in a 

dimly lit room with their upper limbs resting on a desk. 

Visual cues were presented on a screen on the desk. 

All subjects were trained to perform the kinesthetic 

motor imagery of the hand movements (grasping and 

finger extension) with their affected upper limbs. Each 

run comprised 30 trials (15±1 rest, 15±1 motor imagery). 

The total duration of each trial was 7 seconds with an 

inter-trial interval of 3.5 seconds. In each trial the 

experimental task took up just 4 seconds.  

     Pre-processing and Feature Extraction: Runs 

collected during the motor imagery of grasping and 

finger extension movements were concatenated.  

EEG data were notch filtered at 50 Hz. EEG signal 

intervals containing artefacts (muscular, environmental) 

were identified, using a semi-automatic procedure based 

on the definition of a voltage threshold, and discarded. 

EEG data were spatial filtered by means the common 

average reference spatial filter.  

EEG data were divided into epochs 1 second long and 

spectral features were extracted using the maximum 

entropy method (16th order model, 2 Hz resolution, no 

overlap) [10]. Two hundred and forty epochs were at 

most available for each dataset (one for each subject).  

Given the specific motor rehabilitation context, spectral 

features belonging to the sensorimotor strip (i.e. FC, C, 

CP electrodes) in the contralateral scalp area to the hand 

involved in the task and in the range from 7 Hz to 25 Hz 

were used for the following steps.  

After extracting features from each relevant channel (i.e. 

FC, C, CP in the affected hemisphere, 12 channels) and 

frequency bin (10 frequency bins), the features were 

assembled to build a feature vector, which was supplied 

to each classifier. 

     Feature selection: All classifiers were tested, even on 

varying of the feature number. Two features, ten features 

and all features (120 features) were considered.  

To select the best two or ten features the recursive feature 

elimination cross-validation approach was used [11].  

Recursive feature elimination (RFE) is a feature selection 

method that fits a model and removes the weakest 

features until the required number of features is reached. 

Features are ranked by the model’s attributes, and by 

recursively eliminating a small number of features per 

loop, RFE attempts to eliminate dependencies and 

collinearity existing in the model. To find the optimal 

number of features, cross-validation strategy is applied. 

RFE cross-validation (RFECV) scores different feature 

subsets and selects the best scoring collection of features. 

In our approach the number of folds for the cross-

validation was set to 3. Although in its first formulation 

RFE was applied jointly with the support vector machine 

(SVM) [11], we opted for the decision tree (DT) as 

estimator. The choice was based on the best classification 

results obtained in the comparison between SVM and DT 

as estimators. For conciseness, results of those analyses 

were not reported in this work.  

RFECV was applied before all classifiers with the 

exception of the stepwise linear discriminant analysis, 

since the last intrinsically includes a feature selection 

process. This process can be controlled by the 

experimenter in term of number of features to be selected. 

As above reported, two or ten features was set also for 

the stepwise linear discriminant analysis.  

     Classification: Seven classifiers were compared in 

terms of classification performance.  

Stepwise linear discriminant analysis (SWLDA) is an 

extension of the Fisher’s Linear Discriminant that 

performs feature space reduction by selecting suitable 

features to be included in the discriminant function. In 

this classifier, a combination of forward and backward 

stepwise analysis is implemented. The input features are 

weighted using the Fisher’s Linear Discriminant to 

predict the target labels. Starting with an empty model, 

the most statistically significant input feature for 

predicting the target label (having a p-value < 0.05) is 

added to the discriminant function. After each new entry 

to the discriminant function, a backward stepwise 

analysis is performed to remove the least significant 

features, having a p-value > 0.1. This process is repeated 

until the discriminant function includes a predetermined 

number of features, or until no additional features satisfy 

the entry/removal criteria [7].  

Shrinkage linear discriminant analysis (sLDA) is a 

standard linear discriminant analysis (LDA) classifier in 

which the class-related covariance matrices used in its 

optimization have been regularized using shrinkage. The 
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sLDA classifier has been demonstrated to be more 

effective and more robust for small dataset than LDA [4]. 

In our implementation, the optimal shrinkage parameter 

was determined following the lemma introduced by 

Ledoit and Wolf.  

Logistic regression (LR) is a discriminative learning 

classifier that directly estimates the parameters of the 

posterior distribution function. The maximum likelihood 

method is used to approximate such parameters [12]. In 

our implementation, the regularized logistic regression 

was optimized by means the liblinear [13] algorithm that 

supports both L1 and L2 regularization.  

Support vector machine (SVM) is a classifier that uses a 

discriminant hyperplane to identify classes. The selected 

hyperplane is the ones that maximizes the distance 

(margin) from the nearest data points (support vectors) of 

each class [12]. In this study, we implemented the linear 

SVM and set the penalty parameter to c=1. Before 

selecting the value, three values (c=0.1, c=1 and c=10) 

were tested. No statistically significant differences were 

found among values.  

Multilayer perceptron (MLP) is a neural network. For 

this analysis, we implemented a MLP that trains using  a 

quasi-Newton algorithm which uses a backpropagation 

implementation of the gradient. We considered one 

hidden layer MLP with 20 neurons, ReLU (rectified 

linear unit) as activation function of the neurons and L-

BFGS solver. This final setting has been defined after  

testing a combination of different values for  the number 

of neurons of the hidden layer (10, 20, 40 and 80 

neurons), the activation functions (ReLU, sigmoid) and 

the solvers (L-BFGS, Adam and RMSProp). The 

combination that gave the best results, in terms of 

classification accuracy average across subjects, was that 

used in this analysis.  

Decision tree (DT) is a classifier which partitions the 

feature space until terminal nodes, each one assigned to 

a predicted value. Although decision trees are very easy 

to use for no-statisticians, they work for non-linear 

functions and the treatment of missing values is more 

satisfactory than most other model classes, we might not 

be able to find the best model at all. Moreover, results 

can be quite variable: small changes in the data can 

potentially lead to completely different splits (i.e. trees) 

[14].  

Random Forest (RF) classifier is a set of decision trees 

merged by a probabilistic scheme. To classify an epoch, 

the corresponding feature vector is the input for each tree 

in the forest. Each tree makes a prediction and the forest 

chooses the prediction having the most votes over all the 

trees in the forest. RF can work on high-dimensional data 

and it can be applied to any model. Despite of its ability 

to returns the variable importance, it is very hard to 

interpret [14]. 

Many variant RF parameters impact on the algorithm 

accuracy. For each subject, we tested both the number of 

trees (10, 20, 50, 100, 200, 500, 1000, 2000) and the 

minimum number of samples required to split an internal 

node (from 2 to 24 in steps of two ). The best set in terms 

of accuracy average (across subjects) was considered for 

the following analysis: 2000 trees and 4 samples required 

to split an internal node.  

     Validation: A 10-times cross-validation (Fig. 1) was 

implemented to compare classifiers and number of 

features. For each iteration the feature domain (epochs x 

number of features, at most 240 x 120) was shuffled 

along the first size (epochs). The first ninety and the last 

ten percent of the data have been the training and testing 

dataset, respectively.  

Training dataset was the input for the feature selector 

(RFE-CV based on DT). It performed the feature 

selection ten times using the same dataset and returned 

the list of features sorted according to the more selected 

among the feature selection iterations.  

The first two or ten features were considered to reduce 

the feature domain or all features if feature selection was 

not required.  

 

 
 

Figure 1: Validation approach. For each iteration (10 in 

total) the steps in the hatch block were repeated. 

Specifically, feature domain was shuffled and divided in 

training and testing dataset. The former was used to 

train the classifier (and to select the best two or ten 

features, if that was the condition under investigation), 

the latter to test the classifier. The performance index 

was computed for each iteration.  

     

The feature domain, properly reduced (only for 2 or 10 

features analysis), was the input for each classifier. Each 

classifier was trained from the training dataset. The 

testing dataset, never seen before, was used to test the 

model and compute the performance index.  

For each pair number of features-classifier (e.g. 2 

features – MLP) the average of the performance index 

across all iterations (10 in total) has been considered the 

emblematic value for that pair.  

     Performance Measures: For each pair number of 

features (2, 10, 120 features) and classifier (SWLDA, 

sLDA, LR, SVM, MLP, DT, RF) classification accuracy 

was computed.  
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     Statistical Analysis: For each pair number of features-

classifier the Shapiro-Wilk test was applied to assess the 

normality of each performance index distribution. 

To investigate the effect of the number of features as well 

as of the classifier and their potential interaction, 

classification accuracy was analysed by the repeated 

measure two-way analysis of variance (ANOVA). The 

Tukey HSD post hoc analysis was applied to assess 

pairwise differences. The threshold for statistical 

significance was set to p<0.05. Results are presented as 

mean ± standard error (SE) across subjects.   

 

RESULTS 

 

The statistical analysis revealed the significant effect of 

the classifier factor (F=77.22, p<0.001) as well as the 

number of the features (F= 19.11, p<0.001) on the 

classification accuracy and the significant interaction 

among factors (F= 13,20, p<0.001).  

Figure 2 shows for each pair (classifier-number of 

features) the results, presented as average and standard 

error across subjects. 

The post-hoc analysis, applied to the classifier factor, 

pointed out the overall superiority of the SWLDA 

classifier over all classifiers as well as better performance 

obtained by the sLDA respect to those of the LR, SVM, 

MLP and DT classifiers. All classifiers outperformed DT 

classifiers.  

Moreover, better performances were globally (number of 

features factor) achieved when ten or all available 

features were used than those obtained for two features.  

Since the number of features directly impacts on the 

number of physical EEG electrodes required to collect 

EEG data and, therefore, extract the needed features, 

results from interaction between classifiers and number 

of features were deeply analysed and reported in Fig. 3. 

With equal number of features (both for 2 and 10 

features), SWLDA (accuracy average= 0.78 evaluated 

for 2 features, accuracy average= 0.79 evaluated for 10 

features) statistically outperformed all classifiers. DT 

classifier, instead, (accuracy average= 0.62 evaluated for 

2 features, accuracy average= 0.67 evaluated for 10 

features) did not reached good performance, revealing to 

be the worst classifier (Fig. 3 upper panel, left side).  

When all available information were used to train the 

classifiers, no statistically significant differences 

emerged among SWLDA, sLDA and RF (Fig. 3 upper 

panel, right side).  

Increasing the size of the feature domain significantly 

improved performances in both sLDA (0.70, 0.75, 0.80 

accuracy average for 2, 10 and 120 features) and RF 

classifiers (0.67, 0.73, 0.80 accuracy average for 2, 10 

and 120 features). Conversely, SWLDA performances 

(0.78, 0.79, 0.80 accuracy average for 2, 10 and all 

features) did not differ among them varying on feature 

number.     

 

 
Figure 2: Classification accuracy, presented as mean ± standard error (15 stroke patients), computed for seven 

classifiers: stepwise linear discriminant analysis (SWLDA), shrinkage linear discriminant analysis (sLDA), logistic 

regression (LR), support vector machine (SVM), multilayer perceptron (ML), decision tree (DT), random forest 

(RF). For each classifier, accuracy was evaluated when the feature domain had been reduced to include two features 

(in blue), ten features (in green) and all available (black) features, i.e. no feature domain dimensionality reduction.  
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Figure 3: Post-hoc test results of the ANOVA interaction factor. Upper panel, left side: comparison among 

classifiers with the same number of features. Pairwise differences among classifiers, for 2 and 10 features, were 

presented in same matrix since they had returned equal results. Upper panel, right side: comparison among 

classifiers when all features were considered. Lower panel, left side: comparison between classifiers trained from 

2 features and those trained from 10 features. Lower panel, centre: comparison between classifiers trained from 2 

features and those trained from all available features. Lower panel, right side: comparison between classifiers 

trained from 10 features and those trained from all available features.  

Matrix reading: The classifier in each column header statistically differed/ did not differ from the classifier 

reported in the row header. Significant/no-significant differences correspond to coloured/white boxes. Green 

(orange) boxes means that the classifier in the column (row) header outperformed that in the row (column) header.  

 

 

The increasing trend in accuracy was observed also for 

LR, DT and MLP classifiers: for the first the increase 

from 2 to 10 or 120 features statistically improved 

classification accuracy, for the neural network model the 

trend was not supported by the statistical results. SVM 

seemed, instead, to be prone to overfitting (0.70, 0.75, 

0.71 accuracy average for 2, 10 and 120 features).  

Lastly, the cross-check between classifier and number of 

features revealed that even the best model of the sLDA 

and RF (120 features) did not significantly differ from 

the SWLDA based just on two or ten features (Fig. 3, 

lower panel, centre and right side). Therefore, even if 

sLDA and SWLDA are both linear and, therefore, 

interpretable models, the last reached comparable 

performance by means few features (i.e. 10 features, less 

than 10 EEG channels).  

 

DISCUSSION 

 

Identifying the optimal classification method, based on 

relevant features, fast and able to provide an interpretable 

model of the EEG reinforced pattern, is a milestone in 

post-stroke rehabilitation protocols supported by BCI 

technology. In contrast to other fields of application 

where optimal cursor control is pursued, in a 

rehabilitation context the reinforcement of the proper 

sensorimotor activation in terms of both topographic and 

spectral characteristics is the main aim.  

Spectral features belonging to the sensorimotor area of 

the affected hemisphere, in alpha and beta bands, were 

extracted from EEG data of 15 stroke subjects to compare 

seven classifiers in terms of classification accuracy. 

Performance was also analysed varying on the number of 

features considered in the feature domain.  

Stepwise linear discriminant analysis (SWLDA) revealed 

being the best classifier even just considering two or ten 

features. Considering all available features (120 features) 

shrinkage linear discriminant analysis (sLDA) and 

random forest (RF) achieved good results and 

comparable to those of SWLDA. Nevertheless good 

results, linear models (SWLDA and sLDA), resulting 

from the linear combination of features properly 

weighted, are more interpretable than RF model.  

In our approach, indeed, monitoring the cursor trajectory, 

feedback provided to the therapist and directly related to 

the combination of proper features, allows to explain 

single trial and rehabilitative session performances.  

RF belongs to the bootstrap aggregating methods based 
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on decision tree classifiers and, although decision tree is 

the simplest model because the intuitive interpretation, 

the structure of the RF (in our case 2000 decision trees) 

decreases the interpretability of the model by the 

clinicians. Among linear models, instead, even if 

SWLDA and sLDA reached the same performance, 

SWLDA built the model by less than 120 features: in 

most cases, the embedded feature selection process, 

starting from the empty model, did not add all predictors 

to the model. Moreover, the interaction among ANOVA 

factors did not highlight differences between SWLDA, 

trained with two or ten features, and both sLDA and RF 

trained by all features.  

The linearity, the interpretability and the possibility to 

achieve good classification results also thank to the 

embedded selection process (not covered by the nature of 

the other classifiers) yielded SWLDA to be considered 

the best classification approach in the rehabilitation 

context. Furthermore, the possibility to monitor EEG 

patterns to reinforce by means few electrodes (10 

features i.e. less than 10 EEG channels,) matches the use 

of BCI technology in clinical context.  

Focusing for each classifier on the number of features 

factor, if from one hand for SWLDA the increasing trend, 

justified by the increasing number of features (2, 10, less 

than 120 features), was not supported by the statistical 

analysis, from the other hand the trend revealed being 

significant for both sLDA and RF. Moreover, with equal 

number of features, no differences were observed 

between sLDA and RF, supporting, therefore, the use of 

RF model as a good approach to the binary classification 

of motor imagery tasks, as proposed in [9]. Although 

Steyrl et al. observed the superiority (3% in accuracy) of 

the RF approach to the sLDA, the characteristics of their 

approach, i.e. different tasks, number of channels, 

pipeline of EEG signal processing, should be considered 

in the comparison. For similar reasons, our results did no 

confirm results in [5]. Although we used similar spectral 

features, the application of the common spatial pattern 

filter and the lower number of the recorded EEG channels 

may be the reason why the multilayer perceptron and the 

logistic regression did not show good performances.  

 
CONCLUSION 

 

SWLDA classifier statistically outperformed those 

commonly used in SMR-BCI paradigms, achieving good 

performance even in case of feature domain 

dimensionality reduction. Monitor the brain activity by 

means few EEG electrodes, indeed, is the key to use BCIs 

in clinical realm. Linearity, interpretability and impact on 

the usability yielded to positively evaluating SWLDA 

approach in the upper limb post-stroke motor recovery 

protocols supported by BCI.   
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